
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 305

Combining Data Reuse With Data-Level
Parallelization for FPGA-Targeted Hardware

Compilation: A Geometric Programming Framework
Qiang Liu, George A. Constantinides, Senior Member, IEEE, Konstantinos Masselos, Member, IEEE, and

Peter Y. K. Cheung, Senior Member, IEEE

Abstract—A nonlinear optimization framework is proposed in
this paper to automate exploration of the design space consisting
of data-reuse (buffering) decisions and loop-level parallelization,
in the context of field-programmable-gate-array-targeted hard-
ware compilation. Buffering frequently accessed data in on-chip
memories can reduce off-chip memory accesses and open avenues
for parallelization. However, the exploitation of both data reuse
and parallelization is limited by the memory resources available
on-chip. As a result, considering these two problems separately,
e.g., first exploring data reuse and then exploring data-level paral-
lelization, based on the data-reuse options determined in the first
step, may not yield the performance-optimal designs for limited
on-chip memory resources. We consider both problems at the
same time, exposing the dependence between the two. We show
that this combined problem can be formulated as a nonlinear
program and further show that efficient solution techniques ex-
ist for this problem, based on recent advances in optimization
of so-called geometric programming problems. The results from
applying this framework to several real benchmarks implemented
on a Xilinx device demonstrate that given different constraints
on on-chip memory utilization, the corresponding performance-
optimal designs are automatically determined by the framework.
We have also implemented designs determined by a two-stage
optimization method that first explores data reuse and then ex-
plores parallelization on the same platform, and by comparison,
the performance-optimal designs proposed by our framework are
faster than the designs determined by the two-stage method by up
to 5.7 times.

Index Terms—Data-level parallelization, data reuse, field-
programmable gate-array (FPGA) hardware compilation, geo-
metric programming, optimization.

I. INTRODUCTION

A S THE SIZE, capabilities, and speed of modern field-
programmable gate arrays (FPGAs) increase, FPGA-

based reconfigurable systems have been applied to an extensive
range of applications, such as digital signal processing, video
and voice processing, and high-performance computing [1].
Meanwhile, the complex applications and plurality of hard-

Manuscript received May 2, 2008; revised September 15, 2008. Current ver-
sion published February 19, 2009. This paper was recommended by Associate
Editor J. Lach.

Q. Liu, G. A. Constantinides, and P. Y. K. Cheung are with the Department
of Electrical and Electronic Engineering, Imperial College London, SW7 2BT
London, U.K. (e-mail: qiang.liu2@imperial.ac.uk; g.constantinides@imperial.
ac.uk; p.cheung@imperial.ac.uk).

K. Masselos is with the Department of Computer Science and Technol-
ogy, University of Peloponnese, 22100 Tripolis, Greece (e-mail: k.masselos@
imperial.ac.uk).

Digital Object Identifier 10.1109/TCAD.2009.2013541

Fig. 1. Target platform. (a) Target architecture. (b) Architecture exploiting
data reuse in on-chip RAMs. (c) Architecture exploiting data reuse and
parallelization.

ware resources increase the complexity of FPGA-based system
design. As a result, how to efficiently exploit the flexibility
provided by heterogeneous reconfigurable resources on FPGAs
to achieve an optimal design while shrinking the design cycle
has become a serious issue faced by designers. This paper
introduces an optimization framework to aid designers in ex-
ploration of the data reuse and data-level parallelization design
space at compile time with the objective of maximizing system
performance while meeting constraints on on-chip memory
utilization.

An FPGA-based reconfigurable system is shown in Fig. 1(a).
External RAMs are accessed by an FPGA as main memories. It
is well known that data transfers between external memories
and the processing unit (PU) are often the bottleneck when
trying to use reconfigurable logic as a hardware accelerator.
As a result, the use of on-chip RAMs to buffer repeatedly
accessed data, known as data reuse [2], has been investigated
in depth. In our previous work, a systematic approach for data-
reuse exploration in applications involving arrays accessed in
loop nests has been proposed [3]–[5], where the architecture
exploiting a scratch-pad memory (SPM) to load and store
reused data is shown in Fig. 1(b).

Loop nests are the main source of potential parallelism, and
loop-level parallelization has been widely used for improving
performance [6]. However, the performance improvement is, in

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

306 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

fact, limited by the number of parallel data accesses to fetch
the operands. There are a number of embedded RAM blocks
on modern FPGAs, often with two independent read/write
ports. Therefore, buffering data in on-chip RAMs can increase
memory access bandwidth and open avenues for parallelism.

In this paper, we present an approach that buffers potentially
reused data on-chip and duplicates the data into different dual-
port memory banks embedded in modern FPGAs to reduce
off-chip memory accesses and increase loop-level parallelism.
The target hardware structure is shown in Fig. 1(c). Each PU
executes a set of loop iterations, and all PUs run in parallel.
Because different sets of loop iterations may access the same
data (data reuse), every dual-port RAM bank holds a copy
of buffered data and is accessed by two PUs through its two
ports. In this paper, registers are not used as on-chip data-reuse
buffers, although the proposed framework could be combined
with a register-oriented work [7]. Therefore, in this paper, the
on-chip memory cost is measured in units of atomic on-chip
embedded RAM blocks.

To our knowledge, there exist only few works exploiting both
data reuse and loop-level parallelization [3], [8], [9]. However,
there is no prior design flow combining data-reuse exploration
and loop-level parallelization within a single optimization step.
In the context of this paper, the data-reuse decision is to decide
at which levels of a loop nest to insert new on-chip arrays to
buffer reused data for each array reference, in line with the
study in [4]. We consider the code to have been preprocessed
by a dependence analysis tool such as in [10] and each loop
to have been marked as parallelizable or sequential. The par-
allelization decision is to decide an appropriate strip-mining
for each loop level in the loop nest [11]. Performing these two
tasks separately may not lead to performance-optimal designs.
If parallelization decisions are made first without regard for
memory bandwidth, then a memory subsystem needs to be
designed around those parallelization decisions, typically re-
sulting in inefficiently large on-chip memory requirements to
hold all the operands, and large run-time penalties for loading
data, many of which may not be reused, from off-chip into
on-chip memories. A more sensible approach is to first make
data-reuse design decisions to minimize off-chip accesses and
then improve the parallelism of the resulting code [2]. However,
once the decision is made to fix the loop level where on-chip
buffers are inserted, sometimes only limited parallelism can be
extracted from the remaining code.

Thus, in this paper, we recognize the link between data reuse
and loop-level parallelization and address the combined prob-
lem as a single optimization step using a geometric program-
ming framework [12]. The overall optimization takes place
while respecting an on-chip RAM utilization constraint and the
dependence between the two problems. The main contributions
of this paper are thus the following:

1) an integer geometric programming formulation of the
exploration of data reuse and data-level parallelization
for performance optimization under an on-chip memory
constraint, revealing a computationally tractable lower-
bounding procedure and thus allowing a solution through
branch and bound;

2) the application of the proposed framework to several
signal and video processing kernels, resulting in perfor-
mance improvements up to 5.7 times compared with a
two-stage method that first explores data reuse and then
performs loop parallelization.

The rest of this paper is organized as follows. Section II
describes a related work. Section III presents a motivational
example, and Section IV precisely states the targeted prob-
lem. Section V formulates the problem in a naïve way, and
Section VI shows that via a change of variables and reorder-
ing, the problem can be reformulated as an integer geometric
program. Section VII presents the results from applying our
proposed framework to several real benchmarks. Section VIII
concludes this paper and suggests future work.

II. BACKGROUND

The two areas of optimizing memory architectures for data
reuse and techniques for automated parallelization have been
extensively investigated over the last decade.

A number of approaches for optimizing memory config-
urations have been proposed for embedded systems. A sys-
tematic methodology for data-reuse exploration is proposed in
[2], where a cost function of power and area of the memory
system is evaluated, in order to decide promising data-reuse
options and the corresponding memory hierarchy. In [13]–[15],
approaches for exploiting data reuse in SPM have been pre-
sented. In [13], large arrays are divided into data blocks, and
computations that access the same data block are scheduled as
close as possible in time slots using a greedy heuristic to maxi-
mize data reuse with minimum on-chip memory requirements.
Approaches in [14] and [15] determine which data should be
transferred into SPM and when and where in a code these
transfers happen to improve the performance of the code, based
on memory access cost models. Research into buffering reused
data in FPGA on-chip RAMs and registers has been carried
out in [5], [7], [8], and [16]. In [16], applications speed up
through pipelining with high data throughput, which is obtained
by storing reused data in shift registers and shift on-chip RAMs.
In [7] and [8], arrays more beneficial to minimize the memory
access time are stored in either registers or on-chip RAMs if
register is not available. The work in [5] formulates the problem
of data-reuse exploration aimed at low power as the multichoice
knapsack problem.

Improvement of the parallelism of programs has been a hot
topic in the computing community. Loop transformations have
been used in [6] to enable loop parallelization for programs with
perfectly nested loops. Lefebvre and Feautrier [17] propose
an approach for parallelizing static control programs, which
introduces memory reuse to the single assignment transfor-
mation of the programs in order to reduce memory require-
ments for parallelization. Gupta and Banerjee [18] identify
two objectives, in conflict with each other: distribution of
data on as many processors as possible and reduction in the
communication among processors, in data distributions over
multiple processors. They propose a technique for performing
data alignment and distribution to determine data partitions

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

LIU et al.: COMBINING DATA REUSE WITH DATA-LEVEL PARALLELIZATION FOR HARDWARE COMPILATION 307

suitable to the distributed memory architecture. There is also
significant work from the systolic array community on mapping
sequential programs onto systolic arrays with unlimited and
limited processors [19]. A systematic description of hardware
architectures and software models of multiprocessor systems
has been published in [20].

However, exploration of both data reuse and parallelization
has been discussed in only a few previous works. Eckhardt and
Merker [21] recursively apply the locally sequential globally
parallel and the locally parallel globally sequential partition-
ing schemes to mapping an algorithm onto a processor array
with a two-level memory hierarchy. Data reuse is considered
during the algorithm partitions in order to reduce accesses
to high memory levels. However, the purpose of this paper
is to model the target architecture in order to partition the
algorithm and to improve memory utilization, rather than a
system design exploration. A greedy algorithm is proposed
in [22] for mapping array references resident in computation
critical paths onto FPGA on-chip memory resources to provide
parallel data accesses for instruction-level parallelism. The
algorithm only produces a locally optimal solution. Data access
patterns of arrays are considered, and an array with reused data
is mapped on-chip as a whole and duplicated into different
memory banks, while in our approach, reused data of an array
could be partially buffered and duplicated on-chip, and on-chip
buffers are updated at run time to improve efficiency of memory
usage. In [9], loop transformations, such as loop unrolling,
fusion, and strip-mining, are performed before the exploitation
of data reuse. The work in [3] focuses on a systematic ap-
proach for the derivation of data-reuse options and describes an
empirical experiment that demonstrates the potential for data
reuse and parallelization. However, no systematic formulation
is proposed for this combined optimization. In [23] and [24],
the authors experiment with the effects of different data-reuse
transformations and memory system architectures on the sys-
tem performance and power consumption. The results prove
the necessity of the exploration of data reuse and data-level
parallelization.

Previous research has not formulated the problem of ex-
ploring data reuse and loop parallelization at the same time.
The motivation of this paper is to investigate this in order to
improve system performance under an on-chip memory utiliza-
tion constraint in FPGA-based platforms. Specifically, in the
proposed framework, this problem is formulated as an integer
nonlinear programming (INLP) problem exhibiting a convex
relaxation, and existing solvers for NLP problems are applied
to solve it. As a result, this exploration problem is automated,
and system designs with optimal performance are determined at
compile time.

III. MOTIVATIONAL EXAMPLE

The general problem under consideration is how to design a
high-performance FPGA-based processor from imperative code
annotated with potential loop-level parallelism using constructs
such as Cray Fortran’s “doall” [25] or Handel-C’s “replicated
par” [26]. In the target platform, the central concern is that
the off-chip RAMs only have few access ports. Without loss

Fig. 2. MAT example. (a) Original code. (b) Loop j could be parallelized.
(c) Two loops i and j could be parallelized.

of generality, this paper assumes, for simplicity, that one port is
available for off-chip memory accesses. In this paper, we obtain
high performance by buffering frequently accessed data on chip
in SPMs to reduce off-chip memory access and by replicating
these data in distinct dual-port memory banks to allow multiple
loop iterations to execute in parallel.

To illustrate these two related design issues, an example,
matrix-matrix multiplication (MAT), is shown in Fig. 2. The
original code in Fig. 2(a) consists of three regularly nested
loops. The matrices A, B, and C are stored in off-chip memory.
This code exhibits data reuse in accesses to the arrays A and B;
for example, for the same iterations of the loops i and k,
different iterations of loop j read the same array element
A[i][k]. In addition, this code presents potential parallelism in
loop i or j that can be revealed by Wilson et al. [10]. However,
despite the apparent parallelism, the code can only be executed
in parallel, in practice, if an appropriate memory subsystem is
developed; otherwise, the bandwidth to feed the datapath will
not be available.

Following the approach in [3] to exploit data reuse, a data-
reuse array, stored in on-chip SPM, is introduced to buffer
elements of an array which is stored in off-chip memory and
frequently accessed in a loop nest. Before those elements are
used, they are first loaded into the data-reuse array in the
on-chip memory from the original array. Such a data-reuse
array may be introduced at any level of the loop nest, forming
different data-reuse options for the original array and giving
rise to different tradeoffs in on-chip memory size versus off-
chip access count [4]. To avoid redundant data copies, only
beneficial data-reuse options, in which the number of off-chip
accesses to load the data-reuse arrays is smaller than the number
of on-chip accesses to them, are considered.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

308 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

With respect to these rules, the array A has two beneficial
data-reuse options shown in Fig. 2(b) and (c): loading the data-
reuse array RLA between loops i and j, or outside loop i,
respectively. Assuming that the matrices are 64 × 64 with 8-b
entries, both options obtain a 64-fold reduction in off-chip
memory accesses, whereas they differ in on-chip RAM require-
ments, needing one and two 18-kb RAM blocks, respectively,
on our target platform with a Xilinx XC2v8000 FPGA. Sim-
ilarly, the array B owns one beneficial data-reuse option, in
which the data-reuse array RLB is loaded outside loop i, with
64 times reduction in off-chip memory accesses and a memory
requirement of two RAM blocks.

In prior work, the goal of data reuse has been to select
appropriate loop levels to insert data-reuse arrays for all array
references, in order to minimize off-chip memory accesses with
the minimum on-chip memory utilization [3]. Following this
approach, if there are more than two on-chip RAM blocks
available, an optimal choice would be to select the first data-
reuse option for A and the single data-reuse option for B as
shown in Fig. 2(b).

Since the data-reuse arrays are stored on-chip, we use the
dual-port nature of the embedded RAMs and replicate the data
in different RAM banks to increase the parallel accesses to the
data. This is also shown in Fig. 2(b), where loop j is strip-mined
and then partially parallelized, utilizing kj distinct parallel PUs
in the FPGA hardware. As a result, �kj/2� copies of a row
of matrix A and �kj/2� copies of matrix B are held on-chip
in arrays RLA1�j1/2� and RLB0�j1/2� mapped onto dual-port
RAM banks. The parameter kj thus allows a tuning of the
tradeoff between on-chip memories and computation resources
and execution time. Note that for this selection of data-reuse
options, loop i cannot be parallelized because parallel access to
the array A is not available, given that a single port is available
for off-chip memory access. Had the alternative option, shown
in Fig. 2(c), been chosen, we would have the option to strip-
mine and parallelize loop i as well.

Therefore, exploiting data reuse to buffer reused data on-
chip and duplicating the data over multiple memory banks
make data-level parallelization possible, resulting in perfor-
mance improvements while the number of off-chip memory
accesses is reduced. However, if data-reuse decision is made
prior to exploring parallelization, then the potential parallelism
existing in the original code may not be completely explored.
Proceeding with the example, if we first explore data reuse,
then the data-reuse option shown in Fig. 2(b) will be chosen
as discussed earlier. Consequently, the opportunity of exploring
both parallelizable loops i and j is lost. In other words, the
optimal tradeoff between on-chip resources and execution time
may not be carried out. This observation leads to the conclusion
that parallelism issues should be considered when making data-
reuse decisions.

The issue is further complicated by the impact of dynamic
single assignment form [27] on memory utilization. Notice
that the temporary variable s in Fig. 2(a) storing intermediate
computation results has been modified in Fig. 2(b) and (c) so
that each parallel processor writes to a distinct on-chip memory
location through independent ports, avoiding contention. Final
results are then output to off-chip memories sequentially. For

Fig. 3. Target loop structure. (a) Original loop structure. (b) Loop structure
with strip-mined loop I2.

the MAT example, in Fig. 2(b), for 64 × 64 matrices with 8-b
entries, the on-chip memory requirement after data-level par-
allelization is 4 × �kj/2� RAM blocks, on the target platform
with a Xilinx XC2v8000 FPGA. Similarly, the on-chip memory
requirement in Fig. 2(c) is 5 × �kikj/2� RAM blocks.

Therefore, greater parallelism requires more on-chip mem-
ory resources because of the following: 1) Reused data need to
be replicated into different on-chip memory banks to provide
the parallel accesses required, and 2) temporary variables need
to be expanded to ensure that different statements write to
different memory cells.

In the following section, we will generalize the discussion
above, before proposing a methodology to make such decisions
automatically.

IV. PROBLEM STATEMENT

In this paper, we target N -level regularly nested loops
(I1, I2, . . . , IN) with R references to off-chip arrays, where
I1 corresponds to the outermost loop, IN corresponds to the
innermost loop, and Gj(I1, I2, . . . , Ij) and G′

j(I1, I2, . . . , Ij)
are groups of sequential assignment statements inside loop Ij

but outside loop Ij+1, as shown in Fig. 3(a). Without loss
of generality, in line with Handel-C, we assume that each
assignment takes one clock cycle. When a data-reuse array is
introduced at loop j for a reference which is accessed within
loop j, a code for loading buffered data from off-chip memory
into the on-chip array is inserted between loops j − 1 and j
within group Gj−1 and executes sequentially with other state-
ments. Inside the code, the off-chip memory accesses are
pipelined and a datum is loaded into the data-reuse array in one
cycle after few initiation cycles. The data-reuse array is then
accessed within loop j instead of the original reference. When
a loop is strip-mined for parallelism, the loop that originally
executes sequentially is divided into two loops: a Doall loop
that executes in parallel and a new Do loop running sequen-
tially, with the latter inside the former. The iterations of other
untouched loops still run sequentially. For example, Fig. 3(b)
shows the transformed loop structure when loop I2 is strip-
mined. In this situation, the inner loops (I22, I3, . . . , IN) form
a sequential segment, and for a fixed iteration of loop I1 and all

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

LIU et al.: COMBINING DATA REUSE WITH DATA-LEVEL PARALLELIZATION FOR HARDWARE COMPILATION 309

iterations of loop I21, the corresponding kI2 segments execute
in parallel.

Given N nested loops and each loop l with kl parallel
partitions, the on-chip memory requirement for exploiting data
reuse and loop-level parallelization is �(

∏N
l=1 kl)/2�(Btemp +

Breuse), where Btemp is the number of on-chip RAM blocks re-
quired by expanding temporary variables, Breuse is the number
of on-chip RAM blocks required by buffering a single copy of
the reused data of all array references, and the divisor 2 is due
to dual-port RAM. As the number of partitions increases, the
on-chip memory requirement increases quickly. Therefore, we
can adjust the number of partitions {kl} to fit the design into
the target platform with limited on-chip memory.

Complete enumeration of the design space of data reuse
and data-level parallelization is expensive for applications with
multiple loops and array references. Given N -level regularly
nested loops surrounding R array references, each array refer-
ence could have N data-reuse options: to insert a data-reuse
array before the entire nested loop structure or inside any one
of the N loops except the innermost loop. Thus, there are NR

data-reuse options in total. Moreover, there could be
∏N

l=1 Ll

data-level parallelization options under each data-reuse option,
where Ll is the number of iterations of the loop l. As a result,
the design space maximally consists of NR

∏N
l=1 Ll design

options, which increases exponentially with the number of array
references R and the number of loop levels N . Therefore, we
want to formulate this problem in a manner that allows for
an automatic and quick determination of an optimal design at
compile time.

V. PROBLEM FORMULATION

We formulate this problem as an INLP problem and will
show in the next section that the INLP problem can be trans-
formed to an integer geometric program, which has a convex
relaxation [12], allowing efficient solution techniques.

For ease of description, we formulate the problem in this
paper for the case where a set of R references A1, A2, . . . , AR

to arrays is present inside the innermost loop of an N -level
loop nest (the proposed framework can be extended to allow
array references to exist at any loop level). As only data-reuse
options, in which the number of off-chip accesses is smaller
than the number of on-chip accesses is considered, reference Ai

could have a total of Ei (0 ≤ Ei ≤ N) beneficial data-reuse
options OPi1, OPi2, . . . , OPiEi

. Ei equal to zero means that
there is no reason to buffer data on-chip. Option OPij occupies
Bij blocks of on-chip RAM and needs Cij cycles for loading
reused data from off-chip memories. Loop l (1 ≤ l ≤ N) can
be partitioned into kl (1 ≤ kl ≤ Ll) pieces. The kl variables
corresponding to those loops not parallelizable in the original
program are set to one. All notations used in this paper are listed
in Table I. Based on these notations, the problem of exploration
of data reuse and data-level parallelization is defined in (1),
(2)–(6), as described in detail in the following:

min :
S∑

s=1

Ws∏
l=1

⌈
Ll

kl

⌉
+

R∑
i=1

Ei∑
j=1

ρijCij (1)

TABLE I
LIST OF NOTATIONS FOR VARIABLES (v) AND PARAMETERS (p)

subject to

⌈
1
2

N∏
l=1

kl

⌉
Btemp +

⌈
1
2

N∏
l=1

kl

⌉
R∑

i=1

Ei∑
j=1

ρijBij ≤ B (2)

Ei∑
j=1

ρij = 1, 1 ≤ i ≤ R (3)

ρij ∈ {0, 1}, 1 ≤ j ≤ Ei, 1 ≤ i ≤ R (4)

kl ≥ 1, 1 ≤ l ≤ N (5)

kl − (Ll − 1)
l∑

j=1

ρij ≤ 1

1 ≤ l ≤ N, 1 ≤ j ≤ Ei, i ∈ Ql. (6)

In this formulation, all capitals are known parameters at com-
pile time and all variables are integers. The objective function
(1) and the constraint function (2) are not linear due to the ceil
functions and the products, resulting in an INLP problem. The
INLP minimizes the number of execution cycles of a program
in (1), which is composed of two parts: the number of cycles
taken by the parallel execution of the original program and
the additional time required to load data into on-chip buffers,
given that each statement takes one clock cycle. In the first part,
Ws = 1 means that statement s is located between the first loop
and the second loop, and Ws = N means that it is located inside
the innermost loop. The ceil function here guarantees that all
iterations of the loop l are executed after parallelization. In the
second part, the data-reuse variables ρij are binary variables,
which is guaranteed by (4). ρij taking value one means that
the data-reuse option OPij is selected for the reference Ai.
Equality (3) ensures that exactly one data-reuse option is chosen
for each reference.

Inequality (2) defines the most important constraint on the
on-chip memory resources. B on the right-hand side of the
inequality is the number of available blocks of on-chip RAM.
On the left-hand side, the first addend is the on-chip memory
required by expanding temporary variables, and the second
addend expresses the number of on-chip RAM blocks taken by

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

310 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

reused data of all array references. The ceil function indicates
the number of times the on-chip buffers are duplicated. Note
that each dual-port on-chip memory bank is shared by two PUs,
as shown in Fig. 1(c). Hence, half as many data duplications as
the total number of parallelized segments accommodate all PUs
with data. This constraint also implicitly defines the on-chip
memory port constraint, because the number of memory ports
required is the double of the number of on-chip RAM blocks
required.

Inequalities (5) and (6) give the constraints on the number
of partitions of each loop, kl. Inequalities (6), where Ql ⊆
{1, 2, . . . , R} is a subset of array reference indices such that
if i ∈ Ql then array reference Ai is inside loop l, show the link
between data-reuse variables ρij and loop partition variables kl.
The essence of this constraint is that a loop can only be
parallelized if the array references contained within its loop
body have been buffered in data-reuse arrays prior to the loop
execution. For the example in Fig. 2(b), loop j can be strip-
mined and be executed in parallel, while loop i cannot. It is this
observation that is exploited within this framework to remove
redundant design options, combining data reuse and data-level
parallelization.

The design exploration of data-reuse options and data-level
parallelization is thus formulated as an INLP problem by means
of, at most, RN data-reuse variables {ρij} and N loop partition
variables {kl}. In this manner, N(R + 1) variables are used to
explore the design space with NR

∏N
l=1 Ll options.

The enumeration of the design space can be avoided if there
is an efficient way to solve this INLP problem. In the next
section, it will be shown how this formulation is transformed
into a geometric program.

VI. GEOMETRIC PROGRAMMING TRANSFORMATION

The problem of exploring data reuse and data-level paral-
lelization to achieve designs with optimal performance under an
on-chip memory constraint has been formulated in a naïve way
as an INLP problem. However, there are no effective methods
to solve a general NLP problem because they may have several
locally optimal solutions [12]. Recently, the geometric program
has achieved much attention [12]. The geometric program is the
following optimization problem:

min : f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

where the objective function and inequality constraint functions
are all in posynomial form, while the equality constraint func-
tions are monomial. A monomial hi(x) is a function hi(x) =
cxa1

1 , xa2
2 , . . . , xan

n , where x ∈ R
n, x > 0, c > 0, and ai ∈ R.

A posynomial fi(x) is a sum of monomials. The reason for
posynomial requirement is that posynomial functions can be
transformed into convex functions, whereas this is not the case
for general polynomials. By replacing variables xi = eyi and
taking the logarithm of the objective function and constraint
functions, the geometric program can be transformed to a

convex form. The importance of this observation is that unlike
general NLPs, convex NLPs have efficient solution algorithms
with guaranteed convergence to a global minimum [12].

The INLP given in Section V can be transformed into an
integer geometric program. We first remove the ceil functions
from the original problem by introducing two constraints with
auxiliary integer variables vl and d, as shown below, and
variables vl and d take the least integers, satisfying the con-
straints. After that, we substitute variables ρ′ij = ρij + 1 for
the variables ρij and perform expression transformations by
means of logarithm and exponential to reveal the geometric
programming characteristic of the original problem. Finally, the
INLP in Section V is transformed to the following:

min :
S∑

s=1

Ws∏
l=1

vl +
R∑

i=1

Ei∑
j=1

(
ρ′ij − 1

)
Cij (7)

subject to

dBtemp + d

R∑
i=1

Ei∏
j=1

ρ
′ log2 Bij

ij ≤ B (8)

Ei∑
j=1

(
ρ′ij − 1

)
= 1, 1 ≤ i ≤ R (9)

ρ′ij ∈ {1, 2}, 1 ≤ j ≤ Ei, 1 ≤ i ≤ R (10)

k−1
l ≤ 1, 1 ≤ l ≤ N (11)

kl

l∏
j=1

ρ
′ −log2 Ll

ij ≤ 1

1 ≤ l ≤ N, 1 ≤ j ≤ Ei, i ∈ Ql (12)

Llk
−1
l v−1

l ≤ 1, 1 ≤ l ≤ N (13)

1
2
d−1

N∏
l=1

kl ≤ 1. (14)

Now, we can see that the relaxation of this problem, ob-
tained by allowing kl to be real values and replacing (10) by
1 ≤ ρij ≤ 2, is exactly a geometric program. Note that the
transformation between the original formulation in Section V
and the convex geometric programming form just involves vari-
able substitution and expression reorganization, rather than any
approximation of the problem. As a result, the two problems are
the equivalent. Thus, the existing methods for solving convex
INLP problems can be applied to obtain the optimal solution to
the problem.

A branch and bound algorithm used in [28] is applied to
the framework to solve problem (7)–(14), using the geometric
programming relaxation as a lower bounding procedure. The
algorithm first solves the relaxation of the INLP problem, and
if there exists an integral solution to this relaxed problem, then
the algorithm stops and the integral solution is the optimal

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

LIU et al.: COMBINING DATA REUSE WITH DATA-LEVEL PARALLELIZATION FOR HARDWARE COMPILATION 311

TABLE II
DETAILS OF THREE KERNELS

solution. Otherwise, solving the relaxed problem provides a
lower bound on the optimal solution, and a tree search over the
integer variables of the original problem starts. The efficiency
of the branch and bound algorithm can be evaluated by the gap
between the initial lower bound at the root node and the optimal
solution and the number of search tree nodes. The larger gap
and the more search nodes mean more time to obtain the
optimal solution. We apply the proposed framework to several
benchmarks in the next section and use this algorithm to obtain
the optimal solutions. It shall be shown that our geometric
programming bounding procedure generates a small gap.

VII. EXPERIMENTAL RESULTS

For demonstration of the ability of the proposed framework
to determine the performance-optimal designs within the data
reuse and data-level parallelization design space under the
FPGA on-chip memory constraint, we have applied the frame-
work to three kernels: full search motion estimation (FSME)
[29], MAT of two 64 × 64 matrices (MAT64), and the Sobel
edge detection algorithm (Sobel) [30].

On the target platform Celoxica RC300 used for our experi-
ments, on-chip memory takes one cycle and off-chip memory
takes two cycles. We pipeline off-chip memory accesses to
obtain a throughput of one access per cycle. Reused elements
of each array reference in the kernels are buffered in on-chip
RAMs and are duplicated in different banks. For a temporary
variable, if it is an array, then the array is expanded in on-chip
RAM blocks; if it is a scalar, then the variable is expanded in
registers. The luminance component of QCIF image (144 ×
176 pixels) is the typical frame size used in FSME and Sobel.

The benchmarks shown in Table II have been selected for
their regularly rectangularly nested loops and multiple arrays.
FSME is a classical algorithm of motion estimation in video
processing [29]. It has six regularly nested loops, which is
representative of the deepest loop nest seen in practice, and
two array references, corresponding to the current and previous
video frames. We consider three beneficial data-reuse options
for each of two array references, and in total, there are nine
different data-reuse designs, as shown in Table II. MAT is in-
volved in many computations and usually locates in the critical
paths of the corresponding hardware circuits [31]. It has two
array references multiplied in a three-level loop nest, and there
are two different data-reuse designs. The Sobel edge detection
algorithm is a classic operator in image processing [30]. It

includes four loops, an image array with three beneficial data-
reuse options, and a 3 × 3 mask array having one beneficial
data-reuse option. Similarly, there are three data-reuse designs
for the Sobel kernel. Moreover, the outermost two loops of these
three kernels are parallelizable, and all parallelization options
kl are also presented in Table II. The number of on-chip RAM
blocks Bij and the time for loading reuse data Cij , listed in
Table II, required by a data-reuse option of each array reference,
are determined by our previous work [4].

Given all input parameters, the problem formulated in
Section VI can be solved by YALMIP [28], which is a
MATLAB toolbox for solving optimization problems. All de-
signs given by YALMIP have been implemented in Handel-C
[26] and mapped onto the Xilinx XC2v8000 FPGA with
168 on-chip RAM blocks to verify the proposed frame-
work, as shown in Figs. 4–6. In this section, we use (OP1j ,
OP2j , . . . , OPRj , k1, k2, . . . , kN) to denote a design with data-
reuse options {OPij} and parallelization options {kl}.

In Figs. 4(a)–6(a), for every amount of on-chip RAM blocks
between 0 and 168, the designs with the optimal performance
estimated by the proposed framework are shown and are con-
nected using bold lines to form the performance-optimal Pareto
frontier. For example, in Fig. 4(a), the proposed design using
fewer than six on-chip RAM blocks is (OP12, OP21, k1 = 1,
k2 = 2, k3 = 1), the leftmost one; for an on-chip RAM consist-
ing of 80 blocks, it is (OP11, OP21, k1 = 6, k2 = 6, k3 = 1);
and if the number of on-chip RAM blocks is fewer than three,
then the proposed design is the sequential code (k1 =1, k2 =1,
k3 = 1) without data reuse and data-level parallelization. It can
be seen in Figs. 4(a)–6(a) that the number of execution cycles
decreases as the number of on-chip RAM blocks increases,
because the degree of parallelism increases. To demonstrate the
advantage of the optimization framework, some other possible
designs randomly sampled from the space of feasible solutions
in the design space of each benchmark, i.e., other combina-
tions of data-reuse options {OPij} and parallelization options
{kl}, are also plotted in these figures. These designs are all
above the performance-optimal Pareto frontier and have been
automatically rejected by the proposed framework. It is shown
that when the on-chip RAM constraint is tight, the optimization
framework does a potentially good job at selecting high-speed
solutions.

The actual execution times, after synthesis, placement, and
routing effects are accounted for, are plotted in Figs. 4(b)–6(b).
In these figures, the designs proposed by the framework are
shown in dots and the corresponding performance-optimal de-
sign Pareto frontiers are drawn using bold lines. Clearly, there
are the similar descending trends of the frontiers in (a) and
(b) over the number of on-chip RAM blocks for three kernels.
There exist a few exceptions in Figs. 4(b) and 6(b), where the
performance of some designs, shown in dots above the Pareto
frontier, becomes worse as the on-chip memory increases. This
is because on-chip RAMs of the Virtex-II FPGA we have used
are located in columns across the chip, and as the number of
required RAMs increases, the delay of accessing data from the
RAMs, which are physically far from the datapath, is increased,
degrading the clock frequency. However, for most cases, the
proposed framework estimates the relative merits of different

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

312 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

Fig. 4. Experimental results of MAT64. (a) Design Pareto frontier proposed by the framework. (b) Implementation of designs proposed by the framework and
the FRSP approach on an FPGA.

Fig. 5. Experimental results of FSME. (a) Design Pareto frontier proposed by the framework. (b) Implementation of designs proposed by the framework and the
FRSP approach on an FPGA.

Fig. 6. Experimental results of Sobel. (a) Design Pareto frontier proposed by the framework. (b) Implementation of designs proposed by the framework and the
FRSP approach on an FPGA.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

LIU et al.: COMBINING DATA REUSE WITH DATA-LEVEL PARALLELIZATION FOR HARDWARE COMPILATION 313

Fig. 7. System architectures of the designs of FSME proposed by the framework and the FRSP method. (a) The design with 15 parallel PUs and 24 RAM blocks
in 8 banks. (b) The design with 2 parallel PUs and 14 RAM blocks in 1 bank.

designs and indicates the optimal designs for each kernel in the
context of different on-chip memory constraints.

In addition, the designs obtained by following the method
that first explores data reuse and then data-level parallelization
[2] (we denote this method as FRSP here) have been imple-
mented as well. These designs are shown in Figs. 4(b)–6(b) in
circles and form performance Pareto frontier in dashed lines. By
comparing the performance-optimal Pareto frontiers obtained
by our framework and the FRSP method for each kernel,
we can see that the performance improvements up to 1.4,
5.7, and 3.5 times have been achieved by using the proposed
framework for three benchmarks. These show the advantage
of the proposed framework that explores data reuse and data-
level parallelization at the same time. For the MAT64 case,
the FRSP yields almost the same performance-optimal designs
as those our framework proposes, because the different data-
reuse options of MAT64 have similar effects on the on-chip
memory requirement and the execution time, as can be seen in
Table II. In Fig. 7, the system architectures of the performance-
optimal design of FSME, when there are 27 RAM blocks
available on-chip, proposed by the framework and the FRSP
method, are shown. The design in Fig. 7(a) operates at the
speed 5.7 times faster than the design in Fig. 7(b) by trading
off the off-chip memory access (two times more in former)
and parallelism under the same memory constraint. Note that
in Figs. 4(b)–6(b), as the number of RAMs available on-chip
increases, the performance-optimal Pareto frontiers obtained by
both approaches converge. This is because data-reuse and data-
level parallelization problems become decoupled when there is
no on-chip memory constraint. In other words, the proposed
optimization framework is particularly valuable in the presence
of tight on-chip memory constraints.

The number of slices, which are configured as control logics
and registers, used by the designs of the kernels also increases
as the degree of parallelism increases. If slice logic is scarce, a
further constraint could be added to the framework. However,
for most reasonable design tradeoffs in Figs. 4–6, the slice
utilization is well below the RAM utilization, as a proportion
of device size. Thus, we have not included such a constraint in
the present compilation framework.

The average execution time of the proposed framework and
the FRSP method to obtain a performance-optimized design
under different on-chip memory constraints for each benchmark
are shown in Table III. On average, for three benchmarks, an
optimal design under an on-chip memory constraint is gener-
ated by the framework within 11 s. This quick exploration is

TABLE III
AVERAGE PERFORMANCE OF THE FRAMEWORK

AND THE FRSP APPROACH

guaranteed by the quality of the lower bounds provided by the
geometric programming relaxation, with average differences
within 25.3% over the optimal solutions at the root node,
resulting in an efficient branch-and-bound tree search of fewer
than 150 nodes for each benchmark. The FRSP method is
faster because the data-reuse variables and loop parallelization
variables are determined in two separate stages. However, the
optimal solutions cannot be guaranteed. Given small prob-
lems, brute force, which enumerates all candidate solutions,
is an alternative approach to find the optimal solutions to the
problems. Nevertheless, this approach is not scalable as the
problem size increases. We illustrate this through the MAT in
Fig. 8. As the order of matrices increases, the time spent on the
full enumeration increases exponentially and exceeds the time
required by the proposed framework.

VIII. CONCLUSION

A geometric programming framework for improving the
system performance by combining data reuse with data-level
parallelization in FPGA-based platforms has been presented in
this paper. We originally formulate the problem as an INLP,
reveal its geometric programming characteristic, and apply an
existing solver to solve it. A limited number of variables are
used to formulate the problem, fewer than ten variables for
each of the benchmarks used in this paper. Thus, in combi-
nation with the novel bounding procedure based on a convex
geometric program, the exploration of the design space is effi-
ciently automated and can be applied to a high-level hardware
synthesis process. The framework has been applied to three
signal and video processing kernels, and the results demonstrate
that the proposed framework has the ability to determine the
performance-optimal design, among all possible designs under
the on-chip memory constraint. Performance improvements up
to 5.7 times have been achieved by the framework compared
with the two-stage method.

In this framework, the reused elements of an array reference
are duplicated for all parallel segments. For some memory

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

314 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009

Fig. 8. Comparison of the average performance of the proposed framework and the brute-force method to obtain an optimal design for MAT under on-chip
memory constraints.

access patterns, this may result in unnecessary duplication of
unaccessed data. The advantage of this simple data partition
method is that there are no additional overheads on logic
controls for the data partition. The disadvantage is that the
data duplication may cause redundant requirement of on-chip
memories, resulting in suboptimal designs. Therefore, in the
future, we will extend the framework with an optimized data
partition method to copy reused data only to those segments
where they are accessed. Moreover, although the proposed
framework is to optimize system performance, it can be ex-
tended to energy by multiplying the objective function (7) with
a monomial power model similar to the one proposed in [5].
The resultant problem formulation will still be an INLP with
geometric programming relaxation. In the future, we may also
combine this work with register-oriented work [7] and add a
further constraint on register utilization to the framework.

REFERENCES

[1] T. Todman, G. Constantinides, S. Wilton, P. Cheung, W. Luk, and
O. Mencer, “Reconfigurable computing: Architectures and design meth-
ods,” Proc. Inst. Elect. Eng.—Comput. Digit. Tech., vol. 152, no. 2,
pp. 193–207, Mar. 2005.

[2] F. Catthoor, E. de Greef, and S. Suytack, Custom Memory Management
Methodology: Exploration of Memory Organisation for Embedded Multi-
media System Design. Norwell, MA: Kluwer, 1998.

[3] Q. Liu, K. Masselos, and G. A. Constantinides, “Data reuse exploration
for FPGA based platforms applied to the full search motion estimation
algorithm,” in Proc. FPL, Madrid, Spain, Aug. 2006, pp. 389–394.

[4] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung, “Au-
tomatic on-chip memory minimization for data reuse,” in Proc. FCCM,
Napa, CA, Apr. 2007, pp. 389–394.

[5] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K. Cheung, “Data
reuse exploration under area constraints for low power reconfigurable
systems,” in Proc. WASP, 2007.

[6] U. K. Banerjee, Loop Parallelization. Norwell, MA: Kluwer, 1994.
[7] N. Baradaran and P. C. Diniz, “A register allocation algorithm in the

presence of scalar replacement for fine-grain configurable architectures,”
in Proc. DATE, 2005, pp. 6–11.

[8] N. Baradaran, J. Park, and P. C. Diniz, “Compiler reuse analysis for
the mapping of data in FPGAs with RAM blocks,” in Proc. FPT, 2004,
pp. 145–152.

[9] Z. Guo, B. Buyukkurt, and W. Najjar, “Input data reuse in compiling win-
dow operations onto reconfigurable hardware,” SIGPLAN Not., vol. 39,
no. 7, pp. 249–256, Jul. 2004.

[10] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe,
J. M. Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy, “SUIF: An infrastructure for research on
parallelizing and optimizing compilers,” SIGPLAN Not., vol. 29, no. 12,
pp. 31–37, Dec. 1994.

[11] M. Wolfe, “More iteration space tiling,” in Proc. ACM/IEEE Conf.
Supercomput., New York, 1989, pp. 655–664.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[13] M. Kandemir, G. Chen, and F. Li, “Maximizing data reuse for minimizing
memory space requirements and execution cycles,” in Proc. ASPDAC,
Piscataway, NJ, 2006, pp. 808–813.

[14] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan,
I. Kadayif, and A. Parikh, “A compiler-based approach for dynamically
managing scratch-pad memories in embedded systems,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 2, pp. 243–260,
Feb. 2004.

[15] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory
allocation for scratch-pad based embedded systems,” in Proc. CASES,
New York, 2003, pp. 276–286.

[16] M. Weinhardt and W. Luk, “Memory access optimization for reconfig-
urable systems,” Proc. Inst. Elect. Eng.—Comput. Digit. Tech., pp. 105–
112, 2001.

[17] V. Lefebvre and P. Feautrier, “Automatic storage management for par-
allel programs,” Parallel Comput., vol. 24, no. 3/4, pp. 649–671,
May 1998.

[18] M. Gupta and P. Banerjee, “Demonstration of automatic data partitioning
techniques for parallelizing compilers on multicomputers,” IEEE Trans.
Parallel Distrib. Syst., vol. 3, no. 2, pp. 179–193, Mar. 1992.

[19] G. M. Megson and X. Chen, Automatic Parallelization for A Class of
Regular Computations. Singapore: World Scientific, 1997.

[20] H. El-Rewini and M. Abd-El-Barr, Advanced Computer Architecture and
Parallel Processing (Wiley Series on Parallel and Distributed Computing).
New York: Wiley-Interscience, 2005.

[21] U. Eckhardt and R. Merker, “Hierarchical algorithm partitioning at system
level for an improved utilization of memory structures,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 1, pp. 14–24,
Jan. 1999.

[22] N. Baradaran and P. C. Diniz, “Memory parallelism using custom array
mapping to heterogeneous storage structures,” in Proc. FPL, Madrid,
Spain, Aug. 2006, pp. 383–388.

[23] I. Issenin, E. Brockmeyer, B. Durinck, and N. Dutt, “Multiprocessor
system-on-chip data reuse analysis for exploring customized memory
hierarchies,” in Proc. DAC, 2006, pp. 49–52.

[24] M. Dasygenis, N. Kroupis, K. Tatas, A. Argyriou, D. Soudris, and
A. Thanailakis, “Power and performance exploration of embedded sys-
tems executing multimedia kernels,” Proc. Inst. Elect. Eng.—Comput.
Digit. Tech., vol. 149, no. 4, pp. 164–172, Jul. 2002.

[25] “Cray computer systems,” CFT77 Reference Manual, Cray Res., Mendota
Heights, MN, 1987. Publication SR 0018A.

[26] Handel-C Language Reference Manual, Aug. 2006. [Online]. Available:
http://www.celoxica.com

[27] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and F. Catthoor, “A
practical dynamic single assignment transformation,” ACM Trans. Des.
Autom. Electron. Syst., vol. 12, no. 4, p. 40, Sep. 2007.

[28] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE Int. Symp. Comput. Aided Control Syst. Des.,
Taipei, Taiwan, 2004, pp. 284–289.

[29] V. Bhaskaran and K. Konstantinides, Image and Video Compression Stan-
dards: Algorithms and Architectures. Norwell, MA: Springer-Verlag,
1997.

[30] 2006. [Online]. Available: http://www.pages.drexel.edu/ weg22/edge.html
[31] J. D. Hall, N. A. Carr, and J. C. Hart, “Cache and bandwidth aware matrix

multiplication on the GPU,” UIUC, Urbana, IL, Tech. Rep. UIUCDCSR-
2003-2328, 2003.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

LIU et al.: COMBINING DATA REUSE WITH DATA-LEVEL PARALLELIZATION FOR HARDWARE COMPILATION 315

Qiang Liu received the B.S. degree and the M.Sc.
degree in electrical and electronic engineering from
Tianjin University, Tianjin, China, in 2001 and
2004, respectively. He is currently working to-
ward the Ph.D. degree in the Circuits and Sys-
tems Research Group, Department of Electrical and
Electronic Engineering, Imperial College London,
London, U.K.

From 2004 to 2005, he was with the STMicroelec-
tronics Company Ltd., Beijing, China. His research
interests include hardware compilation and synthe-

sis, and memory system optimizations on FPGA-based platforms.

George A. Constantinides (S’96–M’01–SM’08) re-
ceived the M.Eng. degree (with honors) in informa-
tion systems engineering and the Ph.D. degree from
Imperial College London, London, U.K., in 1998 and
2001, respectively.

Since 2002, he has been with the faculty at
Imperial College London, where he is currently a
Senior Lecturer with the Department of Electrical
and Electronic Engineering.

Dr. Constantinides is a member of the ACM
and SIAM. He is an Associate Editor of the IEEE

TRANSACTIONS ON COMPUTERS and the Journal of VLSI Signal Processing.
He was a Program Cochair of the IEEE International Conference on Field-
Programmable Technology in 2006 and Field Programmable Logic and Ap-
plications in 2003. He serves on the technical program committees of several
conferences, including DATE, where he is the Chair of the Architectural
Synthesis track in 2009.

Konstantinos Masselos (S’92–M’94) received the
degree in electrical engineering from the University
of Patras, Patras, Greece, in 1994, the M.Sc. degree
in VLSI systems engineering from the University
of Manchester Institute of Science and Technology,
Manchester, U.K., in 1996, and the Ph.D. degree in
electrical and computer engineering from the Univer-
sity of Patras in April 2000. His Ph.D. research was
related to high-level low power design methodolo-
gies for multimedia applications realized on different
architectural platforms.

From 1997 to 1999, he was a Visiting Researcher with the Inter-university
Micro Electronics Centre, Leuven, Belgium, where he was involved in research
related to the ACROPOLIS multimedia compiler. Until 2004, he was with
INTRACOM S.A., Greece, where he was involved in the realization of wireless
communication systems. In 2005, he was a Lecturer with the Department
of Electrical and Electronic Engineering, Imperial College London, London,
U.K. Since 2006, he has been an Assistant Professor with the Department
of Computer Science and Technology, University of Peloponnese, Tripolis,
Greece, and a Visiting Lecturer with Imperial College London. His main re-
search interests include compiler optimizations and high-level synthesis, high-
level power optimization, FPGAS and reconfigurable hardware, and efficient
implementations of DSP algorithms.

Peter Y. K. Cheung (M’85–SM’04) received the
B.S. degree (with first-class honors) from the
Imperial College of Science, Technology and Medi-
cine, University of London, London, U.K., in 1973.

Since 1980, he has been with the Department of
Electrical Electronic Engineering, Imperial College
London, where he is currently a Professor of digital
systems and the Head of the department. He runs
an active research group in reconfigurable circuits
and systems. His research interests include VLSI
architectures for signal processing, asynchronous

systems, reconfigurable computing using FPGAs, and architectural synthesis.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 13:01 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

