
AN INTEGRATION FRAMEWORK FOR CORBA OBJECTS

A. Ramfos1, R. Busse2, N. Platis1 and P. Fankhauser2
1INTRASOFT S.A., Athens, Greece
2GMD-IPSI, Integrated Publication and Information Systems Institute, Dolivostraße
Darmstadt, Germany

The evolving developments of the recent decades in information management have resulted in
a situation where information is stored and managed by a large variety of systems around the
globe. The growing requirement for information support to the globalised social and economic
forces makes efficient and effective availability of distributed information and the correlation
of relevant data a pressing business need. The most recent CORBA standard of the Object
Management Group provides standardised interfaces for accessing remote data but the task of
collecting and correlating the relevant, heterogeneous sources is still left over to the human
user. The presented work proposes a CORBA-based Data Integration Framework with which
data is integrated and offered to users according to their application needs. This framework is
composed of two CORBA horizontal facilities, the design-time Object Composition Facility,
which supports the data integration process, and the run-time Composed Access Facility which,
based on the previously defined data integration, performs all required distributed accesses
transparently to the users.

1. Introduction

Since 1950s businesses developed a voracious and continuously increasing appetite for information.
We are now faced with the situation where organisations have collected oceans of data that is managed
in file systems, commercial application packages with their own “DBMSs”or in one of the numerous
DBMS products of a variety of types.

As the world is becoming highly interconnected and is moving towards a single market, standardised
access of heterogeneous pre-existing data sources takes high priority with cross-industry businesses.
According to the distributed computing paradigm, the Object Management Group (OMG) defined the
Common Object Request Broker Architecture (CORBA) as a standard for implementing distributed
client/server applications (OMG, 1991). An Object Request Broker (ORB) is introduced in order to tie
distributed objects together. The ORB provides the means to locate and activate objects on a network,
regardless of operating platform or implementation language. By standardising the network interfaces at

1999 Society for Design and Process Science
Printed in the United States of America

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, pp. 27-41

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 28

the client and server sites the CORBA framework maximises portability, reusability, and interoperability,
and has become the de-facto industry standard for communication middleware.

Although CORBA-based interconnected servers are very popular in today’s distributed computing
environments, the task of extracting and correlating information from disjoint presentations of relevant
data is left over to the client applications. As organisations become more extended and distributed, it is
not efficient for applications to deal with the complexities introduced by the correlation of multiple data
and service sources. Rather, a dedicated integration middleware should be employed that efficiently
integrates heterogeneous pre-existing data and presents it as a single, integrated system. Client applica-
tions are no longer aware of the distribution and all remote accesses are transparently performed by the
middleware.

Many attempts have been made in the past in order to build integrated systems, that include the
efforts in the late 1970s to build distributed database management systems (DDBMS) (Ceri et al., 1984),
those that targeted to multidatabase management systems (MDBMS) and federated databases in the
1980s (Landers et al., 1982; Litwin, 1985; Shet et al., 1990), and the efforts in the 1990s on the de-
velopment of data warehousing for decision support applications (Immon et al., 1993; Widom, 1995;
Gupta et al., 1996). Although the integration of heterogeneous pre-existing data sources has been a
pressing business need, none of the above efforts has succeeded in becoming widely accepted due to the
technical challenges of the problem. The technical challenges include, among others, performance
considerations, concurrency control, preservation of local autonomy, support for unpredictable queries on
volatile data, collaborative work, and integration of flat files, or other non-relational and non-data management
systems. However, object-oriented multidatabase systems arose in response to the above challenges and
have proposed solutions to a variety of issues in data integration (Bukhres et al., 1995).

The approach to data integration reported in the current work marries the latest object-based technology
for database integration from the ESPRIT IRO-DB project (Gardarin et al., 1997) with the CORBA
standard in order to achieve integrated access to pre-existing data sources that exhibit not only data
management heterogeneity, but also operating platform heterogeneity. This provides an achievable and
realistic solution to the overall problem of data integration, where distinct CORBA objects that represent
data in heterogeneous data sources can be integrated and accessed in a way that reflects the conceptual
requirements of users and applications of today’s integrated world.

Section 2 of this paper describes the overall architecture of the Data Integration Framework. Section
3 gives details about the design-time and run-time components and about the different transformation
steps during data integration. In Section 4, we present our prototype, that has been implemented to show
the feasibility of the approach and serves as a basis for further development, which is detailed in Section
5. A conclusion summarises the paper.

2. Framework Architecture

Figure 1 shows the common situation when CORBA is used to access multiple information servers
from a single application. Each information server exports its schema as an IDL file, from which both
Stubs and Skeletons are generated. Through the stubs, the client application can access the remote
objects as if they resided on the client’s local machine. The Object Request Broker (ORB) takes care of
all transfer and marshalling actions between the stubs and the Object Adapters (OA), which themselves
use the skeletons to access the information servers.

This architecture provides for location transparency, but it does not correlate the information servers
to each other. Each application that accesses these servers must itself combine the information provided
by the servers. Our goal is to remove this integration effort from the applications and have it performed
in a middle tier, giving all applications the impression of a single, integrated information server (Fig. 2).

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 29

Figure 1: Distributed information access with CORBA.

Fig. 2 Integrated information access.

The tasks of such a Data Integration Framework are:

• compose CORBA objects from multiple data sources,
• integrate composite objects to overcome heterogeneity in structure, scaling, and naming, and
• process queries and updates on collections of integrated objects.

The proposed Data Integration Framework can be realised as horizontal facilities: In addition to the
core CORBA specification, the OMG defines standard interfaces and related functions for two
supplementing layers. The lower-level CORBAservices provide basic support functionality for individual
objects, including Transaction Service, Event Service, Time Service, Query Service, Naming Service,
and many others (OMG, 1997). The intermediate-level CORBAfacilities, on the other hand, provide
functionality for applications (OMG, 1995). While horizontal CORBAfacilities, such as compound
document management, can be used by virtually every business, the vertical CORBAfacilities standardise
management of information specialised to particular industry groups, e.g., Health Care.

Information
Server 1

OA 1

Client Application

Stub 1

ORB

Information
Server 2

OA 2

Stub 2

Information
Server 3

OA 3

Stub 3

Information
Server 1

OA 1

Application

Information
Server 2

OA 2

Stub*

Information
Server 3

LDA 3

Data Integration Module
and ORB

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 30

Fig. 3 CORBA-based data integration framework architecture.

According to this classification, the Data Integration Framework consists of two horizontal
CORBAfacilities for the design and the access of integrated CORBA objects (see Fig. 3): an Object
Composition Facility and a Composed Access Facility. Another element of the Data Integration Frame-
work is the Local Data Adapter (LDA) which scales up a standard CORBA Object Adapter’s ca-
pability so that it is able to handle data sources that deliver large numbers of fine grained objects, e.g.,
records of a database system. Such LDAs are currently offered in the form of object database adapters
by vendors who implement the CORBA standard, e.g., IONA’s Orbix Database Adapter Framework.

The Object Composition Facility (OCF) is a stand-alone module that provides design-time support
for the semantic integration of heterogeneous information servers. It consists of a graphical design tool,
the Composition Editor, which reads IDL specifications of existing information servers and presents
them to the designer as graphs. Based on these graphs, the designer can define correspondences and
conversions between the different IDL interfaces. An underlying methodology uses this information for
incrementally merging the local interfaces into an integrated view. It detects further correspondences
and rejects inconsistencies. When an integrated view is reached, its corresponding IDL specification is
constructed and the supporting C++ code for the specific Composed Access Facility is generated by the
Code Generator. The approach taken for this facility capitalises on the expertise gained from the
Integrator’s Workbench developed for the design of integrated ODMG-views in the ESPRIT project
IRO-DB.

The Composed Access Facility (CAF) performs the instance composition at run-time. It consists of
a common object management library that is extended with generated schema-dependant C++ code for
the specific integration. Specifically, CAF manages surrogate objects representing compositions of local
objects. The client application accesses the surrogate objects through corresponding integrated stubs.

Client Application

stub 1

ORB

stub*

stub 2

SVR 2

LDA 2

Composed Access Facility

Generated
Specific Code

Common
CAF Library

OA*

ORB

Object Composition Facility

Composition
Editor

Code
Generator

Dynamic
Invocation
Interface

Repository
IDL1
IDL2
IDL* OCF CAF

SVR 1

OA 1

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 31

Accesses to the surrogate objects are transparently delegated to the original local objects on the servers.
Parameter data and results are converted accordingly. The realisation of CAF is based on the current
specifications of the relevant CORBA services, such as Query Service, Transaction Service, Concurrency
Service, etc. In this way, a more robust and highly standardised approach to object management is
achieved, than the one followed in IRO-DB and other data integration projects.

The operation flow in Figure 3 is as follows: Heterogeneous information servers (SVR1/2) export
their functionality in the form of IDL specifications (IDL1/2). OCF uses the Dynamic Invocation Interface
(DII) to read these IDL specifications from the ORB Repository and based on the designer’s integration
specifications, it generates a single, integrated IDL specification (IDL*) and additional C++ code that
implements the composed objects in the CAF. The ORB itself generates further code fragments (stubs
and skeletons) from the various IDL specifications. Together with generic Object Adapters (OA) these
fragments establish the connection between client and server. The CAF acts now as a client of the
information servers and accesses their information through the generated individual stubs. At the same
time, it acts as a server to the actual client application providing it with a single, integrated IDL interface.
Applications can hence access all the information through a single server without bothering about the
different underlying information servers. In addition some Object Adapters can be replaced with specialised
LDAs (LDA2). These can, for example, be used for defining an object-oriented representation for
relational data, for accessing functional and process data, and for optimising data access by clustering.

The presented functionality can be directly compared with the MIND system developed at the Middle
East Technical University in Ankara (Dogac et al., 1995 and 1996). There are, however, some fundamental
differences that distinguish these systems from each other. The first difference is the set of supported
information servers. The MIND system is explicitly designed to support the integration of relational and
object-oriented databases, just like in the IRO-DB system. The presented Data Integration Framework,
however, investigates the possibilities of integrating arbitrary information sources. Although database
integration is definitely a starting point for our system, file-based servers and function libraries will be
supported as well. Any information server that exports an IDL interface fits into the architecture. The
second major difference is the object granularity. The restriction to database integration allows to employ
coarse-grained objects, i.e. to represent each participating database as a single object and to perform all
database accesses by sending query statements to these objects. Several advantages of this approach
make it valuable in the database area (Dogac et al., 1996), but on the other hand it shows some restrictive
shortcomings. The system requires the existence of a query engine at each participating database which
makes it impossible to integrate arbitrary information servers. Furthermore, the functionality of the
integrated objects is restricted, because interaction with the distributed (fine-grained) objects is restricted
to the capabilities of the query language. Finally, the objects cannot be smoothly integrated into the
application programs. Due to these reasons, we are following the fine-grained object approach, where
the integration is performed directly on the objects exported from each information server, according to
its IDL specification.

3. Framework Design Issues

This section presents the design of the CORBA-based Data Integration Framework in more detail.

3.1. Composed Access Facility

Figure 4 shows the two parts of the CAF. One part consists of the Generated Specific Code which
is specifically generated for each integration at design-time by the Code Generator of OCF. The other
part is the library that contains the common parts of all CAF implementations (Common CAF Library).

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 32

object
management

query
processing

transaction
management

basic
utilities

target
classes

(generated
specific
code)

individual
stubs

object
adapter

server
objects

integrated
stub

meta
information

ORB
interface

ORB

ORB

Fig. 4 Composed access facility architecture.

3.1.1. Generated Specific Code

The Generated Specific Code consists of a set of C++ classes, called target classes, that implement
the integrated view that is exported to the clients. The classes are generated by OCF for a specific set of
given information servers and are organised in several levels, as shown in Figure 5.

Server Classes

The server classes do not belong to the CAF. They are the original classes that reside on the local
information servers. They define the export interfaces and provide the server-side ORB access and the
information server implementation.

Proxy Classes

CORBA replicates the interfaces of the server classes at the client site by generating for each server
class a corresponding proxy class. The instances of proxy classes are a kind of ‘intelligent pointers’.
They establish the connection from the client program to the server objects by transparently delegating
all accesses to the corresponding server object. The proxy classes are generated by the ORB’s IDL
compiler. Therefore, they do not belong to the CAF, but they form the basis for all other target classes.

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 33

Server Classes

Proxy Classes

Cache Classes

Conversion Classes

Merge Classes

Client Classes

{
{
{
{

{
{

Fig. 5 Target class hierarchy.

Cache Classes

During design time, the administrator may create cache classes for selected proxy classes. The
delegation behaviour of the proxy classes causes network traffic for each single attribute access. While
this solution is appropriate for servers providing functional services, it constitutes a severe bottleneck for
information servers, like, e.g., databases. To avoid unnecessary network accesses, a cache class can be
linked between the application and the proxy class. Whenever a read access is performed, the result is
kept in a local cache and can be reused for subsequent accesses. CORBA’s strictly functional approach
of using ‘read’ and ‘write’ methods for accessing an object’s attributes allows for both object and
attribute caching strategies. Explicit cache classes are intended as a generic replacement for proprietary
cache mechanisms, like, for example, IONA’s smart proxies.

Conversion Classes

The classes of the conversion level are the first classes with application-specific behaviour. They are
responsible for restructuring the information that is provided by the proxy classes, the cache classes, or
other conversion classes in order to achieve homogeneous representation of the data. Conversions include
renaming, type changes, re-scaling, nesting and unnesting, etc. The IDL specification and the C++
implementation code for conversion classes is generated by the OCF.

Merge Classes

When the target classes of the information servers are sufficiently homogenised, related classes from
different servers can be merged into a single class. In addition to further conversion operations, the
merge classes must also identify corresponding instances from the different information servers. The

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 34

strategy for combining the information is determined during the design process. In addition to the strict
separation between conversion and merge, it is also possible to perform all conversions directly during
the merge. This is only a question of complexity.

Client Classes

The target classes in CAF result in a class hierarchy that can be exported to client applications. This
export is performed by registering the interfaces as a new CORBA information server. As with the
registration of the local information servers, the IDL compiler generates proxy classes for the integrated
IDL interfaces. These proxy classes are linked to the client application and establish the access to the
CAF.

3.1.2. Common CAF Library

The six boxes on the right hand side of Figure 4 represent the common modules that can be directly
reused in all CAFs. A basic utilities module implements support functionality like string conversions,
error management, output streams, etc. An ORB interface module is used for simplifying the CORBA
access. It contains global variables to hold ORB instances, and it customises calls to ORB functions and
to the CORBA Naming Service. When non CORBA-compliant functions that are specific to the ORB
product used are utilised, they are encapsulated in this module to provide for a better adaptation to other
ORB products. The object management module contains common base classes for all target classes. It
implements generic access to the objects’ properties and methods at run time. This is necessary for
supporting query evaluation. Furthermore, extent managers take care of object identity during sequential
query evaluations on the same data.

The remaining modules cover transaction management and query processing and rely on the full
functionality of the CAF. To perform their work, they need information about the structure and dependencies
of the target classes. This information is provided in a meta information module. This module retrieves
the basic structural information from the CORBA interface repository and extends it with mapping
information from the integration process. Both the transaction and query module will define appropriate
interfaces to interact with the corresponding CORBA services.

3.1.3. SERVER Entry Points

The CORBA standard defines the distribution of objects in the network. When an application executes
a method on an object reference, the ORB is responsible for locating the object implementation and for
performing all necessary network actions to let it execute the desired function. This ORB mechanism,
however, requires that the client has already hold of an object reference. For this purpose, CORBA
defines a specific service for the identification of objects, namely the Naming Service. This service
represents an object dictionary with the functionality of ‘yellow pages’. An information server can register
its objects under a distinct name in the global dictionary. Each client that knows the name can then
retrieve the desired object reference from the global dictionary.

Information servers have a choice of how to register their objects with an ORB. With exhaustive
registration an information server registers every contained object with the Naming Service. The client
can directly access each registered object via corresponding mnemonic string names. On the other hand,
if we consider that information servers may contain a large number of objects, it makes sense to register
with the Naming Service and make available to clients a single object that constitutes the entry point to all
objects contained in the server. We refer to this object as a factory object. Starting from the factory
object, the client can then reach the complete collection of server objects by navigation. For this purpose,

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 35

the factory object has to provide some attribute or method providing the necessary object references.
Since we target at the integration of information servers that may contain a large number of objects we
adopt the latter strategy where each information server and CAF registers exactly one entry factory
object (factory registration).

3.2. Object Composition Facility

The modules described above provide the run-time environment of the Data Integration Framework.
A core element of the system, however, is the design-time support. The major problem with data integration
is the detection of correspondences and similarities between different data representations. As long as
the support for correspondences is restricted to the merger of attributes with identical or synonymous
names, the design can be performed straightforwardly. Typically, though, data items do not correspond in
such 1-to-1-relationships. The attributes may represent overlapping real world semantics, or one attribute
may generalise the other one. They may have a common generalisation, or they may integrate in a 1-to-
n-correspondence. Even when the real world semantics is identical, their extents may be identical,
overlapping, or disjoint. Furthermore, data items are typically highly interconnected and it is necessary to
perform integration steps on the connecting paths. All these tasks cannot be performed automatically.
They require interaction with a human designer. Even more, the designer will be overloaded with such a
complex task and needs support from the system.

In IRO-DB, a graphical design system has been implemented, that supports a designer in the task of
database integration, the Integrator’s Workbench. Database schemas are presented as graphs on the
screen and can be manipulated by the designer. The initial detection of correspondences and the lossless
semi-automatic computation of an integrated schema is performed under the guidance of a powerful
methodology. It detects inconsistencies and presents possible correction alternatives. When the design
task is completed, a code generator creates both the specification of the integrated schema and the
implementation code that performs the object integration at instance level.

The Object Composition Facility is an adaptation of the Integrator’s Workbench to the CORBA
environment. The underlying algorithms are taken over, but the data model is converted to the OMG data
model and the single-object design of CORBA is reflected. In addition, the code generator must be
tailored to account for the new environment, generating code that fits the CAF requirements.

4. An Example Composed Access Facility

Based on the presented design structure, we have implemented a first reduced CAF that achieves the
integration of two example information servers. For this implementation we used a popular ORB product,
that of IONA’s Orbix. Below we summarise the implementation of both the example servers and the
corresponding CAF.

The example application built involves two local information servers that contain people objects. The
first server contains a class named Employee that keeps people’s employment details. The second
server contains a class named Person that keeps people’s personal information. Data of the local servers
is stored in text files, and basic data management operations (creation, retrieval, update, deletion) have
been implemented on these files. Following the design principle, the CAF acts as a third server, that
contains a class named Staff, which composes the local information into an integrated class. This inte-
grated class merges all attributes of the local objects together, and provides transparent access to the
local objects’ attributes and methods by propagating calls to and from the local servers.

The schema of each local information server is exported to clients as an IDL interface specification.
This IDL interface specification includes methods for the update and deletion operations. A separate
IDL interface is defined in order to serve as the object factory of the server. The object factory comprises

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 36

methods to retrieve and create objects, complementing the data management methods defined in the
exported IDL interface. On the other hand, the CAF is similarly registered via two IDL interfaces. The
first includes the integrated schema accessible by client applications, as well as methods for the update
and deletion operations for the integrated objects. The second interface corresponds to the object factory
of the integrated objects, and provides methods for the creation and retrieval operations of the integrated
objects. The separation of the data management methods between the two IDL interfaces is due to the
fact that an IDL definition cannot provide for class methods that can be executed without a receiver
object, (i.e., static methods). Methods supported by IDL interfaces can only act upon already referenced
objects.

The IDL interfaces Employee and Person of the example application hold the Employee and Person
local schemas, respectively, and provide the update and deletion methods. Here are the IDL definitions:

interface Employee {
 attribute string name;
 attribute string job_title ;
 attribute unsigned short phone_extn ;
 attribute unsigned long salary_drs ;

 void save () raises (OCS::Exception);
 void remove () raises (OCS::Exception);
};

interface Person {
 attribute string name;
 attribute string address ;
 attribute unsigned long phone ;

 void save () raises (OCS::Exception);
 void remove () raises (OCS::Exception);
};

Interfaces Employee Fact and Person Fact provide access points for Employee and Person objects,
respectively. Each has just two member functions, to create and retrieve Employee and Person objects.
Their IDL definitions are as follows:

typedef sequence<Employee> EmployeeSeq ;

interface EmployeeFact {
 Employee newEmployee (in string name)
 raises (OCS::Exception);
 EmployeeSeq getEmployee (in string name)
 raises (OCS::Exception);
};
typedef sequence<Person> PersonSeq ;

interface PersonFact {
 Person newPerson (in string name)
 raises (OCS::Exception);
 PersonSeq getPerson (in string name)
 raises (OCS::Exception);
};

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 37

The IDL interface Staff holds the integrated schema that represents the integration of Employee and
Person local objects unified by their name, and provides the update and deletion methods. The IDL
interface Staff Fact provides access to objects through methods to retrieve and update such objects.
Both interfaces follow the pattern of the Employee and Person interfaces.

interface Staff {
 attribute string name;
 attribute string job_title ;
 attribute string address ;
 attribute unsigned long home_phone ;
 attribute unsigned long work_phone ;
 attribute unsigned long salary ;

 void save () raises (OCS::Exception);
 void remove () raises (OCS::Exception);
};
typedef sequence<Staff> StaffSeq ;

interface StaffFact {
 Staff newStaff (in string name)
 raises (OCS::Exception);
 StaffSeq getStaff (in string name)
 raises (OCS::Exception);
};

Each of the IDL interfaces presented above is implemented in C++ by a corresponding class. As
mandated by the CORBA standard, these implementation classes contain public methods to access the
IDL interfaces’ attributes and to realise their methods.

The classes that implement the local IDL interfaces have private data members that hold the schema’s
attributes; additional data members may hold any attributes that are required for implementation pur-
poses, such as appropriate object identifiers of local objects. Related data management operations are
implemented by direct calls to the corresponding operations of the local information servers. The
implementation class of the object factory interface does not need any private data members, and it
simply comprises functions implementing the operations of this interface.

On the other hand, the classes that implement the integrated IDL interface need only hold references
to the proxy objects that compose the integrated object. In order to get and set the attributes of the
integrated object, the corresponding attributes of the proxy object(s) are accessed on the fly, taking care
of any necessary conversions. Similarly, data management operations at the integrated level are realised
by propagating calls to the local servers. In the same fashion, the implementation of the integrated object
factory class needs references to the proxy factories, to which it delegates the appropriate calls.

In the current implementation, all specific code was produced manually. The mapping between the
local objects and the integrated objects has been programmed in C++. In the completed version of the
Data Integration Framework, the user will be able to specify integrated views and their dependencies on
the local objects with the help of the graphical Object Composition Facility, which will automatically
generate all the required specific code, as previously presented.

5. Future Extensions - Query Support

The current implementation of the Data Integration Framework is based on the core CORBA
functionality which is directed towards single-object accesses. Information servers export single objects

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 38

and clients access these objects through references. This mechanism is rather restrictive and will be
extended with support of object collections and with declarative query functionality. This provides more
functionality to the end user and it allows for a more general specification of the composed objects.

There are two Object Services in the CORBA standard that directly influence the development of
object collection support in our framework: The Object Collection Service and the Query Service.

5.1. Object Collection Service

The Object Collection Service (IBM, 1996) is still under development and not yet contained in the
official COS Specification (OMG, 1997). The service provides a comprehensive collection of aggregate
data types. Based on a root interface named Collection, a complete hierarchy of ordered and unordered
sets, bags, and maps as well as stacks and queues are defined. Each collection object is designed to
manage a homogeneous aggregation of elements of any object or data type. It provides operations for
inserting, retrieving, replacing, and removing elements. For consecutive access to the elements, a hierarchy
of iterators is defined, and for the creation of new collections, a corresponding hierarchy of
CollectionFactories is contained in the specification. The functionality of this service can be compared
with the ODMG collections (Cattell, 1996), the C++ Standard Template Library STL (Musser et al.,
1996), or the Rogue Wave Tools.h++ toolkit (SunSoft, 1995). Until the Object Collection Service is
available for the Orbix ORB, we are using the Rogue Wave toolkit for further development.

5.2. Query Service

A more relevant service is the Query Service, which is already contained in the COS Specification
Document (OMG, 1997). It defines the processing of database-like query statements. Only the evaluation
mechanism, i.e. the framework, is specified in the standard. The query language and all internals are left
over for the service implementor. The query service specification contains also a collection model to
represent aggregated data. As soon as the Object Collection Service is accepted, its collection classes
will be used instead.

Although the query service is not restricted to a specific query language, a compliant service
implementation is required to provide either SQL-92 (ANSI, 1993) or OQL-93 (Cattell, 1996) evaluation.
In addition, any proprietary language can be supported by the system. The query evaluation is based on
a QueryEvaluator object. Given a query string in a supported language, the QueryEvaluator is responsible
for performing the complete query evaluation returning a result to the caller. The class has explicitly been
designed to delegate parts of the evaluation to other QueryEvaluator objects. A special type of evaluator
is the QueryableCollection. Such a collection evaluates a query on its elements, taking into account the
knowledge about the elements’ type. When the elements are themselves derived from the QueryEvaluator
interface, the evaluation is automatically delegated. For more complex queries that need some global
management, a QueryManager object is used. The QueryManager interacts with objects of type Query,
which independently evaluate subqueries. The provided implementation liberty together with the delegation
policies allow for optimised evaluators for different environments. For example, an evaluator class for a
database management system can exploit the internal indexing and iteration facilities of the database.

5.3. Access Extension Levels

Currently integration is performed by handling explicit references to individual objects. The registered
factory object is retrieved from the Naming Service, further objects are accessed by navigating from this
starting point, and composed objects are generated carrying these explicit references. The composite
objects are then registered with the Naming Service to provide clients with the initial entry point. This
layout of combining single objects to new objects is shown in Figure 6.

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 39

Local
Information

Servers

Composed
Access
Facility

Client

string to object(
CORBA::PERSON::

machine2-337-001-12:0)

string to object(
CORBA::STAFF::

machine-177-165-13:0)

Fig. 6 Single object access.

Local
Information

Servers

Composed
Access
Facility

Client

select p from p in persons
where p.age > 35

string to object(
CORBA::STAFF::

machine-177-165-13:0)

Object
Query
Service

Fig. 7 Object access using query service.

The further development is dedicated to the inclusion of query capabilities into the system. Employment
of Query Services allows to replace the navigational object access via Naming Service with declarative
object lookup. Furthermore, it allows to extend the functionality of the system by supporting retrieval of
object collections. This extension will be performed in two phases. The first phase is to exploit the query
service capabilities of the underlying information servers. Instead of hard-coding single-object accesses
into the composed access facility, a declarative query string can be attached to the composed objects.
The original objects are then retrieved by evaluating the query on the information servers instead of
retrieving them from the Naming Service. This situation is shown in Figure 7.

In this first extension phase the CAF itself does still only provide a single-object interface to the
clients. Therefore, the second level of extension will be to provide query capabilities to the client, i.e. on
top of the Composed Access Facility. The client may submit queries to the CAF to retrieve composed

Fig. 8 Full query access.

objects, and the CAF will itself decompose and reformulate the queries to get the necessary data from
the information servers. This complete query support is shown in Figure 8.

This approach is very well supported by the above-mentioned delegation feature of the QueryEvaluators.
Finally, there will be a hierarchy of specialised QueryEvaluators as shown in Figure 9.

Local
Information

Servers

Composed
Access
Facility

Client

select p from p in persons
where p.age > 35

select p from p in staffs
where p.age > 35

Object
Query
Service

Object
Query
Service

Client

Information
Server

Query
Service

Query
Service

Composition
Service

select p from p in parts
where p.size>15

select p from p in ocs_parts
where p.size>15

Figure 3: Using and Providing Query Access

Fig. 9 Multi-Level query evaluation.

Journal of Integrated Design and Process Science MARCH 1999, Vol. 3, No. 1, 40

6. Conclusion

We have shown, that it is possible to set up a framework in the CORBA environment that allows for
transparent data integration for client applications. The direct, object-wise implementation required only
very little support from the Common CAF Library. Most of the common modules need to be filled as soon
as collection support requires concurrent, generic object accesses. The future development will be divided
into three phases. The first step is to perform an availability analysis of query service support. It is very
likely, that no implementations will be available in time. In this case, at least a minimal QueryEvaluator
must be implemented by ourselves. As soon as such a service is available, the second phase will exploit
collection-based accesses to the local Information Servers without providing such functionality to the
client application. The complete query support on all levels will be implemented in the third phase of
extensions.

7. References

ANSI, 1993, “Database Language - SQL”, American National Standard X3.135-1992.

Bukhres, O.A., Elmagarmid, A.K. (ed.), 1995, “Object-Oriented MultiBase Systems”, Prentice Hall.

Cattell, R.G.G., (ed.), 1996, “The Object Database Standard: ODMG-93”, Release 1.2, Morgan Kaufman Publishers,
San Mateo, California.

Ceri, S., Pelagatti, G., 1984, “Distributed Databases: Principles and Systems”, McGraw-Hill.

Dogac, A., Kilic, E., Ozhan, G., Dengi, C., Kesim, N., Koksal, P., 1995, “Experiences in Using CORBA for a
Multidatabase Implementation”, DEXA Workshop presentation, London, 1995; Springer, LNCS 978, Berlin.

Dogac, A., Dengi, C., Kilic, E., Ozhan, G., Ozcan, F., Nural, S., Evrendilek, C., Halici, U., Arpinar, B., Koksal, P.,
Mancuhan, S., 1996, “A Multidatabase System Implementation on CORBA”, Proc. 6th Intl. Workshop on Research
Issues in Data Engineering RIDE 96, IEEE Computer Society, Los Alamitos.

Gardarin, G., Finance, B., Fankhauser, P., 1997, “Federating Object-Oriented and Relational Databases: The IRO-
DB Experience”, Proc. 2nd Intl. Conf. on Cooperative Information Systems CoopIS 97, IEEE Computer Society.

Gupta, A., Mumick, I., 1996, “Materialized Views”, MIT Press, Cambridge, MA.

IBM, 1996, “Object Collection Service”, OMG Document Number 96.5.5, IBM submission paper Immon, W.,
Kelley, C., 1993, “Rdb/VMS: Developing the Data warehouse”, QED Publishing Group, Boston Massachussets.

Landers, T., Rosenberg, R.L., 1982, “An Overview of MULTIBASE”, In: Distributed Databases, H.J. Shneider
(ed.), North-Holland.

Litwin, W., 1985, “An Overview of the Multidatabase System MRDSM”, In: ACM Annual Conference, Denver.

Musser, D.R., Saini, A., 1996, “C++ Programming with the Standard Template Library”, Addison-Wesley, Read-
ing.

OMG, 1991, “The Common Object Request Broker: Architecture and Specification”, OMG Document Number
91.12.1, Revision 1.1.

OMG, 1995, “CORBA Facilities Architecture Specification”, OMG Document Number 97-06-15, Revision 4.0.

OMG, 1997, “CORBAservices: Common Object Services Specification”, OMG Document Number 97.2.24, rev. ed.

Sheth, A.P., Larson, J.A., 1990, “Federated Database Systems for Managing Distributed, Heterogeneous, and
Autonomous Databases”, ACM Computing Surveys, vol 22, no. 3.

SunSoft, 1995, “Rogue Wave Tools.h++ Class Library, Introduction and Reference Manual”, SunSoft, Mountain
View, USA.

Widom, J., 1995, “Research problems in data warehousing”, Proc. 4th Intl. Conf. on Information and Knowledge
Management, pages 25-30.

Transactions of the SDPS MARCH 1999, Vol. 3, No. 1, 41

