
Agents in Decentralised Information Ecosystems:
The DIET Approach

P. Marrow1*, M. Koubarakis2†, R.H. van Lengen3‡, F. Valverde-Albacete4§, E.

Bonsma1, J. Cid-Suerio4, A.R. Figueiras-Vidal4, A. Gallardo-Antolín4, C. Hoile1, T.
Koutris2, H. Molina-Bulla4, A. Navia-Vázquez4, P. Raftopoulou2, N. Skarmeas2, C.

Tryfonopoulos2, F. Wang1, C. Xiruhaki2
1Intelligent Systems Laboratory, BTexaCT, Adastral Park, Ipswich IP5 3RE, UK.

2Technical University of Crete, Department of Electronic and Computer Engineering, TUC
Campus, Chania 73 100, Crete, Greece.

3German Research Centre for Artificial Intelligence, Intelligent Visualisation and Simulation
Systems Department, Erwin-Schrödinger-Str. 1, D-67608 Kaiserslautern, Germany.

4Universidad Carlos III de Madrid, Departmento Tecnologias de las Communicaciones, Avda. de la
Universidad S/N, Leganés 28110, Spain.

*E-mail: paul.marrow@bt.com, †E-mail: manolis@ced.tuc.gr, ‡E-mail: lengen@dfki.de, §E-mail:
fva@tsc.uc3m.es

Abstract

The complexity of the current global information infrastructure requires novel means of understanding and
exploiting the dynamics of information. One means may be through the concept of an information ecosystem. An
information ecosystem is analogous to a natural ecosystem in which there are flows of materials and energy
analogous to information flow between many interacting individuals. This paper describes a multi-agent platform,
DIET (Decentralised Information Ecosystem Technologies) that can be used to implement open, robust, adaptive
and scalable ecosystem-inspired systems. We describe the design principles of the DIET software architecture, and
present a simple example application based upon it. We go on to consider how the DIET system can be used to
develop information brokering agents, and how these can contribute to the implementation of economic interactions
between agents, as well as identifying some open questions relating to research in these areas. In this way we show
the capacity of the DIET system to support applications using information agents.

1 Introduction: Information
Ecosystems

The modern world encompasses a global information
infrastructure of staggering complexity. This
information infrastructure may be expected to become
even more complicated as the capabilities of the
Internet and World Wide Web are extended. Means of
understanding and effectively exploiting this
complexity are urgently needed. The information
ecosystem concept, which compares transactions in the
information infrastructure to the dynamics of natural
ecosystems, may be an important means of doing this.

According to this approach, an information ecosystem is
a complex web of interactions arising between
information producers and consumers where
information is interpreted in its widest sense. The term
information ecosystem is used by analogy with natural
ecosystems. An ecosystem is an entity formed from the
combination of communities of living organisms, their
interactions with each other, and the physical
environment that they inhabit (Waring, 1989). In

comparison, in networks of information exchange that
make up information ecosystems, we are faced with an
emphasis on interactions between entities (information
producers and consumers) in an environment of
continuous change, caused by commercial, political,
social and technological developments.

Information ecosystems ideas can improve our
understanding of information infrastructures in two
ways. The first is through what has been called the
ecology of computation (Huberman, 1988); that is the
modelling or simulation of existing computational
systems in a manner inspired by natural ecosystems.
The second is through the implementation of
ecologically inspired interactions in computational
architectures in order to complete particular tasks.
Previous work in this area includes various aspects of
artificial life (Langton, 1989), information economics
(IBM, 2000; Kearney & Merlat, 1999) and bottom-up
approaches to multi-agent systems (Van Parunak et al.,
1997; Moukas, 1996; Menczer & Monge, 1999; Minar
et al., 1999).

In this paper we focus on the second direction,
considering in particular the use of multi-agent systems
to build information ecosystems, and the potential for
the development of applications based on these ideas. In
the next section we review existing multi-agent systems
and their relevance to information ecosystems issues.
We show how multi-agent systems together with other
technologies can provide a basis for the construction of
information ecosystems.

We then go on to outline how these ideas have
informed our development of a decentralised light-
weight agent platform in which to develop information
ecosystem applications, through the DIET project.
DIET (the acronym stands for Decentralised
Information Ecosystem Technologies), is a European
collaborative research project. We give an overview of
the design principles behind this software, which can be
used as a basis for the development of a range of
information processing applications.

We then look to the future and to the type of
information processing that the DIET system can
support. We consider the different classes of agents that
are useful in these scenarios (information producers,
consumers, and brokers) and give an overview of their
functionality and interactions. Finally we consider some
of the major open questions that need to be considered
in the development of applications based upon
decentralised multi-agent systems such as the DIET
system.

2 Agents for Information Ecosystems

Software agents are arguably a key technology with
which to tackle information ecosystems issues. This is
because software agents can deal efficiently with
information in many different ways. Multi-agent
systems, in particular, can produce a complex network
of informational interactions appropriate for
information ecosystems. All software agents can be
described as information agents, but we prefer the
definition of an information agent (Maes, 1994; Decker
& Sycara, 1997) as one that has a function concerned
with the manipulation of information. Using
information agents of this sort, one can construct an
interacting network of information users and
consumers, that is an information ecosystem.

For example, Decker and Sycara (1997) describe the
construction of software architectures for information
agents on the Internet. They combine three types of
agents, interface, task and information agents, that
together can carry out a portfolio management function.
Sycara et al. (1996) describe a related agent system for
information filtering. Moukas (1996) reports on
Amalthaea, another distributed information filtering
application. In these agent-based systems the

interactions between the agents and the resulting
collective properties of the agents combined into a
society become more important than centralised control
of the software system used.

Van Parunak et al. (1997) exploit the collective
properties of such distributed software systems in the
industrial context to make what they call industrial
synthetic ecosystems. These software systems have
been applied to a range of real industrial problems, such
as shop-floor scheduling. They differ from many
conventional control systems in that the key
components, the software agents, are very simple,
diversified and generalised, and it is their interaction in
the synthetic ecosystem that produces the relevant
control of the industrial system. As such, the industrial
synthetic ecosystem of Van Parunak et al. could
alternatively be considered an information ecosystem.

Agent systems of this sort typically exploit the
emergent consequences of market-based interaction.
Wellman and colleagues (e.g., Wellman, 1996;
Wurman & Wellman, 1997) have used market-based
interactions to control distributed systems, in a field
they call market-oriented programming. Applications
using this technique have been developed for resource
allocation (Wellman, 1996), information service
provision and other areas.

Kearney and others in the DYNAMO project (Kearney
and Merlat, 1999; Kearney et al., 2000) have exploited
the potential of economic interactions for the control of
supply chains, developing systems of interacting trading
agents that use market and evolutionary mechanisms to
set prices. These systems are able to utilise economies
of scale, and also retain the flexibility to deal with
changing market conditions. IBM’s Information
Economics Project (IBM, 2000) provides another
example of research into agent systems engaged in
economic interactions.

Other examples of multi-agent systems relevant to
information ecosystems research include the
InfoSpiders system developed by Menczer and Monge
(1999). This system implements a scalable information
search algorithm by use of cooperative agents, drawing
explicitly on ecological metaphors. By contrast, the
Hive system (Minar et al., 1999) uses distributed agents
to link networked resources on a local network. Another
example is given by Brewington et al. (1999) who use a
mobile multi-agent system for distributed information
retrieval. The MATS system developed by Ghanea-
Hercock et al. (1999) also uses mobile agents, in this
case inspired by social insects, to control a distributed
processing application over a network.

It can be seen from these examples that there is a
substantial track record in the application of multi-agent
systems to the type of information manipulation

problems that are pertinent to the study of information
ecosystems.

The variety of features of natural ecosystems in
addition to those that inspire multi-agent systems
suggests that ideas from other areas may also inform the
construction of information ecosystems. One feature of
natural ecosystems is the existence of resources. Living
organisms survive in the context of limited resources.
Information ecosystems do not need to have resources
explicitly defined. However the inclusion of resources
allows the development of control and allocation
algorithms based upon biologically-inspired resource
accounting, or by drawing upon parallel inspiration
from economics (Huberman, 1988; Wellman, 1996;
Wellman and Wurman, 1997).

A consequence of varying availability of resources and
interaction with the environment is the occurrence of
adaptation by individuals to changing circumstances. In
the natural world a distinction can be made between
behavioural adaptation during the lifetime of an
individual and evolutionary adaptation over multiple
generations. The distinction may be worth maintaining
in the information ecosystem context. The field of
evolutionary computation provides many possibilities
for the implementation of evolutionary adaptation in an
information ecosystem (e.g., Bäck et al., 1997); a wide
range of other machine learning techniques are
available to implement behavioural adaptation.

Another source of inspiration from natural ecosystems
are the social insects, where relatively simple and
unintelligent creatures can combine to produce very
complex artefacts and behaviours (Wilson, 1971). Such
organisms have already inspired work in multi-agent
systems (e.g., Marrow and Ghanea-Hercock, 2000).
Ideas from social insects among others have informed
the field of Artificial Life (e.g., Langton, 1989) which
covers a wide range of models and systems with
characteristics that include many of those already
mentioned. It too may be able to contribute to the
development of agent-based information ecosystems. In
particular the emphasis in Artificial Life research on
developing complex systems through the bottom-up
combination of simple elements to support the
emergence of complexity may prove useful in
developing information ecosystems based upon the
interaction of many software agents.

3 The DIET Approach

The variety of sources of inspiration from economics to
Artificial Life suggests that an initial focus on
developing flexible systems of interacting agents is
appropriate. For this reason we are interested in
developing DIET initially with comparatively
lightweight agents. If individual agents can be kept as
lightweight as possible, many more agents can be

incorporated in the system, and their numbers can be
varied much more easily. While the development of
lightweight agents precludes the inclusion of some
computationally intensive capabilities at the individual
agent level, there is potential for the emergence of such
properties in the overall system, through interactions
between agents. This emphasis on lightweight agents
and bottom-up interaction is in consequence the
strategy that we follow in the DIET core platform,
although it does not preclude the incorporation of more
heavyweight agents where required when extending this
platform. More heavyweight agents may, for example,
be needed to include sophisticated reasoning or
communication capabilities. Nor does it preclude the
use of more top-down Artificial Intelligence techniques,
which complement and enhance the functionality
provided by bottom-up interactions.

Based upon these ideas we are able to address the goals
of the DIET project through the construction of an
agent platform to study and implement information
ecosystems.

The goals of the DIET project are the following:

• To design and implement a novel agent1

framework via a substantially bottom-up and
ecosystem-oriented approach leading to an open,
robust, adaptive and scalable software platform.

• To validate and demonstrate the usefulness of the

platform via four tasks/applications: information
retrieval, information alert, information mining,
and information trading.

• To research into the effects of alternative forms of

interaction among different types of agents under
ecologically inspired software models.

The first goal depends, in our view, on keeping the
functionality, memory and processing requirements
associated with each individual agent to a minimum.
However agents should be designed such that they can
combine or interact in a variety of ways so as to carry
out functions that they are not capable of individually.
In doing so, we keep close to the inspiration from
natural ecosystems that underpins the information
ecosystem concept. Starting our design in this way
makes it much more likely that the emergent multi-
agent framework will be scalable as higher numbers of
agents are needed, or large amounts of information need
to be processed.

This lightweight, bottom-up design should also
contribute to the aim of supporting adaptive responses
in the platform. Lightweight agents could more easily

1 Agents may be called infohabitants in DIET. The terminology has
its roots in the call for proposals from the European Commission.

Application Layer

Application Reusable
Component Layer

Core Layer

Debugging
and
Visualisation
Tools

Application-
dependent
Visualisation

Validation components

serve as the subject of population-based adaptive
algorithms such as evolutionary algorithms. In addition,
the diversity of possible configurations possible in
interactions between lightweight agents should assist
the search for robust solutions, and allow easy
modification if these are not initially found.

The flexibility of the design approach that we advocate
here should allow us to consider the application of the
DIET software platform to a variety of different
information manipulation applications, based upon a set
of information processing operations that will be
required by some or all applications. At the same time it
should provide a platform for the study of some of the
outstanding research issues concerning interactions in
multi-agent systems.

In the next section we outline the features of the DIET
software platform, upon which all applications built in
the DIET system will be based.

4 The DIET software platform

The DIET software platform is designed to form the
base for information management applications. To be
useful in practise, the framework needs to support
applications that are:

• adaptive: Information gets updated constantly, and

new information is generated. Users of the
information, and their preferences, as well as the
system load and infrastructure, can also change. To
operate efficiently, information management
applications have to adapt to these changes.

• scalable: There is a massive amount of information
available in the real world, consider for example
the World Wide Web. For an information
management system to be useful, it need to be built
without any implicit limits on its size.

• robust: Failures are inevitable in large-scale,
dynamic, distributed systems. So the system needs
to be able to cope with them. It needs to handle
failing hardware, as well as cope with high system
load. Performance should gracefully degrade when
parts of the system fail.

• decentralised: A lot of information is located in a
distributed form, as the World Wide Web
demonstrates. Decentralisation also helps to
enhance scalability, by avoiding critical
bottlenecks, and robustness, as it reduces the
reliance on particular parts of the system.

The DIET platform has therefore been designed with
these properties in mind.

4.1 Layered architecture

The architecture of DIET software is layered,
incorporating modularity that allows for the flexible
extension of the framework (see figure 1). The kernel of
the DIET software resides in the bottom layer, the core
layer. It provides the fundamental functionality
available to all implementations in the DIET
architecture, but also embodies the constraints under
which all DIET agents must operate. The application
reusable component layer (ARC layer) includes
optional components that are useful to various
applications. It also contains general components that
allow for the validation and testing of DIET
applications. The application layer is the third layer and
contains application-specific code. Associated with this
layer may be validation components, to enable
validation of applications developed using the DIET
platform. Finally, the DIET architecture provides for
software for visualisation of the components within the
platform.

Figure 1: The DIET architecture.

4.2 The kernel

The two fundamental components defined by the DIET
kernel are infohabitants and environments. (Recall that
an “infohabitant” is a term for agents within DIET, and
we will use it in the description of the software
platform). The only capability built into every
infohabitant is the ability to communicate with each
other. Every infohabitant has an identity consisting of a
binary name tag and a binary family tag. The name tag
allows infohabitants to be uniquely identified, and the
family tag can be used to look up infohabitants by
functionality. Family tags can be used as a shared
identifier for a group of agents, or as an identifier which
can be set according to an agreed rule, or as an evolved
identifier which externally distinguishes a specific sub-
species of adaptive agent.

An environment provides a location for infohabitants to
reside in. It also provides infohabitants access to the

basic services provided by the DIET kernel. An
environment always resides on a single computer.
However, one computer can host multiple
environments, and DIET is designed to run on multiple
computers.

The DIET kernel has been designed to be as lightweight
as possible. It provides only essential services, and
always in a very basic way. This helps to make it more
scalable, and enables it to deliver its functionality
quickly and efficiently. Robustness is explicitly
addressed in the DIET core by directly exposing
infohabitants to potential failure. This allows them to
adapt to it and change their behaviour accordingly.

The following services are offered by the DIET kernel:
• New infohabitants can be created. To create an

infohabitant, you specify the type of infohabitant to
create and the parameters to use. The kernel checks
the type of the infohabitant to ensure that it obeys a
few basic rules. The kernel also assigns a randomly
generated name tag to the infohabitant. This is a
simple, efficient mechanism to allocate names that
are in practice unique. For instance, when tags are
128 bits long, the probability that two or more
infohabitants in a group of one million have the
same name is 1.5 x 10-26. The infohabitant can
choose its own family tag, but the kernel ensures
that the identity of an infohabitant remains fixed
throughout its lifetime.

• Infohabitants can connect to other infohabitants in
the same environment. Once connected,
infohabitants can communicate by sending
messages or passing additional objects to each
other. By only allowing local connections,
infohabitants can receive immediate feedback
when sending a message. It was either delivered
successfully, or it was rejected. Connections can be
established in only two ways, by specifying either a
complete identity or the family tag of the required
infohabitant. Both look-up mechanisms can be
implemented and used very efficiently. More
complicated directory functionality can be built on
top of this base functionality and provided by
infohabitants if needed.

• Infohabitants can move to another environment.
Infohabitant mobility is useful to make the system
more adaptable to changing circumstances. It
allows an infohabitant to select from various
execution environments, depending upon the
availability and efficiency of environmental
services, and it can help in the formation of
neighbourhoods of social interaction between
infohabitants. The kernel does not guarantee that
every migration attempt succeeds. When an
infohabitants wants to move, but the destination
environment can not accept it, for example because
it is currently off-line or has reached its full
capacity, the infohabitant dies.

For both communication and migration the kernel
support is minimal. It can therefore be implemented
very efficiently. It also allows more sophisticated
functionality to be build on top of it, implemented in a
way best suited to the conditions in which it is used.
The minimalistic implementation is partly achieved
because the kernel only fullfills any request when it can
easily do so, but immediately fails when it cannot. It
has the additional advantage that it implicitly forces
infohabitants to take the effect of their actions on their
execution environment into account.

Another feature of the kernel is that explicit limits can
be imposed on several elements in the system such as
the number of threads that are in use and the size of the
message buffer of every infohabitant. These limits help
to make the DIET platform more robust with respect to
system load. For example, when a new message arrives
at an infohabitant whose incoming message buffer is
full, it is simply rejected. This mechanism ensures that
the system will not run out of memory when one or
more infohabitants receive more messages than they
can handle. It also exposes the sending infohabitant to
the congestion so that it can adapt its behaviour
accordingly.

The kernel has also been designed to support
lightweight infohabitants. The minimal requirements by
an infohabitant on system resources such as memory
and CPU use is very low. One interesting feature is that
infohabitants can temporarily give up their thread when
they do not need it. When an external event occurs, e.g.
a message arrives, the kernel attempts to give it a thread
again so that it can handle the message.

4.3 The ARC layer

Above the core layer the DIET software platform will
include a range of components that will draw upon
ecological and evolutionary inspiration, as well as
machine learning and other mechanisms, in order to
provide diverse sources of flexibility to facilitate the
adaptation of DIET agents to changing circumstances.
This layer will also include the elements that support a
range of information management and manipulation
applications.

The ARC layer also provides infohabitants that offer
services not directly provided by the DIET kernel.
Infohabitants can access these services through their
family tags. For example, the ARC layer defines a
CarrierPigeon infohabitant that can be used to deliver
messages to infohabitants in a different environment
and thus provides basic remote communication. Other
infohabitants defined in the ARC layer can use these
CarrierPigeons to offer various more sophisticated ways
to communicate remotely.

4.4 A simple example

The DIET platform is geared towards a bottom-up
software design. A simple example application
implemented in DIET is now described to illustrate how
to best exploit the functionality provided by the DIET
kernel.

This application is built in layer three of the DIET
architecture (recall that, from figure 1, this layer, the
application layer, is where application-specific code is
located). It draws upon software components in the
application reusable component (ARC) layer and in the
core layer.

The application has been designed to arrange Linker
infohabitants in a sorted sequence. The Linker
infohabitants are sorted according to (the binary values
of) their identity. All Linkers are passive and only react
to incoming messages. Each tries to maintain a
connection to two other Linkers: both as close as
possible to its own identity but one with a lower
identity and one with a higher identity. When a Linker
receives a message with the identity of another Linker,
it checks if it improves either of its existing links. If it
does, it updates the link and sends its own identity to
the corresponding Linker. Otherwise it forwards the
received identity to the link with an identity closest to
it. The sorting process is driven by Trigger
infohabitants. They are active. Every once in a while
they randomly select two Linkers and tell one about the
other’s identity. Figure 2 shows a screenshot of a
visualisation of this application. Individual Linker and
Trigger infohabitants are shown by blocks – lines
between them indicate links being formed between
infohabitants.

Figure 2. Example of an application running on the

DIET software platform.

The application has a few interesting features. Firstly,
although admittedly simple, this local and stochastic
algorithm always leads to a perfectly sorted list.
Secondly, as sequences get longer, a single trigger
action typically results in a larger cascade of messages.
Therefore, Triggers have a simple mechanism to adapt
their activity to the perceived system load. This simple
adaptation strategy means that the system operates close
to optimal efficiency despite changing system load.
Thirdly, the algorithm is robust. Even when messages
get lost or Linker infohabitants are killed, the algorithm
keeps on functioning. Finally, the ability of the kernel
to support light-weight infohabitants means that the
application can run on a single computer with more
than 100,000 Linker infohabitants.

5 Information Ecosystems at Work:
Producers, Consumers and Brokers

We now consider some of the functions that will be
required in working information ecosystems. These will
be implemented in layers two (the ARC layer) and layer
three (the application layer) of the DIET architecture.
To do this we need to think about the information
infrastructure in which information ecosystem
applications will be deployed.

The global information infrastructure of the future will
be populated by millions of agents that act as
information producers, information consumers or
intermediaries for transactions (brokers). DIET is
devoted to the study of ecosystem-inspired techniques
for the development of systems inhabited by such
information agents.

In information ecosystems information brokering is a
very important problem. For example, in the WWW
today there is an important need for “middlemen” that
will allow information (or service) requesters to find
efficiently information (or service) providers that can
fulfil their requests. Similarly, information (or service)
providers need effective ways to target their
advertisements to appropriate consumers. Some of this
functionality is today provided in a very rudimentary
way by search engines, web directories, vertical portals
or various e-commerce firms. To realise the full
potential of the WWW, we need to go beyond the
simple functionality offered by these technologies and
design brokers with the following attributes:

• They must be able to handle a wide range of
descriptions of information content as
advertised by providers, and requested by
consumers.

• They must be efficient with respect to

communication, scalable (i.e., their
performance should not degrade in the

presence of large numbers of events to be
handled), robust (i.e., less vulnerable to
failures) and adaptive (i.e., can accommodate
varying workloads and varying numbers of
information requesters and providers).

The need for brokers with the above functionality is not
new and has already been documented in many
branches of distributed computing and in open multi-
agent systems e.g., (Sycara et al., 1997). Previous work
on information brokering can be classified in various
ways (Chi Wong and Sycara, 2000) but here we would
like to concentrate on the degree of decentralisation
offered by existing systems. A review of related
research reveals three main approaches:

• The centralised approach where a single
broker is employed. Typical examples of this
approach are the matchmakers of SHADE and
COINS (Kuokka and Harada, 1995), and A-
Match (Sycara et. al., 1999). Other centralised
systems that are not multi-agent systems but
could be viewed as such are information
dissemination systems like SIFT (Yan and
Garcia-Mollina, 1999) and information
integration systems like TSIMMIS (Garcia-
Mollina et al., 1997).

• The distributed approach where the brokering
task is handled by multiple co-operating
brokers. This approach is usually mentioned in
many papers but very few implemented
systems of this kind exist (we only know of
IDIoMS [Soltysiak et al., 2000]). There are
also very few papers dealing with theoretical
aspects of the problem (see Jha et al., 1998 for
example).

• The “revolutionary” approach that does away
with brokers altogether (i.e., brokering is
carried out individually by each participating
agent). To the best of our knowledge this
approach has only been argued in Shehory
(1999). Outside of the area of multi-agent
systems the same approach has been
implemented in peer-to-peer content sharing
systems such as Gnutella (2000) and Freenet
(Clarke et al., 2000).

In DIET we are mainly interested in the two
decentralised solutions to information brokering
mentioned above. We believe that decentralised
configurations of agents can provide the robustness,
scalability and adaptivity needed in the global
information ecosystems of the future.

We are currently developing a distributed textual
information retrieval and alert application on top of the
basic DIET API. Using this application as our testbed
we would like to explore the following research
questions, among others:

• What are appropriate communication languages,
protocols and algorithms for systems of multiple
co-operating brokers?

• What kind of properties can emerge in societies of
co-operating brokers?

• What implementation techniques are appropriate
for developing societies of multiple co-operating
brokers?

The above questions largely concentrate on the aspects
of information brokering that have to do with
management of information, and would also interest
more traditional computer science audiences (e.g.,
distributed systems researchers). DIET aims to go
beyond this view and additionally consider the
economic interactions arising by various combinations
of information producers, consumers and brokers.
Economic interactions have been used previously to
drive decentralised agent systems in contexts such as
market-based computation (Wellman, 1996). The
flexible response to changing circumstances generated
by the flow of economic resources has strong parallels
with resource dynamics in natural ecosystems (Waring,
1989) and is thus worth considering in an information
ecosystem together with more directly nature-inspired
ideas.

In implemented systems like the ones mentioned above
information producers, consumers and brokers should
be rewarded for contributing useful information, and
should be penalised for being idle or for consuming
system resources. The main question of our
investigation then becomes to analyse and implement
configurations of economically-motivated information
agents that exhibit sophisticated and/or useful
behaviour. For example:

• What configurations of information agents can
achieve states where the overall utility of the
system (and not just the utility of each
individual) has been maximized?

• How can we design and implement
information sharing systems that discourage
the free-riding behaviour now seen in Napster
and Gnutella (Adar & Huberman, 2000; Mojo
Nation, 2000)?

The above kinds of questions are particularly interesting
given the potential for intelligent information services
to provide solutions for future e-commerce systems and
other commercial applications.

6 Conclusions

We have introduced a new approach to the development
of multi-agent systems as decentralised information
ecosystems through the DIET project. The DIET
software platform provides a basis for groups of
information producers, consumers and brokers to

interact and so contributes to the emergence of more
adaptable and robust multi-agent systems in the future.

Acknowledgements

Research described in this paper was supported in part
by the Future and Emerging Technologies arm of the
IST Programme of the European Union, under the FET
Proactive Initiative – Universal Information Ecosystems
(FET, 1999), through project DIET (IST-1999-10088).
We also acknowledge the support of BT’s Group
Technology Programme.

We thank the members of the BTexaCT Intelligent
Systems Laboratory for stimulating discussion and
comments during the preparation of this paper.

References

E. Adar, and B.A. Huberman. Free Riding in

Gnutella. Available from
http://www.parc.xerox.com/istl/groups/iea/papers/
gnutella/

T. Bäck, D. Fogel, and Z. Michalewicz (eds.)
Handbook of Evolutionary Computation. Institute
of Physics, Bristol, 1997.

B. Brewington, R. Gray, K. Moizumi, D. Kotz, G.
Cybenko, and D. Rus. Mobile agents in
distributed information retrieval. In: Intelligent
Information Agents, M. Klusch (ed.), Springer,
Berlin, 1999.

H. Chi Wong, and K. Sycara. A Taxonomy of
Middle-Agents for the Internet. In: Proceedings of
4th International Conference on Multi Agent
Systems (ICMAS-2000), Boston, Massachusetts,
2000.

I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong.

Freenet: A Distributed Anonymous Information
Storage and Retrieval System. Available from
http://freenet.sourceforge.net/

K. Decker, and K. Sycara. Intelligent adaptive
information agents. Journal of Intelligent
Information Systems 9(3):239-260, 1997.

FET. Future and Emerging Technologies web site:
http://www.cordis.lu/ise/fetuie.htm, 1999.

Frictionless web site: http://www.frictionless.com

H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. D. Ullman, V.
Vassalos, and J. Wisdom. The TSIMMIS
Approach to Mediation: Data Models and

Languages. Journal of Intelligent Information
Systems 8(2):117-132, 1997.

R. Ghanea-Hercock, J.C. Collis, and D.T. Ndumu.
Co-operating mobile agents for distributed
parallel processing. In: Proceedings of
Autonomous Agents 1999, Seattle, 1999.

Gnutella web site: http://www.wego.gnutella.com/

B. Huberman, (ed.) The Ecology of Computation.
Elsevier, Amsterdam, 1988.

IBM Information Economies Project web pages:
http://www.research.ibm.com/infoecon/

S. Jha, P. Chalasani, O. Shehory and K. Sycara. A
Formal Treatment of Distributed Matchmaking.
Proceedings of Autonomous Agents’ 98, pp. 457-
458, 1998.

P. Kearney, and W. Merlat. Modelling market-
based decentralised management systems. BT
Technology Journal 17(4):145-156, 1999.

P. Kearney, R.E. Smith, C. Bonacino, and T.
Eymann. Integration of computational models
inspired by economics and genetics. BT
Technology Journal 18(4):150-161, 2000.

D. Kuokka, and L. Harada. Matchmaking for
Information Agents. Proceedings of IJCAI '95,
pages 672-678, Montreal, Canada, 1995.

C.G. Langton. Artificial Life. Addison-Wesley,

Redwood City, 1989.

P. Maes. Agents that reduce work and information
overload. Communications of the ACM 37(7):31-
40, 1994.

P. Marrow and R. Ghanea-Hercock. Mobile
software agents – insect-inspired computing. BT
Technology Journal 18(4):129-139, 2000.

F. Menczer, and A. E. Monge. Scalable web search
by adaptive online agents: an InfoSpiders case
study. In: Intelligent Information Agents, M.
Klusch, (ed.), Springer, Berlin, 1999.

N. Minar, M. Gray, O. Roup, R. Krikorian, and P.
Maes. Hive: distributed agents for networking
things. In: Proceedings of ASA/MA '99, 1999.

Mojo Nation web site: http://www.mojonation.com/

A. Moukas. Amalthaea: information discovery and
filtering using a multiagent evolving ecosystem.

In: Proceedings of PAAM96, 1996.

S. Soltysiak, T. Ohtani, M. Thint and Y. Takada.
An Agent-Based Intelligent Distributed
Information Management System for Internet
Resources. Available at
http://www.isoc.org/inet2000/cdproceedings/2f/2f
_1.htm

O. Shehory. A Scalable Agent Location
Mechanism. ATAL 1999:162-172, 1999.

K. Sycara, K. Decker, A. Pannu, M. Williamson,
and D. Zeng. Distributed intelligent agents. IEEE
Expert 11(6):36-46, 1996.

K. Sycara, K. Decker, and M. Williamson. Middle-
Agents for the Internet. Proceedings of IJCAI-97,
1997.

K. Sycara, M. Klusch, S. Widoff, and J. Lu.
Dynamic service matchmaking among agents in
open information environments. SIGMOD Record
28(1):47-53, 1999.

H. Van Parunak, J. Santer, and S. Clark. Toward the

specification and design of industrial synthetic
ecosystems. In: Proceedings of ATAL'97, 1997.

R. H. Waring. Ecosystems: fluxes of matter and
energy. In: Ecological Concepts. J. M. Cherrett
(ed.), Blackwell Scientific, 1989.

M. P. Wellman. Market-oriented programming:
some early lessons. In: S. Clearwater (ed.),
Market-Based Control: A Paradigm for
Distributed Resource Allocation. World
Scientific, Singapore, 1996.

M. P. Wellman, and P. R. Wurman. Market-aware
agents for a multiagent world. In: Proceedings of
MAAMAW-97, 1997.

E. O. Wilson. The Insect Societies. The Belknap
Press, Cambridge, 1971.

T. W. Yan, and H. Garcia-Molina. The SIFT
Information Dissemination System. ACM
Transactions on Database Systems 24(4):529-565,
1999.

