
A Methodology for the Automatic Creation of Massive
Continuous Query Datasets from Real-Life Corpora

Christos Tryfonopoulos
Dept. of Informatics and Telecommunications
University of the Peloponnese, Tripoli, Greece

trifon@uop.gr

Abstract — In the information filtering (or publish/ subscribe)
paradigm, clients subscribe to a server with continuous queries
that express their information needs while information sources
publish documents to servers. Whenever a document is
published, the continuous queries satisfying this document are
found and notifications are sent to appropriate subscribed
clients. Although information filtering has been in the research
agenda for about half a century, there is a huge paradox when
it comes to benchmarking the performance of such systems.
There is a striking lack of a benchmarking mechanism (in the
form of a large-scale standarised test collection of continuous
queries and the relevant document publications) specifically
created for evaluating filtering tasks. This work aims at filling
this gap by proposing a methodology for automatically
creating massive continuous query datasets from available
document collections. We intend to publicly release all related
material (including the software accompanying the proposed
methodology) to the research community after publication.

continuous queries; dataset construction; information
filtering; publish/subscribe; information dissemination; profiles;

I. INTRODUCTION
In recent years, content-based information filtering (or

publish/subscribe) applications, such as news or digital
library alerts, have gained popularity to help users cope with
the information avalanche problem on the Web. In the
information filtering paradigm, users -or services that act on
users’ behalf- subscribe to a server with continuous queries
(or profiles) that are expressed in some well-defined
language and capture their information needs. When a
document is published on the server, the continuous queries
satisfying the document are found and notifications are sent
to appropriate clients. Publishers may be news feeds, digital
libraries, or users who post new blog items. Notice that
information filtering is very different from information
retrieval (as in search engines), in which a user poses a (one-
time) query and the search engine executes it only once to
retrieve the currently matching documents.

Since a server may handle millions of clients and
continuous queries, the filtering problem needs to be solved
efficiently by each server. To this end, a number of systems
and algorithms that try to solve the filtering problem
efficiently for different data models and query languages
have been proposed [1, 6, 10, 17, 11, 12, 16, 18, 19, 20].
However, despite all the research in the area, there is an
apparent lack of a benchmarking mechanism (in the form of
a large-scale standarised test collection of continuous
queries and the relevant document publications) specifically
created for evaluating filtering tasks. From our point of view

there exist two major problems to be addressed when trying
to experimentally evaluate a filtering algorithm: (i) the
document corpus to be used as publications and (ii) the set of
continuous queries relative to that corpus. It may not be
difficult to collect data to be used as publications since there
is a wide collection of document corpora available. It is
however, extremely difficult to find continuous queries
relevant to a specific corpus except by obtaining proprietary
data (e.g., from Google Alerts or CNN’s news alert system).
Notice also that one-time queries, such as those obtained
from public releases of major search engines’ query logs
(like Google BigQuery, Zeitgeist, or the AOL query set) are
inappropriate for filtering tasks as they typically express a
one-time information need, contrary to continuous queries
that are used to express recurrent and long-standing
information needs. Finally, other efforts, such as the TREC
Filtering Track, are insufficient as they contain only a few
dozens of manually created and curated continuous queries,
and cannot live up to the need of modern benchmarking that
is in the order of millions (e.g., as in [12, 16, 18, 19, 20]).

Given the above, it becomes clear that the only viable
alternative to this lack of standarised benchmarks is to
artificially generate sets of continuous queries related to the
corpus to be used for the evaluation. To the best of our
knowledge this is the first approach in the literature to
provide a general-purpose methodology for artificially
generating realistic continuous query datasets from actual
document corpora for benchmarking purposes. To this end,
our contributions are the following:
• We formally define the query language and data model

named AWP supported by our methodology.
• We introduce a new corpus of research papers to be used

as publications in the filtering tasks. Notice however,
that our methodology is general enough to be used with
any (attribute tagged) document corpus; here the new
corpus is only used as a proof-of-concept for our
continuous query creation process.

• We propose a new methodology for creating synthetic
user profiles using words and technical terms extracted
automatically from the document corpus. To do so we
use the corpus at hand to create realistic continuous
queries under query language AWP. It should, however,
be stressed out that our methodology can be applied to
any corpus and any query language similar to AWP.

The rest of the paper is organised as follows. Section II
gives a brief overview of related work and Section III hints
on the model AWP, which is used for specifying profiles and
documents. Section IV presents the NN corpus, whereas
Section V presents our methodology for the creation of

continuous queries. Finally, Section VI concludes the paper
by providing future research directions.

II. RELATED WORK
 Our work relates (at a higher level) to the general area of

information filtering efficiency as expressed by a number of
systems and algorithms that try to provide scalable
information filtering solutions for different data models and
query languages. Some of these approaches include the
systems XFilter [1], YFilter [6], DFA [10], the Boolean
version of SIFT [17], and the agent-based DIAS [11]. Other
approaches focus more on the algorithmic aspect by
providing efficient tree-based data structures such as [12, 16,
18, 19, 20] for dealing with documents that are free text and
profiles that are conjunctions of keywords. To the best of our
knowledge the only work that is somewhat relevant to ours is
[15], where a corpus of documents (but no continuous
queries) is built for adaptive filtering tasks.

Interestingly the evaluation of the XFilter [1] and SIFT
[17] is based on a synthetic corpus of documents; XFilter
creates them using IBM’s XML generator [7] and NITF
DTD [5], whereas the creation of continuous queries is also
synthetic. Contrary, [10] uses Deterministic Finite Automata
to parse a corpus of XML documents and the XPath
generator used in YFilter [6] to generate the user profiles.
However, the main problem with all these approaches is that
they are (i) aimed at a single evaluation and cannot be
reused, (ii) based in artificial (and not real document)
corpora, and (iii) not freely available to use. Contrary, our
approach is general enough to cover many filtering tasks, is
based on actual documents to create the continuous query
dataset, and will be freely available for use after publication.

III. THE DATA MODEL AWP
In [11] we present the data model AWP for specifying

continuous queries and textual resource metadata in
information filtering systems. AWP is based on the concept
of named attributes with values of type text. The query
language of AWP offers Boolean and proximity operators on
attribute values as in the work of [4], which is based on the
Boolean model of information retrieval.

Syntax. Let Σ be a finite alphabet. A word is a finite
non-empty sequence of letters from Σ. Let V be a (finite or
infinite) set of words called the vocabulary. A text value s of
length n over vocabulary V is a total function
s:{1,2,...,n}→V.

Let I be a set of (distance) intervals I={[l,u]: l,u ∈ N, l ≥
0 and l ≤ u} ∪ {[l,∞): l ∈ N and l ≥ 0}. A proximity formula
is an expression of the form w1≺i_1 ··· ≺i_n−1 wn where
w1,...,wn are words of V and i1,...,in are intervals of I.
Operators ≺i are called proximity operators and are
generalizations of the traditional information retrieval
operators kW and kN [4]. Proximity operators are used to
capture the concepts of order and distance between words in
a text document. The proximity word pattern w1 ≺[l,u] w2
stands for “word w1 is before w2 and is separated by w2 by at
least l and at most u words”. The interpretation of proximity
word patterns with more than one operator ≺i is similar. A

word pattern over vocabulary V is a conjunction of words
and proximity formulas. An example of a word pattern is
applications ∧ efficient ≺[0,0] data ≺[0,3] fusion.

Let Å be a countably infinite set of attributes called the
attribute universe. In practice attributes will come from
namespaces appropriate for the application at hand e.g., from
the set of Dublin Core Metadata Elements [21].

A document d is a set of attribute-value pairs (A,s) where
A ∈ Å, s is a text value over V, and all attributes are distinct.
The following set of pairs is an example document:

{ (AUTHOR, “Christos Tryfonopoulos”),
(TITLE, “Distributed information filtering is ...”),

(ABSTRACT, “In this paper we show that ...”) }
A query is a conjunction of the form

A1 = s1 ∧...∧ An = sn ∧ B1 ⊒ wp1 ∧...∧ Bm ⊒ wpm
where each Ai,Bi ∈ Å, each si is a text value and each wpi is a
word pattern. The following formula is an example query:

AUTHOR = “Christos Tryfonopoulos” ∧
TITLE ⊒ (distributed ≺[0,3] filtering) ∧ information

Semantics. The semantics of AWP have been defined in
[11] and will not be presented here in detail. It is
straightforward to define when a document d satisfies an
atomic formula of the form A = s or B ⊒ wp, and then use
this notion to define when d satisfies a query [11]. The
example document given above satisfies the example query.

IV. THE NEURAL NETWORK CORPUS
The proof-of-concept corpus we use (called NN corpus)

consists of a fraction of research papers from ResearchIndex
[14,13] having Neural Networks as a subject. ResearchIndex,
formerly known as Citeseer, is a digital library that targets
the improvement in the dissemination of scientific literature.
ResearchIndex indexes research articles in various formats
and provides a variety of free services, such as full-text and
citation indexing as well as paper statistics.

TABLE I. SOME CHARACTERISTICS OF THE NN CORPUS

Description Value

Number of documents 10,426

Document vocabulary size 641,242

Maximum document size (words) 110,452

Minimum/maximum word size 1/35

The NN corpus consists of 10,426 scientific papers in

English. Some important values for this corpus are
summarised in Table I above. The documents were
downloaded from the ResearchIndex site as postscript files
and were converted to text files. Then all references and
equations were removed and each word in the document was
assigned a grammatical tag (e.g. noun, verb etc.) using a
simple rule-based part of speech (POS) tagger [3]. This
processing was necessary as a first step for the extraction of
multi-word terms by the C-value/NC-value method
described briefly in Section V.A and also in [9]. To use the
corpus for our continuous query creation we also utilised the
full citation graph of ResearchIndex.

Initially, we removed all the POS tags from all the
documents. We then used the information from the full
citation graph of ResearchIndex to extract the title, authors,
abstract, and year of the publication. This information was
not extracted from the actual corpus since the flat form of the
documents contained considerable noise even after several
rule-based filters were applied to it. The next step was to
process the abstracts as POS-tagged text files, extracted from
the original postscript files. After processing the abstracts we
were able to identify the body of the document by excluding
the information we already had in hand. When the
processing phase was completed, we merged the different
attributes extracted, along with the appropriate attribute tags.
We then had at our disposal an attribute-tagged corpus with
five fields: title, authors, abstract, body and year.

At this point we have to stress out that the information
obtained from the citation graph was incomplete, resulting in
documents without all the attribute fields filled in. This is
actually not a problem in an experimental setting since in an
information dissemination scenario users may post
documents with only some of the attributes filled in. Table II
gives some interesting measures of the fraction of documents
out of the document corpus that contain each attribute, and
summarises the fraction of documents that contain a specific
number of attributes.

TABLE II. ATTRIBUTE STATISTICS

Attribute % fraction of
documents

 Number of
attributes

% fraction of
documents

title 63% 1 7.4%

authors 58% 2 28.0%

abstract 88% 3 1.9%

body 86% 4 16.0%

year 63% 5 45.0%

V. CONTINUOUS QUERY GENERATION METHODOLOGY
The main construct in our profile creation process is that

of a unit. Units in our context represent different entities that
can be used to create a profile. The first two unit sets consist
of proximity formulas created from multi-word terms, that
were extracted from the NN corpus using the C-value/NC-
value method described below. The third one is the set of all
the nouns extracted from document abstracts, and the fourth
one is the set of all author last names in the NN corpus
documents. Combining units from these four sets in a well-
defined way, allows us to create realistic profile databases in
order to conduct our experiments.

A. Automatic Term Extraction
The multi-word terms used in the profiles for our

experiments are extracted from the NN corpus using the C-
value/NC-value approach of [9]. The process of
identification of terms or technical terms or terminological
phrases from a collection of documents belongs to the
research area called automatic term recognition. The C-
value/NC-value approach of [9] specifies the “termhood” of
a candidate multi-word term as the probability (co-location

value) to be a real term. The C-value of a term is an
enhancement of the common statistical measure of frequency
of occurrence, incorporating information about nested terms,
whereas NC-value embodies information form words that
appear in the vicinity of terms in texts. Both methods have
been shown to perform better than the classical frequency of
occurrence measure in terms of precision and recall [8]. For
details on the method the reader is invited to see [9, 8].

B. Creation of the Different Unit Sets
The creation of the first two unit sets was based on the
extraction of multi-word terms from the corpus. To create
these sets, a ranked list of multi-word terms was extracted
from the corpus documents. We then, excluded from this list
all terms that contained more than five words since they
were noise produced by the C-/NC-value methods.
Additionally, we specified an upper and lower NC-value
cut-off threshold for the terms remaining in the list. These
cut-off thresholds were used to increase the discriminating
power of the set of terms. The upper cut-off threshold was
used to exclude top ranked terms, that is terms that appear
very often in corpus documents. Such an example is the 2-
word term “neural networks” that is contained in most of
our documents. Moreover the bottom ranked terms are also
excluded from the list of the useful terms since they are
mostly noise created from the procedure of transforming the
original postscript files to simple text files. This processing
resulted in a list containing 2-, 3-, 4- and 5-word terms,
which was then used to create two different sets as follows.
Let a1a2...an, where each ai is a word, be a multi-word term
from the aforementioned list, containing n words. A
proximity formula is created out of this term in the
following two ways:
1. a1 ≺[0,0] a2 ≺[0,0] ... ≺[0,0] an. For each multi-word term

in the list we introduce the proximity operator ≺[0,0]
between the words of the multi-word term in order to
create proximity formulas that represent strings. All the
proximity formulas that are created this way form the
first set of units named PF0, which stands for proximity
formulas with word distance zero. The number of
operands in these proximity formulas varies according
to the number of words contained in the multi-word
terms. The minimum number of words in a multi-word
term is obviously two, whereas the maximum is five.
An example of a unit in this set, which was produced
from the term “inverse dynamic function”, is inverse
≺[0,0] dynamic ≺[0,0] function.

2. a1 ≺[0,k] an, where 1 ≤ k ≤ 10. From each term in the list
of multi-word terms we create proximity formulas with
exactly two operands. These proximity formulas are
created as follows. We replace all the middle words of
the 3-, 4-, 5-word terms with the proximity operator
≺[0,k], specifying k to be a natural number drawn
uniformly between 1 and 10. The choice of using a
relatively small upper bound in the distance between
two operands is inspired by the implementation of

operator ‘*’ and ‘NEAR’ in Google and Yahoo!
respectively. All the proximity formulas created this
way form the second set of units named PFk, since they
are proximity formulas with word distance k. An
example of a unit in this set could be rbf ≺[0,6] networks,
which could be created from the term “rbf dynamic
decay adjustment networks”.

The second set of units used in the creation of our
profiles database is the set of nouns that were extracted from
document abstracts. The choice of nouns taken from
document abstracts as opposed to the whole document can be
justified by the argument that the abstracts are expected to be
a brief description of the work carried out in the paper thus,
very appropriate to describe the content of a paper. The
procedure of creating the set of nouns is as follows. First, we
identified all the nouns in singular and plural form using the
POS-tagged abstracts that were available to us. After that, we
created a frequency-ranked list of these words and specified
an upper/lower cut-off threshold to cut the most/least
frequent words. The set of units that resulted from this
procedure is denoted by NS, which stands for nouns.

The last set of units created is that of the authors’ last
names. We extracted all the names of the authors that were
available to us from the corpus documents to obtain an
author vocabulary Vauthor of 8,833 last names. Please notice
that using this author vocabulary to uniformly draw author
names for continuous queries is not a good choice, since
authors that are more active or produce more important
papers than others are expected to be used heavier in
continuous queries. The criterion for identifying the more
important authors is how many citations they get from papers
written by other researchers. In the citation graph of the NN
corpus this is captured by the in-degree of the papers as
explained in [2]. The highest the in-degree for the papers of a
specific author, the highest the probability for this author to
appear in a profile. We define Na to be the number of papers
in the corpus that refer to at least one document of author a,
and Vauthor the author vocabulary. Na can easily be extracted
from the full citation graph, and the author vocabulary is
available to us from the NN corpus documents. Thus, the
probability of author a to be used in a continuous query is:

The above formula associates an author with the popularity
of his writings and thus, with a probability of another
researcher being interested in his work. To capture the
probability distribution of the author surnames, we used a
multi-set that contains an author surname Na times, and
presents a power-law distribution (Figure 1). This can be
explained by taking into account the general observation
that in every scientific domain there exist a few heavily
cited authors, while the rest receive less visibility (in terms
of citations of their work). The unit multi-set described
above is denoted by AS (author surnames).

1

10

100

1000

10000

1 10 100

N
um

be
r o

f c
ita

tio
ns

 (l
og

)

Number of authors (log)
Figure 1. Distribution of citations among authors

C. Details
In this section, we provide details of how all the above

extracted information is combined to create realistic
continuous queries. A continuous query under the subset of
query language AWP consists of a conjunction of atomic
queries. These atomic queries can only be of the form A ⊒
wp, where A is an attribute and wp is a conjunction of words
and proximity formulas. In the rest of this section we will
examine the different types of atomic queries that can be
created according to the attributes that are available to us.

TABLE III. SPECIFICS FOR THE CREATION OF ATOMIC FORMULAS

Attribute Participating
unit sets

Indicatory value
of σ

title
PF0
PFk
NS

0.4
0.4
0.2

abstract
PF0
PFk
NS

0.4
0.4
0.2

body
PF0
PFk
NS

0.4
0.4
0.2

author AS 1.0

In our context, creating a continuous query can be

viewed as the problem of choosing with a probability
distribution between units contained in different sets. Not all
the sets of units participate in the creation of an atomic
formula of a specific attribute. Moreover, different unit sets
that participate in an atomic formula may have different
selection probabilities (σ) in being chosen to participate in a
profile. The unit sets that participate in the creation of an
atomic formula, along with an indicatory value for the σ of
each unit are summarised in Table III. Notice that these
values may vary depending on the properties of the
continuous query database to be generated.

In general, a creation of an atomic query is a 3-step
process that can be described as follows:
1. Choose the number of units (or the size of an atomic

query) S. This value is drawn uniformly from [1,Smax],
where Smax is the maximum number of units in an atomic
query. Smax is defined to be 2 for atomic formulas of
author and title attributes, whereas it is set to 3 for the
abstract and body attributes. This differentiation in Smax

is due to the different number of words contained
typically in the different attributes of a document.

2. Taking into account the units that may participate in a
specific atomic formula, we pick S units from these sets
according to the selection probabilities summarised in
Table III.

3. Having chosen these units, we take their conjunction to
create the atomic formula.

Thus, an atomic formula for the title attribute may be:
title ⊒ (rbf ≺[0,6] networks) ∧ java

which contains two units (remember that this is the
maximum number of units allowed for the title attribute):
unit (rbf ≺[0,6] networks) drawn from unit set PFk and unit
java drawn from unit set NS. Modifiying σ in the different
unit sets results in controlling how often units of a specific
set will appear in atomic queries of the corresponding
attribute. Thus, other possible atomic formulas could be:

title ⊒ implementation ∧ (dynamic ≺[0,0] functions)
title ⊒ real ≺[0,0] world ≺[0,0] application

title ⊒ algorithm ∧ implementation
Atomic queries for abstract and body attributes are

created in a similar way. The only differentiation between
atomic formulas of different attributes is the value of σ for
the unit sets and the maximum atomic query sizes.

At the same time creating atomic queries for attribute
author is somewhat different since it may contain either one
unit or a conjunction of two units from AS. Note that for the
case of an atomic query for the author attribute using more
words in conjunction would make the profile very specific,
thus not suitable for an information alert setting. Note also,
that proximity operations may also be used in these atomic
queries (e.g., John ≺[0,0] Brown). However, the authors’ first
names were not available from the corpus documents so this
option was not adopted. Some examples of such atomic
queries are author ⊒ Brown or author ⊒ Smith ∧ Johnson.

Finally, to decide which atomic queries will be
introduced as conjuncts in each continuous query we assign
selection probabilities to each one of the four types of atomic
queries and according to this selection probabilities we
include or exclude atomic queries. Each type of atomic query
is (or is not) included in a profile independently of the rest of
the types. For example, for a specific profile generation
scenario if the selection probability of all four types of
atomic queries is 85% then atomic queries for the author
attribute will appear in the 85% of the profiles in the profile
database. The same holds for the rest of the attribute types
(title, abstract and body). At this point we should stress that
in this way all possible combinations of atomic queries may
appear in the generated continuous queries, and that a simple
probability calculation allows us to control or exclude certain
types of atomic queries.

VI. CONCLUSIONS AND FUTURE WORK
In this work we presented a methodology for creating

realistic artificial continuous query databases from any real-
life (attribute-tagged) corpus, and as a proof-of-concept we
applied it to the NN corpus. The robustness of the proposed
methodology is highlighted not only by the publications in

top-class venues that utilize it (e.g., [11, 12, 16, 18]), but also
by the different document corpora it was applied on (TREC
.gov, TREC ClueWeb09, OHSUMED, NN, and others). Upon
publication of this work we plan to publicly release all code
(i.e., for corpus preprocessing and query generation) and the
proof-of-concept NN corpus, in an effort to assist researchers
in creating their own benchmarks for the evaluation of
filtering tasks and give visibility to the hosting venue.

Finally, interesting directions for future work include the
design and implementation of modules for creating realistic
vector space and semi-structured continuous queries.

REFERENCES
[1] M. Altinel and M.J. Franklin. Efficient filtering of XML documents

for selective dissemination of information. In VLDB, 2000.
[2] Y. An, J. Janssen, and E. Milios. Characterizing and Mining the

Citation Graph of the Computer Science Literature. Technical Report
CS-2001-02, Dalhousie University, Canada, 26 September 2001.

[3] Eric Brill. A simple rule-based part-of-speech tagger. In ANLP, 1992.
[4] C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate

Rewriting for Translating Boolean Queries in a Heterogeneous
Information System. ACM TODS, 17(1):1–39, 1999.

[5] R. Cover. The SGML/XML Web Page.
http://www.oasis-open.org/cover/sgml-xml.html

[6] Y. Diao, M. Altinel, M.J. Franklin, H. Zhang, and P. Fischer. Path
Sharing and Predicate Evaluation for High-Performance XML
Filtering. ACM TODS, 2003.

[7] A.L. Diaz and D. Lovell. XML Generator.
http://www.alphaworks.ibm.com/tech/xmlgenerator

[8] L. Dong. Automatic term extraction and similarity assessment in a
domain specific document corpus. MSc thesis, 2002.

[9] K. Frantzi, S. Ananiadou, and H. Mima. Automatic recognition of
multi-word terms:the C-value/NC-value method. IJDL, 5(2), 2000.

[10] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML
Streams with Deterministic Automata. In ICDT, 2003.

[11] M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou.
Information Alert in Distributed Digital Libraries: The Models,
Languages and Architecture of DIAS. In ECDL, 2002.

[12] L. Zervakis, C. Tryfonopoulos, S. Skiadopoulos, and M. Koubarakis.
Query Reorganisation Algorithms for Efficient Boolean Information
Filtering. IEEE TKDE 29(2): 418-432, 2017.

[13] S. Lawrence, C. Lee Giles, and K. Bollacker. Digital libraries and
autonomous citation indexing. IEEE Computer, 32(6):67–71, 1999.

[14] ResearchIndex. The NEC Research Institute scientific literature
digital library. http://www.researchindex.org

[15] I. Soboroff and S.E. Robertson. Building a filtering test collection for
TREC 2002. In ACM SIGIR, 2003.

[16] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas. Filtering
Algorithms for Information Retrieval Models with Named Attributes
and Proximity Operators. In ACM SIGIR, 2004.

[17] 17. T.W. Yan and H. Garcia-Molina. Index structures for selective
dissemination of information under the boolean model. ACM TODS,
19(2):332–364, 1994.

[18] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas. Information
filtering and query indexing for an information retrieval model. ACM
TOIS, 2009.

[19] W. Rao, L. Chen, S. Chen, and S. Tarkoma. Evaluating continuous
top-k queries over document streams. WWW, 2014.

[20] M. Sadoghi and H. Jacobsen. Analysis and optimization for boolean
expression indexing. ACM TODS, 2013.

[21] http://dublincore.org/documents/dcmi-terms/

