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ABSTRACT
In this paper we investigate methods that allow us to identify the
publishing behavior of individual nodes in large-scale distributed
information filtering systems. The work presented here is based
on our system MAPS (Minerva Approximate Publish/Subscribe), a
novel approach to support approximate information filtering func-
tionality in a peer-to-peer environment. In MAPS, a user subscribes
to and monitors only carefully selected publisher nodes, and re-
ceives notifications from these information sources only. In this
way, document-granularity dissemination is known from exact in-
formation filtering approaches is avoided, and the system is able to
support very high publication rates. However this scalability bene-
fits come at the cost of lower recall. To improve node selection and
thus recall, in previous work we have proposed a ranking method
that predicts nodes’ publishing behavior based on time-series anal-
ysis techniques. In this work, we focus on the prediction parameters
used by these techniques and show how their choice can affect the
overall recall achieved. Additionally, we demonstrate how these
parameters can be computed in a per node fashion, using only lo-
cal information available at each node. Our method incurs no extra
message traffic in the network and experiments show improvements
in both prediction error and recall. When compared to an oracle op-
ponent and an opponent with global information, our method per-
forms almost as good, by resorting only to local node computa-
tions.

1. INTRODUCTION
Today, the Web provides enormous amounts of information to

humans but smart techniques are required to stay informed and
to handle the information avalanche.Information retrieval(IR) or
one-time querying is used to search for content matching an one-
time query issued by the user. This dynamic setting with new con-
tent becoming available in a continuous manner requires coping
with scenarios that include subscribing to information and wait-
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ing to be notified for future content that matches this subscription.
Information filtering (IF), also referred to aspublish/subscribeor
continuous queryingor information push, complements one-time
searching, since users are able to subscribe to information sources
and be notified whenever new documents of interest are published.
This need for push technologies is also stressed by the deployment
of new tools such as Google Alert or the QSR system [20].

In an information filtering scenario, a user issues asubscription
(or continuous query, or profile) to the system, and receivesnotifi-
cationswhenever certain events of interest take place (e.g., when a
paper on P2P systems becomes available)1.

In this paper we focus on our system MAPS (Minerva Approx-
imate Publish/Subscribe) [3, 17] and show how to improve recall
by tailoring prediction parameters in a per-node fashion. In MAPS,
a user subscribes with a continuous query and monitors the most
interesting information sources on the network. Only these se-
lected sources store the user’s query, and as a consequence, only
documents published from these sources are forwarded to the user.
Thus, the system is responsible for managing the users’ queries,
discovering new potential sources and sending queries to better
or newly available sources. Contrary to most pub/sub approaches
taken so far [13, 15], MAPS relaxes the assumption of potentially
delivering notifications from every information producer and only
monitors selected sources that are likely to publish documents rel-
evant to the user’s interests in the future.

1.1 Contribution
In MAPS the double exponential smoothing (DES) technique is

used to predict the future publishing behavior of publisher nodes,
and this prediction is used to calculate peer scores that rank peers
according to the likelihood to publish in the future documents of
interest to the user. Besides this property, DES assigns exponen-
tially decreasing weights to older values and is able to recognize
trends in a series of values. To achieve this DES utilises two pa-
rameters,η andγ, that are used to tune the prediction formula to
follow a more aggressive or passive prediction of values. In this
work, we investigate the most appropriate parameter choices for
different value behaviors and argue that one global combination for
η andγ is not sufficient to recognize individual publishing behav-
iors, since it leads to significantly lower recall. For this reason we
introduce ourselective methodto compute the best parameter set-
ting per node. This results in the reduction of prediction error and

1The terms query, subscription, profile, and continuous query will
be used interchangeably.



significant recall improvements. Our method is scalable, since it
does not incur additional communication costs between nodes, but
rather utilises information that is available locally at each node. In
our experimental evaluation we compare our method against two
opponents: (i) an oracle that always predicts the monitored values
accurately and (ii) an opponent selecting parameter combinations
that require a global view of the network, which is highly ineffi-
cient for large-scale approaches. Our selective approach manages
to perform almost as good as the oracle and centralised opponents,
but without incurring any extra communication cost.

1.2 Outline
The rest of paper is organized as follows. Section 2 positions

our work with respect to related work. The MAPS architecture
and protocols to achieve approximate publish/subscribe are intro-
duced in Section 3. Section 4 presents our node selection method,
while Section 5 presents the double exponential smoothing predic-
tion technique. Our experimental evaluation is presented in Section
6. Finally Section 7 concludes the paper.

2. RELATED WORK
P2P information filtering is a new field that has grown out of

the efforts and results of various communities including informa-
tion retrieval, databases, and distributed systems. In this section
we review early work in the area of information filtering, present
some P2P IF approaches, and compare our approximate filtering
approach with the existing exact filtering systems in P2P systems.

First approaches to pub/sub by IR researchers focused mainly on
appropriate representations of user interests [10] and on improv-
ing filtering effectiveness [8]. In [1] the authors address perfor-
mance, aiming at scaling up to large numbers of filtering tasks in a
centralized environment. They assume a server that receives doc-
uments at a high rate, and propose algorithms that support vector
space queries by improving the algorithm SQI of [18]. InRoute [4]
was another influential system based on inference networks with
emphasis on filtering efficiency. There, documents and query net-
works are created, and belief propagation techniques are used to
filter incoming documents. Other works in the area mainly focus
on adaptive filtering [5, 21] and how dissemination thresholds of
vector space queries can be adapted based on past documents.

New approaches to information filtering that use a DHT as the
routing infrastructure to build filtering functionality for IR-based
models and languages have recently been introduced with the pro-
liferation of P2P systems. DHTrie [15] is a system that extends the
Chord protocol to achieve exact information filtering functionality.
It uses the Chord DHT [12] to create a global query index, and ap-
plies document-granularity dissemination to achieve the recall of
a centralized system at low message costs. In the same spirit, Li-
braRing [14] presents a framework to provide information retrieval
and filtering services for future digital libraries in a super-peer envi-
ronment. Similarly, pFilter [13] uses a hierarchical extension of the
CAN DHT [11] to store user queries and relies on multi-cast trees
to notify subscribers. Again the DHT serves as a distributed index,
and documents are multi-casted to reach stored subscriptions.

All the distributed information filtering systems described above
involve some sort of node selection techniques to decide where to
index a user query. This selection is critical, since future publi-
cations that may match this query should also be able to reach
the node storing it to trigger a notification in case of a match.
Query placement, as implemented in exact information filtering ap-
proaches such as [13, 15] is deterministic, and depends upon the
terms contained in the query and the hash function provided by
the DHT. These query placement protocols lead to filtering effec-

tiveness that is exactly the same as that of a centralized system.
Compared to a centralized approach, [13, 15] exhibit scalability,
fault tolerance, and load balancing at the expense of high message
traffic at publication time.

In our approach, only the most specialized and promising nodes
store a user query and are thus monitored. Publications produced
by each node are only matched against its local query database
since, for scalability reasons, no publication forwarding is used.
Thus, in the case of approximate filtering, the recall achieved is
lower than that of exact filtering, but document-granularity dissem-
ination to the network is avoided. This improves scalability and
system efficiency since, in a typical pub/sub setting, the rate of pub-
lications is expected to be high. In the case of exact matching, the
network cost (and thus system performance) is directly dependent
on this rate, whereas in our approach it only triggers more local
node computations. An interesting application scenario for approx-
imate information retrieval and filtering is presented in [22], where
the proposed MinervaDL architecture unifies both functionalities
in a digital library setting.

3. THE MAPS ARCHITECTURE
We present the system architecture of MAPS [17, 3] based on the

P2P search engine Minerva [9]. The main architectural components
of MAPS are shown in Figure 1. Each node in the MAPS network
implements thedirectory serviceand optionally one or two of the
other services, i.e., thepublication serviceand thesubscription ser-
vice.

P2P Network

Directory Service

Publication Service Subscription Service

MAPS Node

Content Provider / Content Publisher Subscriber / User with Requests

Figure 1: MAPS architecture with directory, subscription, and
publication service.

The directory service is used to enable the node to participate
in the distributed P2P network and maintains IR statistics in a dis-
tributed manner. A node implementing the publication service, e.g.,
a digital library or some other content provider, is able to make
new content available to the rest of the network. Finally, using the
subscription service, nodes send continuous queries to the MAPS
network. Further, the subscription service service is also respon-
sible to select the most appropriate information sources to receive
the continuous query.

3.1 Directory Service
All nodes participating in MAPS have to implement the directory

service. This service provides a DHT-based routing infrastructure
and is responsible for the maintenance of a distributed index storing
statistics for all terms in the network. This index forms a concep-
tually global, but physically distributed directory, which is layered
on top of a Chord-style DHT, and manages aggregated information
about each node’s local knowledge in compact form as described in



the Minerva search engine architecture [2]. The DHT partitions the
term space, such that every node is responsible for the statistics of a
randomized subset of terms within the global directory. To keep IR
statistics up-to-date, each node distributes per-term summaries of
its local index along with contact information to the global direc-
tory. For efficiency reasons, these messages can be piggy-backed
to DHT maintenance messages and batching is used.

Notice that the directory service does not necessarily have to use
Chord or any other DHT; our architecture allows for the usage of
any type of P2P network (structured or unstructured), given that
the necessary information (i.e., the per-node IR statistics) is made
available through appropriate protocols to the rest of the services.

3.2 Subscription Service
Nodes that want to monitor specific information producers im-

plement the subscription service of MAPS which is critical to the
recall that will be achieved at filtering time, since it is responsi-
ble for selecting the appropriate nodes that will index the query.
The node selection procedure uses the MAPS directory service to
discover and retrieve node statistics that will guide query index-
ing. Once these statistics are retrieved, a ranking of the potential
sources is performed and the user query is sent to thetop-k ranked
publisher nodes. Since only these publishers will be monitored for
new publications, the subscriber will only get notifications from the
selected nodes. Query repositioning is necessary to achieve higher
recall because the publication behavior of nodes may not be con-
sistent over time.

Publications and subscriptions could be expressed using any ap-
propriate IR model (e.g., Boolean, VSM or LSI). For simplicity,
we assume that published documents and subscriptions are sets of
words, and we use the Boolean model to decide when a document
matches a subscription.

We assume that a subscriber node wants to subscribe with a
multi-term querywith k distinct query terms. To determine which
nodes in the network are promising candidates to satisfy the contin-
uous query with appropriate documents published in the future, the
subscriber node collects appropriate statistics from the directory.
To do so, the subscriber contacts all directory nodes responsible for
the query terms requesting the appropriate statistics. This way, the
querying node collects all node lists for the query terms and utilizes
a scoring function to compute a node score for each publisher node
with respect to the requested continuous query. The scoring func-
tion will be described in Section 4. Based on the score calculated
for each node, a ranking of nodes is determined and the highest
ranked nodes are candidates for storing the query. The querying
node sends the query to these most promising publishers which
store the continuous query using a local query indexing mechanism
such as BestFitTrie [16] or SQI [19].

Notice that only publications occurringin those nodeswill be
matched against the query and create appropriate notifications. All
nodes publishing relevant documents, but not indexing the query,
will not produce a notification, simply because they are not aware
of the information demand. Since only selected nodes are moni-
tored for publications, the node ranking function becomes a critical
component, which will determine the final recall achieved.

Filtering and node selection are dynamic processes, therefore pe-
riodic query repositioning is necessary to adapt to changes in pub-
lisher behavior. The subscriber re-executes the subscription pro-
tocol, acquires new node statistics, computes a new ranking, and
modifies the set of nodes indexing the query.

3.3 Publication Service
In MAPS, the publication service can be used by nodes that want

to expose their content to the network. A publisher node utilizes
the directory service to update statistics about the terms contained
in the documents it publishes. Besides this, the nodes are also re-
sponsible for storing continuous queries submitted by subscribers
and matching them against their own publications. All continuous
queries that match a publication produce appropriate notifications
to interested subscribers.

Whenever a document is published by a publisher node, it is
matched against the local query database to determine which sub-
scribers should be notified. Then, for each one of these nodes, the
publisher constructs a notification message and sends it to the sub-
scriber.

4. NODE SELECTION
To select which publisher nodes should be monitored, the sub-

scription service of MAPS described in Section 3.2 utilises a scor-
ing function to rank publisher nodes. In our approach the querying
node computes a node score based on a combination ofresource
selectionandnode behavior predictionformulas as shown by the
equation below:

score(P, q) = α · sel(P, q) + (1− α) · pred(P, q)

In this equation,q is a query,P is a publisher node, andsel(P, q)
andpred(P, q) are scoring functions based on resource selection
and prediction methods respectively that assign a score to a nodeP
with respect to a queryq. The scoring functionscore(P, q) decides
the final score of a nodeP with respect toq. The tunable parame-
terα affects the balance between authorities (highsel(P, q) scores)
and nodes with potential to publish matching documents in the fu-
ture (highpred(P, q) scores). Based on these scores calculated for
each node, a ranking of nodes is determined, andq is forwarded to
the highest ranked nodes.

4.1 Resource Selection
The functionsel(P, q) is calculated using standard resource se-

lection algorithms from the IR literature (such as simple tf-idf based
methods, CORI [6], language models, etc.). Usingsel(P, q) we
can identify authorities specialized in a topic. In this paper we dis-
regard resource selection in the node selection procedure. In [3, 22,
17] we have shown that resource selection can improve node selec-
tion in several publishing scenarios but the focus of this work is to
improve node behavior prediction such that we only consider ap-
propriate scenarios where node behavior prediction dominates the
scoring function, e.g., nodes only publish documents correspond-
ing to their main interest but with different publishing rates. Disre-
garding resource selection means that we useα = 0.0 in our basic
scoring function above.

4.2 Node Behavior Prediction
The functionpred(P, q) returns a score for a publisher node that

represents its likelihood of publishing documents that are relevant
to queryq in the future. For all query terms, we predict the number
of documents a publisher node will publish that contain the term.
Therefore, MAPS predicts the value for the document frequency
(denoted asdf∗P,t), and uses the difference (denoted asδ(df∗P,t))
between this predicted and the last received value obtained from
the directory to calculate the score forP (the symbolδ signifies
difference). Valueδ(df∗P,t) reflects the number of relevant docu-
ments thatP will publish in the next time-unit. All statistical input
needed for our prediction mechanism is obtained by the querying
node by regularly retrieving the underlying values from the direc-



tory. The predicted behavior for nodeP can now be quantified as
follows:

pred(P, q) =
∑
t∈q

log
(
δ(df∗P,t) + 1

)
The addition of 1 in thelog formula is used to yield positive

predictions and to avoidlog(0).

5. DOUBLE EXPONENTIAL SMOOTHING
In this section we introduce our prediction technique that is based

on double exponential smoothing. Initially we give a short intro-
duction to time-series analysis and explain why double exponential
smoothing is our technique of choice. After that, we investigate this
approach in detail by considering different value behaviors. Further
we introduce ourselective methodto automatically adapt the dou-
ble exponential smoothing technique to the observed data series.
We present an algorithm for our approach that does not need any
additional communication cost.

5.1 Time-Series Analysis
We consider time-series of IR statistics to predict node behavior,

thus making a rich repository of techniques from time-series analy-
sis [7] applicable to our problem. These techniques are used to pre-
dict future time-series values based on past observations and all the
techniques differ in their assumptions about the internal structure
of the time-series (e.g., whether it exhibits a trend or seasonality).

Next, we give a short overview of the most important techniques
that we considered in this area, and explain why we chosedouble
exponential smoothingfor our setting. A more detailed overview
can be found in [7]. In the following, let the valuesx1, . . . , xn−1

denote the observed time-series values and letx∗n be the predicted
value.

5.1.1 Moving Average Techniques
Moving averages are a prominent group of time-series prediction

techniques. Single moving average is the simplest technique that
uses the mean of thek most recent observations to predict the next
time-series value, i.e.,

x∗n = (xn−k, . . . , xn−1)/k .

Two general objections about moving average techniques are that
they cannot cope well with trends observed in the data and assign
equal weights to past observations. Both weaknesses are critical
in our scenario. The considered IR statistics exhibit trends, for in-
stance, when nodes gradually change their thematic focus. In our
setting, it is also reasonable to put emphasis on a node’s recent be-
havior and thus to assign higher weight to recent observations.

5.1.2 Exponential Smoothing Techniques
The second group of prediction techniques considered here, ad-

dress both issues.Single exponential smoothingis similar to the
moving average technique presented above but takes into account
all past observations (in contrast to onlyk) with exponentially de-
caying weights. The smoothed valueSn that is used as a predictor
for x∗n is recursively defined as

Sn = η · xn−1 + (1− η) · Sn−1 .

The parametersη is used to control the speed at which the older
observations are dampened. Whenη is close to 1, dampening is
quick and whenη is close to 0, dampening is slow.

Similar to the moving average techniques, single exponential
smoothing cannot cope with trends in the observed data. Therefore,
we usedouble exponential smoothingthat eliminates this weakness
by taking into account trends in the observed data. This technique
maintains two smoothed valuesLn andTn representing thelevel
and thetrend respectively. A predictor for the next time-series
value is obtained as follows:

x∗n = Ln + Tn

Ln = η · xn−1 + (1− η) · (Ln−1 + Tn−1)
Tn = γ · (Ln − Ln−1) + (1− γ) · Tn−1

The parameterγ is introduced to dampen the effect of trend over
time, similar toη. For completeness, we mention that there is also
triple exponential smoothing that, in addition, handles seasonality
in the observed data. We argue that many many queries are ex-
pected to be short-lived such that no seasonality will be observed
in the IR statistics time-series. For an application with many long-
lasting queries, triple-exponential smoothing could be used to take
seasonality also into account.

5.2 Analysing Different Behaviors
To get a better understanding of the exponential smoothing tech-

niques, we investigate how the double exponential smoothing is
able to predict the correct future values. For this, we assume eight
different data series, each simulating a different publishing behav-
ior. Table 1 shows all behaviors. All values range from0 to 600,
and the series length is 10. Table 1 also shows how the i-th value
of the series is computed.

LOG INC log(i) ∗ (600/log(10))
0, 180, 286, ..., 541, 572, 600

LOG DEC log(10− i + 1) ∗ (600/log(10))
600, 572, 541, ..., 286, 180, 0

LIN INC (600/10) ∗ i
60, 120, 180, ..., 480, 540, 600

LIN DEC (600/10) ∗ (10− i + 1)
600, 540, 480, ..., 180, 120, 60

QUAD INC (i2) ∗ (6))
6, 24, 54, ..., 384, 486, 600

QUAD DEC ((10− i + 1)2) ∗ (6))
600, 486, 384, ..., 54, 24, 6

EXP INC 600/(10− i + 1)
60, 66, 75, ..., 200, 300, 600

EXP DEC 600/i
600, 300, 200, ..., 75, 66, 60

Table 1: Different Data Series.

Now, we investigate the influence of the two double exponential
smoothing parametersη andγ by looking at all possible combina-
tions from0 to 1 in steps of0.1 such that there are 121 different
parameter combinations. For each combination, we use the first
four data values of the different behaviors as bootstrapping values,
and we compute the average prediction error per round between
the real data value and the predicted value. Figure 2 shows for each
behavior the corresponding prediction errors where the chart is or-
dered by the average prediction value per parameter combination
in descending order. Consider that parameter combinations are not
in numerical order.

As a result, Figure 2 shows that there is a high variation of
prediction errors depending on the choice of the parameter com-
bination of η and γ. For different value pairs, double exponen-
tial smoothing presents various best fitting settings but there is no
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Figure 2: Prediction errors (y-axis) with double exponential
smoothing using for different data series with all parameter
combination (x-axis).

ideal parameter combination. The best combination for one behav-
ior does not necessarily result in satisfying predictions for another
one. We conclude that aglobal choicefor η andγ that is used to
predict all node behaviors for all active continuous queries is not
ideal. We have to adapt the parameter combination to the observed
value behavior and this will lead to our selective method we will
explain next.

5.3 The Selective Method
In the previous section we have seen that there exists no single

setting for parametersη andγ to effectively model all different pub-
lishing behaviors. Therefore, we introduce our selective method to
adapt the parameter setting to the given scenario. Our approach
works as follows:

Let the valuesx1, . . . , xn−1 denote the observed time-series val-
ues and letx∗n be the predicted value. The selective method uses
the valuesx1, . . . , xn−2 to predict the already known last observed
valuexn−1. Letx∗n−1,η,γ denote the predicted value for all combi-
nations ofη andγ. Now, we select the parameter combination with
the smallest error concerning the real observed value ofxn−1. If
there are more than one combination with smallest error, we pick
the one with the smallest distance toη = 0.5 andγ = 0.5. The
selected parameters are used to predict the next future valuex∗n.

The algorithm 1 explains the selective method with input val-
ues{x1, . . . , xn−1} and the functionDESη,γ to predict the next
value. The algorithm outputs the selected parameter values forη
andγ, as well as the prediction valuex∗n as the result ofDESη,γ .
Notice that we have simplified the algorithm such that the case that
several parameter combinations have the smallest error is not con-
sidered. Moreover, the observed time-series needs at least two val-
ues. If we have only observed one or no value, we can not apply
algorithm 1.

The selective method means that we always use the most appro-
priate parameter setting concerning the last observed value. In this
way, we adapt double exponential smoothing better to the given
data series. Obviously, we need at least four observed values to
apply this method because three values are indispensable to prop-
erly predict the last observed value. Next, to analyse our approach,
we implemented the selective method and computed the prediction
errors for the various behaviors in Section 5.2.

Figure 3 compares the selective method with the minimum pre-
diction error per round (MIN ), the average prediction error (aver-
age), and the prediction errors for parameter combinationη = 0.5

Algorithm 1 Selective Method

1: input: value{x1, . . . , xn−1}, functionDESη,γ

2: output: parameterη, γ and prediction valuex∗n
3: errormin := ∞
4: for e = 0.0 to 1.0 do
5: for g = 0.0 to 1.0 do
6: x∗n−1,η,γ := DESe,g({x1, . . . , xn−2})
7: error :=

∣∣x∗n−1,η,γ − xn−1

∣∣
8: if error ≤ errormin then
9: errormin := error

10: η := e
11: γ := g
12: end if
13: end for
14: end for
15: x∗n := DESη,γ({x1, . . . , xn−1})
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Figure 3: Comparing our selective method with a global pa-
rameter setting considering different value behaviors.

andγ = 0.5 (0.5 / 0.5). Since the maximum prediction error is very
high it is not plotted in the graph to allow for the better illustration
of the other methods.

As we can see, the selective method is in all behaviors almost
as good as theMIN that means that our approach selects the appro-
priate parameters. The combination0.5 / 0.5does not really result
satisfying error rates although this could be an obvious choice of
parameters. As expected,AVERAGE even yields to prediction er-
rors worst than0.5 / 0.5. Looking at the different behaviors, the se-
lective method accurately predicts the real values for theLIN INC
andLIN DEC behaviors.

In addition, Figure 3 shows the average over all eight behaviors.
Here, our selective method performs even better thanMIN . This
means, the average prediction error over all behaviors using our se-
lective method is lower than the best global combination for all be-
haviors. This is caused by the fact that for different behaviors other
parameter combinations yield to the best possible prediction. If we
combine the errors of the selective method, we almost reach the
individual best combination and this is still better than the global
MIN . In the next Section, we will evaluate our selective method in
terms of usability in the MAPS system.

5.4 Alternative Approach
Here, we shortly describe an alternative approach to improve the

prediction of double exponential smoothing. Usually, to select the
most appropriate values for the parametersη and γ, each node



would investigate the parameter influence using a test collection
with a centralized computation, and this training phase would esti-
mate the parameters. Obviously, each node would have one fixed
combination for all publisher nodes. In this case, MAPS would not
be able to recognize the individual publishing behaviors of nodes.
Therefore, this training approach helps selecting a local parameter
combination for each querying node but is not as flexible as the
selective method which is able to individually recognize the pub-
lishing behavior of every node that is a candidate to monitor.

All alternative ways to select parameter values forη andγ suf-
fer from the the problem of selecting the appropriate training set.
Even if we consider distributed approaches, the wrong choice of
text collections can result in unsatisfying results.

6. EXPERIMENTAL EVALUATION
This section evaluates our selective method implemented for in

the Minerva Approximate Publish/Subscribe system. We will ex-
plain the experimental setup, measurements, and data and we will
present the experimental results using different node publishing
scenarios.

6.1 Setup
In all experiments the following steps are executed. The net-

work is set up and the underlying DHT is initiated. Next, we have
four bootstrappingrounds where the subscriber nodes collect the
posted directory statistics to the requested queries. After this boot-
strapping phase, in the six subsequent rounds the querying nodes
subscribe to selected publishers, to reach a total of ten rounds. Dur-
ing these six rounds that represent the monitoring phase we will say
that a publisher node ismonitoredby a subscriber, when the sub-
scriber’s continuous query is stored in the publishers local query
database. The monitored nodes notify the subscriber for all publi-
cations matching the stored continuous query.

All nodes in the network publish documents during both phases
and at certain intervals (or rounds), the continuous queries are repo-
sitioned. The intervals and the number of published documents per
round depend on the individual node behavior that we will inspect
in Section 6.3. At the end of each round of the subscription phase,
the subscriber nodes rank publishers using the formula described in
Section 4 and reposition their queries accordingly.

6.2 Measurements
To evaluate the retrieval effectiveness, we userecall as the ratio

of the total number of notifications received by subscribers to the
total number of published documents matching subscriptions. We
are interested in the average recall over all rounds of the subscrip-
tion phase.

Similar to the publishing behaviors shown previously in the anal-
ysis of double exponential smoothing, we compare the recall of
our selective method with the minimum and maximum recall that
would be possible if we used a single pair of parameter values for
η andγ for the all the nodes in the network. In addition we use
an oracle node selection approach (referred to asORACLE) such
that it always predicts the accurate IR statistics. The recall ofORA-
CLE represents the highest possible recall that could be achieved by
MAPS. The random node selection approach is implemented only
for comparison purposes and demonstrates the performance of a
baseline approach.

Besides recall, we also analyse theprediction quality. We mea-
sure the average prediction error per term, node and round. In the
graphs our method is compared only to the minimum prediction er-
ror opponent (MIN ) since the maximum prediction error (MAX ) is
very high. Notice that, similarly to the case of recall measurements,

the MIN andMAX opponents refer to globally selecting the set of
parameters that would minimize or maximize the prediction error.
In Section 6.3 we investigate the different node publishing behav-
iors in terms of recall and average prediction error. The two other
approaches are not considered becauserandomdoes not utilise a
prediction-based node selection andORACLE has by definition a
prediction error of zero.

6.3 Data
The document collection that was used for the experiments con-

tains more than 2 million documents from a focused Web crawl.
All documents are categorised in one of ten categories:Music, Fi-
nance, Arts, Sports, Natural Science, Health, Movies, Travel, Pol-
itics, andNature. The category size ranges from 68,000 to more
than 325,000 documents. There are more than 500,000 different
terms (stop words are not considered) and we use the documents
from different categories to categorize our node set. In all experi-
ments, the network consists of 100 nodes with 10 nodes per cate-
gory.

Using the document collection, we extracted seven strong rep-
resentative single-term queries:music, arts, sports, travel, hotel,
offer, city. Single-term queries have the advantage that there is a
direct dependency between correctly predicting values and recall.
In the case of multi-term queries, we can have the effect that a node
publishes a lot of documents containing the single terms but only a
few containing the whole query term set. For simplicity, we have
only considered single-term queries in this experimental setting.
Considering multi-term queries would result in interfering with the
prediction parameters and would not let us isolate and study indi-
vidual publishing behaviors. There are approaches in the literature
[9] on how to overcome this restriction in a search environment, and
in future work we plan to adapt these approaches to our setting.

6.4 Results
After explaining the setup and the dataset of our experimental

evaluation, we investigate the recall and prediction error results
for different node behaviors. In the set of experiments shown in
this section we utilise to the publishing behaviors listed in 1. This
means that a node following theLOG INC behavior publishes in
the first round no documents and in the last of the ten rounds 600
documents. In addition, we consider a constant publishing behavior
where a node constantly publishes 300 documents per round during
both publishing phases.

To investigate the effectiveness of our selective method, we an-
alyze three different scenarios. In the first scenario, all mentioned
behaviors are used such that some nodes have a constant publishing
behavior and others increase or decrease their publication accord-
ingly. The second scenario looks at the results when all nodes in
the network have anEXP INC behavior and in the last scenario all
nodes follow aQUAD DEC publishing behavior.

The graphs for all scenarios illustrate the performance of the dif-
ferent opponents. TheORACLE opponent shows the maximum re-
call MAPS can reach by accurately predicting the IR statistics. Nat-
urally, the prediction error for theORACLE opponent is zero. The
random node selection shows the results when publisher nodes are
selected completely at random. In the random setting, the predic-
tion error is not of interest, because prediction is completely ig-
nored. TheMIN and MAX opponents present the best and worst
recall MAPS can get with a global setting of parameters across all
nodes. Similarly to Section 5.3, in the graphs we only consider
theMIN prediction error to better illustrate the differences between
the different opponents. The selective method shows the recall and
prediction error of our local parameter computation that is used to



adapt the double exponential smoothing parameters.

6.4.1 Mixed Publishing Scenario
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Figure 4: Recall depending on the number of monitored nodes
in the mixed publishing scenario.

Over the ten rounds of this scenario, all 100 nodes publish to-
gether 285,960 documents following the different publishing be-
haviors. Figure 4 shows the recall depending on the percentage
of monitored nodes in the network. As it can be seen, the selec-
tive method performs marginally better than theMAX opponent and
slightly worse than theORACLE, whereasMIN and random achieve
significantly lower recall. This means that the correct choice for
the parameters can greatly affect the recall level. Notice that in
this scenario the selective method we propose not only performs
slightly better than the best global parameter choice forη andγ,
but also this performance is not greatly affected by the percentage
of monitored publishers. This shows that a local auto-adjustment
of prediction parameters is possible and results in recall similar to
approaches that require global knowledge to compute these param-
eters. Thus, our method is able to achieve recall of 60% by moni-
toring only 20% of all publisher nodes in the network.

Additionally, Figure 5 shows the prediction error per term, node,
and round. The prediction error of our selective method is about
as good as the minimum prediction error computed using a global
parameter setting. The error varies from 13 to 20 on average.
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Figure 5: Average prediction error of MIN and the selective
method per term, node, and round in the mixed publishing sce-
nario.

6.4.2 EXPINC Publishing Scenario
Figures 6 and 7 show the results of our second scenario where

all 100 nodes follow aEXP INC publishing behavior. The total
number of published documents amounts to 175,600. In this sce-
nario, recall is almost independent of the parameter choice. All ap-
proaches (MIN , MAX , ORACLE, and selective) perform almost the
same. Even the prediction quality of the selective method andMIN

are similar and vary from about 22 to 35 per term, round, and node.
The prediction error forMAX is still very high and not included in
Figure 7, but there is no influence to the recall. This is caused by
the fact that all nodes follow the same behavior.
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Figure 6: Recall depending on the number of monitored nodes
in the EXP INC publishing scenario.
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Figure 7: Average prediction error of MIN and the selective
method per term, node, and round in theEXP INC publishing
scenario.

6.4.3 QUADDEC Publishing Scenario
The last scenario considers the case that all nodes publish docu-

ments using aQUAD DEC behavior. The overall number of pub-
lished documents is 231,000. Here, our selective method performs
much better thanMIN in terms of recall but does not reach the level
of MAX . This result corresponds to the observations of Section 5.3.
The same result holds for the prediction error where the selective
method causes higher errors than the best global parameter choice.
Of course, the selective method still performs much better than the
worst parameter choice forη andγ.
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Figure 8: Recall depending on the number of monitored nodes
in the QUAD DEC publishing scenario.
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Figure 9: Average prediction error of MIN and the selective
method per term, node, and round in theQUAD DEC publish-
ing scenario.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the system architecture of MAPS

and a new node selection technique based on time-series analysis
to support approximate IF in a P2P environment. Our main focus
was to improve the prediction process of IR statistics. We explained
how double exponential smoothing can be effectively used as a pre-
diction technique, and investigated the influence of the parameter
setting in recall. We introduced ourselective methodthat depends
on past observations and selects an appropriate parameter setting
per node by imposing no extra cost in the network.

Our experimental evaluation demonstrated efficiency and scala-
bility of our approach in many diverse scenarios, and it showed that
our selective method is a good approach to individually adapt our
prediction technique to the per-node publishing behaviors. In some
scenarios, the selective method even outperforms the best possi-
ble choice for a global parameter setting such that recall quality of
MAPS improves. Our selective method does not need any addi-
tional communication over the network such that only local com-
putations are necessary.

As future work we plan to consider term correlations as in [9]
in order to extend the statistics stored in the directory and improve
result quality. Other interesting directions involve investigating the
query repositioning strategy to reduce message costs in directory
updates.
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