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Abstract. In this work, we present an approach for automatically iden-
tifying subsumption relations between web queries, a difficult (due to
feature sparseness and ambiguity), but extremely useful task for many
applications, ranging from user profiling and semantic enhancement of
query logs, to traffic minimisation in distributed search environments
(e.g., federations of digital libraries or cloud-based systems). We start by
matching each query to the topics of a comprehensive web directory, and
use these topics to apply query expansion in an iterative fashion. Sub-
sequently, all expanded queries are mapped onto the DMOZ hierarchy,
and the resulting subsumption relations are directly inferred from the
directory structure once conflicts in the hierarchy are resolved. We eval-
uate our technique on real-world queries, and show that our approach is
effective under all settings.

1 Introduction

In recent years, human input, generated both implicitly and explicitly, has
rapidly increased in terms of quantity and quality, offering added value to a
number of applications ranging from social media and crowdsourcing systems to
digital libraries. Input from query logs, blog comments, ’like’ buttons, and click-
throughs are nowadays analysed and exploited by a number of applications, in
an attempt to leverage their services and offer users a context-aware, burden-free
experience. Humans, on the other hand, in their online life use systems and tools
to query, annotate, rank, and evaluate all kinds of content, expecting faster and
more personalised services that relieve them from tedious tasks. Typical exam-
ples of such expectations that were transformed to working services are, among
others, personalised news filtering, query auto-completion/auto-correction, and
recommendation systems. Exploiting this abundance of user-provided informa-
tion in a meaningful way and offering general solutions that can be utilised in a
number of applications is of paramount importance.
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Idea and Challenges In this paper, we present a new algorithm for creating
subsumption hierarchies from a set of user queries. This work is, to the best of our
knowledge, the first attempt in the literature to derive a subsumption hierarchy
from a set of keyword queries. Our method infers hierarchies for an arbitrary
number of keyword queries and outputs a single subsumption hierarchy. Notice
that this is qualitatively different from previous approaches, as classification [4,
7, 14, 15, 28] would probably group in the same category queries like “basketball”
and “slam dunk contest” or “too much calcium” and “hypercalcemia”, while in
our case the output would be that “basketball” is more general than “slam dunk
contest”, and “too much calcium” is more general than “hypercalcemia”.

Creating a subsumption hierarchy from an arbitrary set of queries is a dif-
ficult task due to (i) feature sparseness, (ii) ambiguity and polysemy, and (iii)
vocabulary size of web queries. Analysis of several hundreds of millions of web
queries showed that the average length of web queries is 2.2 terms [5], while
the average length of popular queries is only 1.7 terms. Additionally, queries
like the term “cell” may refer to documents about living organisms in biology,
the name of the Sony/Toshiba/IBM micro-processor, the movie where Jennifer
Lopez starred, cell phones, fuel cells, and many more. Finally, query vocabulary
is in a constant state of change [5], following the content dynamicity of web
pages as each year approximately half the web’s content is renewed [24].

Applications Identifying subsumption pairs and utilising hierarchies of web
queries is a particularly useful task for many applications. User profiling ap-
plications could benefit from more sophisticated modelling of user interests,
while semantic enhancement of query logs could help search engines present
in-context advertisements. Additionally, construction of query hierarchies in dis-
tributed environments would leverage local caching mechanisms in a variety of
applications like cloud-based information management systems, distributed pub-
lish/subscribe systems, or federations of digital libraries, and reduce message
traffic.

Contribution In this work, we present algorithm QSub that may be used to
create query subsumption hierarchies from an unrestricted domain of keyword
queries. To do so, we utilise the data from a large web directory to expand
each individual query in an iterative manner. We pay attention in keeping the
expanded query close to the original one by resorting in a query-driven weighting
strategy for the query features. Subsequently, we map the expanded query to
its most similar topics of an offline web directory. These mappings are then
used to create the query subsumption hierarchy, by (i) considering their parent-
child relations in the directory’s taxonomy and (ii) resolving logical errors and
conflicts. We evaluate our technique on a small hand-crafted query set and three
sets of real-world queries (sports-related, health-related and unfocused logs).

Our results show that the creation of a query subsumption hierarchy is pos-
sible by using only the web directory, without resorting to privacy-sensitive or
proprietary data like click-throughs. We experimentally evaluate our algorithm
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and demonstrate that it is effective both on domain-restricted and domain-
unrestricted queries.

In the light of the above, the contributions of this work are threefold.

• Algorithm QSub is the first fully automated approach in the literature to
create subsumption hierarchies from sparse datasets. Our approach is appli-
cable to a number of datasets with the aforementioned characteristics like
queries or tags.

• The proposed method is general, privacy-aware, and network-agnostic, as it
does not utilise proprietary, private, or network-accessible resources. It is also
incremental by design, as insertions/deletions/updates in the query set are
accommodated in the constructed hierarchy by examining only the modified
part of the dataset.

• Algorithm QSub is effective and accurate; the experimental evaluation demon-
strates that it achieves as much as 80% precision in identifying subsumption
pairs under different settings.

Paper Organization The rest of the paper is organised as follows. Section 2
discusses related work on query classification and query subsumption. Section 3
presents the QSub algorithm and its variations, while Section 4 presents its
experimental evaluation. Finally, Section 5 outlines future directions.

2 Related Work

Our work fits into a rich body of semantic web approaches, and is closely related
to a number of research areas:

Keyword-query classification [4, 7, 14, 15, 28], where the goal is to classify
a set of user queries into pre-defined categories, by using, e.g., search engines,
click-through data, query logs, web directories, data mining or computational
linguistics. This is a very challenging problem, which led to the KDDCup in
2005 [22] focusing on this task. Nevertheless, establishing subsumption relations
between user queries is even more challenging: rather than grouping queries into
similar (flat) categories, we want to group them into an is-a hierarchy (from
the most general to the most specialised query).

Search personalization through the use of hierarchical user-interest-profiles
[19, 26, 30], where typically the user browsing activity is observed and the web
pages collected over time or explicitly expressed interests are used to infer an
hierarchical user profile. In particular, [19] have investigated the use of three
different approaches to hierarchically organising user interests and have found
that using DMOZ for inducing an hierarchical profile gave best results. Nev-
ertheless, [19] simply added the user interests as leaves in the already existing
DMOZ hierarchy, thus producing rather large profiles with DMOZ nodes into
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the final structure. Additionally, the context around user interests is typically
much richer and less ambiguous than web queries, while tracking user activity
or click-through logs may raise privacy concerns.

Folksonomies and crowdsourced taxonomies [10, 17, 20, 21, 31, 32], is a
very popular research area bringing forward the importance of user-provided
tags and the need for tag-hierarchies for easier browsing and searching of web
data. Some of these approaches automatically derive similarity measures be-
tween tags and use agglomerative clustering for producing tag-hierarchies, but
much of previous work assumes a static tag space, despite its dynamicity. Newer
approaches [21], rely on users providing the actual subsumption relations be-
tween tags, but the experiments so far have used a rather controlled vocabulary,
ignoring semantically rich web keyword queries. Semi-automatically extracting
ontologies and web directories, e.g., [33, 6] by means of data mining and in-
formation extraction from semi-structured text is also related to our problem,
although again, the context around the target concepts is typically much richer
than that provided by sparse Web queries.

Inferring query subsumption hierarchies has been addressed before [1, 8,
13, 29]. Nevertheless, previous approaches have either restricted the query set,
or used external resources such as search engines and click-through data for
expanding the queries. For example, [1, 13] focused on relational queries and gave
an algorithm for computing subsumptions for function-free relational queries,
e.g., queries q1 = pilotsalary > 10000 and q2 = pilotsalary > 20000 executed
on a database with objects of type pilot which have a property salary. Later [12]
extended their technique for queries with function-free first-order predicates.
The work in [8, 9] used search engines to expand queries by taking the titles
and snippets of highly ranked search results, and then built subsumption trees
through hierarchical clustering. The leaves of their hierarchy are similar queries,
while the intermediate nodes are named using the most frequent co-occurring
terms of the children nodes. Contrary, our goal is to automatically produce a
subsumption hierarchy from a given web query set, without (i) relying on the
heavy use of online resources (e.g., search engines, click-through data), and (ii)
introducing additional “expanded” queries that unnecessarily mount and clutter
the resulting hierarchy.

3 The QSub Algorithm

In this section, we present the QSub algorithm designed to identify subsumption
relations in multi-keyword queries. The QSub algorithm resorts to a comprehen-
sive web directory to identify the topics that are most relevant to each query and
maps the queries on the directory nodes. The resulting subsumption relations
are directly inferred from the directory structure once conflicts in the hierarchy
are resolved. In the following, we present a brief overview of the algorithm and
describe the individual phases of the hierarchy construction.
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3.1 Algorithm Overview

To build a query subsumption hierarchy we utilize the idea of term subsumption
as a “generalisation/specialisation” (is-a) relation [27, 18] applied to keyword
queries. A query A subsumes another query B, denoted as A � B, if B is a
specialisation of A and A is a generalisation of B, with respect to the meaning
of the queries (e.g., “NBA teams” � “Dallas Mavericks”). In our setting, a
tree built out of subsumption relations will be called a subsumption hierarchy.
Since it is not straightforward to decide whether a pair of queries entails a valid
subsumption, due to query ambiguity and feature sparseness [5], our idea is to
utilise a multi-step process to expand user queries and subsequently map them
to an existing hierarchy. This process involves the following steps, described in
detail in each of the following sections:

Step 0. A database of feature vectors of DMOZ topics is created. This is a
one-time procedure, independent of the query set at hand, that is done at
the bootstrapping phase of the algorithm. (Section 3.2)

Step 1. A feature vector for each query is created in an iterative way. Four
alternatives for the construction of the feature vector, ranging from simple
keyword weighting to query expansion, are presented. (Section 3.3)

Step 2. Queries are mapped to the DMOZ hierarchy by means of cosine simi-
larity to the DMOZ topics. (Section 3.4)

Step 3. The structure of the taxonomy is utilised to retrieve a mapping tree,
conflicts in the tree are resolved and subsumption pairs are extracted from
the mapping tree. (Section 3.5)

Step 4. Low-rated subsumption pairs are filtered out and the subsumption hi-
erarchy is derived from the remaining ones. (Section 3.6)

3.2 Step 0: Creation of Topic Vectors

In this section, we describe how we construct the feature vectors of topics by
resorting to the DMOZ directory; these topics will be utilised in the next step
of the algorithm for query expansion and mapping. DMOZ is the largest and
most comprehensive human-edited directory of web pages consisting of more
than five million web sites categorised into more than one million topics. The
topics are structured in a comprehensive hierarchy of fine granularity. Each web
site has a short title and a comprehensive, user-created description to help users
locate the page they are looking for, while topics contain entries of web sites
that provide topic-specific. This high-quality user-created information can be
utilised to create a feature vector that describes each topic. Notice that this step
may be performed by using any structured collection that can provide us with a
taxonomy of topic feature vectors, including the Yahoo! directory, DBpedia, or
Wikipedia category graph.

The topic feature vectors are weighted using the tf-idf weighting scheme [3],
and vectors are normalised by their Euclidean norm. In our approach, keywords
do not contribute equally to topic feature vector: keywords located in the path
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from the root of the directory to a specific topic contribute with a weight of
1.0, keywords in topic titles contribute with a weight of 0.5, and keywords in
topic descriptions contribute with a weight of 0.25. The creation of the topic
feature vectors is a one-time procedure done at the bootstrapping phase of the
algorithm, and the resulting topics are used for applying algorithm QSub to any
query dataset. Additionally, when parsing the titles and descriptions of the web
sites in the DMOZ topics, the YAGO [33] semantic knowledge base is utilised
to identify entities. These entities are then used to enrich the keywords in the
topic feature vectors and improve the quality of the result set.

3.3 Step 1: Creation of Query Vectors

After all topics are represented as feature vectors, the main part of the QSub
algorithm begins. In this section, we describe four alternatives for the creation
of query vectors, ranging from simple keyword weighting to weighted query ex-
pansion.

Keyword Weighting. The simplest variation of the QSub algorithm employs
keyword weighting (QSub-W) to compute the query feature vector; it utilises the
frequency of occurrence (tf ) [3] of words in queries to construct the query feature
vector and uses its Euclidean norm for normalisation. This is a simple approach
designed to be stable in terms of query weighting to the insertion/deletion of
queries (no idf is used). The idea behind this method is to minimise false-positive
subsumptions, as in the next phase of the algorithm queries will match the few
topics that contain one of the query keywords.

Averaging. Algorithm QSub-A is an extension of algorithm QSub-W as it
employs the same machinery to create the initial feature vector for each query,
but also introduces topic-based query expansion. To do so, it identifies similari-
ties between the topic and the query vectors, and expands the queries with the
features of the K most similar topics. In algorithm QSub-A, all participating
topics in the query expansion process are weighted equally (hence the word av-
eraging in the name of the algorithm). Considering only a fixed maximum of the
most similar topics by using k-nearest neighbors (kNN) [11, 23] favours the fea-
tures of the topics with the highest cosine similarity to a given query and avoids
noise addition from low similarity topics. The above procedure is repeated for a
fixed number of iterations I. The choice of I influences the accuracy of query
expansion as a high I value may lead to over-expansion of queries, introduction
of noise in the feature vectors, and low running times. The number of features
in an expanded query is also limited to F . A low value for F will cancel out
the benefits from query expansion, i.e., the discovery of related topics without
direct query keyword matches, while a high value will make the expanded query
lose its original meaning. Averaging in feature weighting allows the expanded
query to gradually move away from the initial one in every iteration; this pro-
cess will eventually move the expanded query towards the centroid of the K
nearest neighbouring topics.
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Centroid-Driven. The centroid-driven variation (QSub-C) is an iterative al-
gorithm that utilises the same machinery as QSub-A, but now all features used
to expand a given query are weighted according to the cosine similarity of their
respective topic to the expanded query (resulting from the previous iterations
of the algorithm). This process is repeated for I iterations and will eventually
result in moving the expanded query towards the centroid of the topics that par-
ticipated in the expansion (hence the term centroid-driven in the name of the
algorithm). This approach favours keywords from topics that are closer to the
expanded query and makes the expanded queries less sensitive to outliers. The
disadvantage of this approach is that it may distort the meaning of the initial
query.

Query-Driven. The query-driven variation (QSub-Q) uses the same machin-
ery as the QSub-C algorithm, but now all features that are used to expand a
given query are weighted according to the cosine similarity of their respective
topic to the initial query [2, 23], leading to a query-driven approach. This pro-
cess is repeated for I iterations. Penalising terms of topics with a low cosine
similarity to the original query is an effective way to preserve the core mean-
ing of the query. QSub-Q is the most sophisticated algorithm for weighting the
query vectors, since it employs an iterative query-driven feature expansion pro-
cess that avoids query distortion by resorting to by resorting to query-centred
feature expansion.

3.4 Step 2: Mapping Queries to Topics

After completing query expansion, the expanded queries can be mapped to the
DMOZ hierarchy to create a mapping tree of queries. In this step, we begin with
an empty hierarchy and map each expanded query to the T most similar DMOZ
topics. Different queries may be mapped to the same node, and each query may
be mapped to at most T nodes in the mapping tree; see for example Figure 1(a)
where queries A and B are both mapped to node n1. A low value of T considers
only the best matching DMOZ topics and is expected to return a small mapping
tree of high quality. On the other hand, a high value of T takes into account
the different meanings of ambiguous words as the expanded query is mapped
in more positions in the mapping tree. This increases the probability to cover
all different meanings of a query and will, in turn, increase the number of true-
positive subsumption relations in the final subsumption hierarchy. However, this
will also increase the size of the mapping tree and thus also the number of false
positives, as many spurious subsumption relations may be added in the final
hierarchy.

After mapping the expanded queries to the DMOZ topics, the resulting map-
ping tree will contain nodes labelled with the identifiers of the queries that were
mapped to the specific topic and unlabelled nodes with no mapped queries. An
example of such a tree is shown in Figure 1(a), where the queries A, B, C, D,
E are mapped to nodes n1, n4, n6, n8, n9, n10, while nodes n2, n3, n5, n7 are
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Fig. 1. (a) Initial mapping tree with unlabelled nodes, (b) restructuring of mapping
tree after deletion of unlabelled nodes, and (c) final mapping tree.

unlabelled nodes. Subsequently, all unlabelled nodes are deleted, and each of
their parent nodes is connected to all children nodes of the deleted node. Fig-
ure 1(b) shows the restructuring of the mapping tree after all unlabelled nodes
are deleted. Notice that if the root is unlabelled and is thus deleted, all the chil-
dren nodes are connected to a new empty root to maintain the tree structure.
Figure 1(c) presents the final mapping tree; notice that this tree is not a sub-
sumption hierarchy yet, as it may contain conflicts as it will be explained in the
next section.

3.5 Step 3: Identifying Subsumption Pairs

In this section, we describe the procedure to extract subsumption pairs from the
mapping tree, filter-out the low-rated ones, and create the final subsumption
hierarchy. After constructing the mapping tree, we use depth-first search to
collect all paths that start from the root of the tree and end at one of the leaves.
This results in a list of multi-labelled paths (ml-paths); in our example, the
mapping tree of Figure 1(c) contains three ml-paths, namely (A,B)→ (B,C)→
(A,C), (A,B) → (B,C) → D, and (A,B) → (C,D,E) → B. Subsequently,
ml-paths are transformed into single-label paths (sl-paths) by creating all path
permutations with exactly one label (i.e., query) at each node. These sl-paths

may contain logical errors, so all paths in which the same query appears in more
than one positions are filtered-out, except when these positions are adjacent (i.e.,
parent-child nodes). For example the sl-path A→ C → C is not filtered out as
it can be simplified to A → C, while A → C → A contains a contradiction and
is thus filtered-out. The remaining sl-paths are then used to derive the query
subsumption pairs.

Table 1(a) contains all sl-paths extracted from the ml-path (A,B) →
(B,C) → (A,C) of the previous example, together with their simplified ver-
sions and the subsumption pairs that are derived. Notice that we cannot simply
combine all derived pairs, as they may also contain conflicts. In our example,
pairs A � B and B � A, and A � C and C � A are conflicting and are fil-
tered out, thus leaving B � C as the only one valid subsumption pair for this
ml-path. All the valid subsumption pairs derived from the mapping tree of Fig-
ure 1(c), along with their corresponding ml-paths are shown in Table 1(b). This
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sl-path simplified subsumption pairs
sl-path

A → B → A - -
A → B → C A → B → C A � B, A � C,

B � C
A → C → A - -
A → C → C A → C A � C
B → B → A B → A B � A
B → B → C B → C B � C
B → C → A B → C → A B � C, B � A,

C � A
B → C → C B → C B � C

(a)

ml-path subsumption pairs

(A,B) → (B,C) → (A,C) B � C
(A,B) → (B,C) → D A � B, A � C,

A � D, B � C,
B � D, C � D

(A,B) → (C,D,E) → B A � B, A � C,
A � D, A � E,
C � B, D � B,
E � B

(b)
Table 1. Extraction of subsumption pairs from ml-paths.
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Fig. 2. (a) The subsumption forest and (b) the resulting subsumption hierarchy.

process is performed for each of the ml-paths derived from the mapping tree
and the subsumption pairs created are examined for conflicts separately for each
ml-path. Thus, conflicts in subsumption pairs belonging to different ml-paths

will not be filtered-out since they correspond to different contexts.

3.6 Step 4: Building the Subsumption Hierarchy

In this section, we describe how to rate the derived subsumption pairs and utilise
only the top-rated ones to create the query subsumption hierarchy. Rating for a
subsumption pair can be computed by taking into account the similarity score
of each expanded query to the topic it was mapped to. Low similarity scores for
one or both queries means that the queries are not highly related to the topics
they were mapped to, thus the subsumption relation is probably a false-positive.
Similarly, high similarity scores for both queries indicate a correct mapping and
thus a true-positive subsumption relation. Given a query subsumption A � B,
where A is mapped to topic TA and B is mapped to topic TB , the rating of the
pair is calculated as rating(A,B) = cos(A, TA) ∗ cos(B, TB), where cos() is the
cosine similarity between the two vectors.

After computing the rating of all subsumption pairs identified in the previous
section, we remove all pairs with a rating below threshold ϑ. The remaining ones



10

1: for all queries do
2: create feature vector Q of query B Step 1
3: for I iterations do
4: for all topics t ∈ {K most similar topics to Q} do
5: Q← all weighted terms ∈ t
6: end for
7: keep only the F highest-weighted terms of Q
8: end for
9: map Q to the T most similar DMOZ topics B Step 2
10: end for
11: for all ml-paths M do B Step 3
12: for all sl-paths S ∈M do
13: insert high-rated subsumption pairs from S to hierarchy B Step 4
14: end for
15: end for

Fig. 3. Pseudocode for the query expansion variants of algorithm QSub.

are then used to create a forest of subsumption trees. The number of trees in the
forest equals the number of ml-paths identified in the final mapping tree. We use
a simple recursive tree-construction algorithm [16] to construct the subsumption
tree from the subsumption pairs of an ml-path, asserting that no path that does
not occur in the mapping tree is created. The resulting trees are then merged [16],
if possible, and combined under a (potentially) empty root to form a subsumption
hierarchy. In our example, we assume for simplicity that all subsumption pairs
of Table 1(b) have a rating higher than ϑ, thus no pair is filtered-out. Thus,
all the identified pairs will be used to create a forest of three trees as shown in
Figure 2(a), one for each ml-path. After applying the merging and combination
of all trees under the root, the subsumption hierarchy of Figure 2(b) is produced.
Notice that in this hierarchy A � B � C and A � C � B are both valid since
they refer to a different context.

The pseudocode providing a high-level description of the query expansion
variants (QSub-A, QSub-C, QSub-Q) is given in Figure 3.

4 Evaluation

In this section, we present a series of experiments that compare the variations
of algorithm QSub in terms of effectiveness and efficiency.

Datasets. For our evaluation we used two query sets: (i) a small hand-crafted
set of 70 queries which contained selected queries from a real query log and (ii)
three sets of 1000 randomly chosen queries from a large query log. It should be
noted that the major problem in the evaluation of this type of algorithms is the
lack of a ground truth to compare against. For all query sets, the constructed
subsumption pairs, and hence the created subsumption hierarchies, had to be
manually evaluated.

Hand-crafted Query Set. This query set was used as ground truth and is a
hand-crafted set of 70 queries; all queries within the set are related to sports,
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Subsumption pairs
(hand-crafted query set)

basketball teams � miami heat
Correct champions league � chelsea

nba playoffs � nba scores
golf players � illinois

Incorrect mclaren racing � formula one
uefa cup news � real madrid

(a)

Subsumption pairs
(large query sets)

too much calcium � hypercalcemia
Correct gallbladder � gallstones

philosophy � deism
midwest motorsports � elliot sadler

Incorrect nursing journals � schoolnurse
football � kittens

(b)
Table 2. Sample correct/incorrect subsumptions for (a) hand-crafted and (b) large
query sets.

apart from 4 queries that are related to geography and act as noise in the query
set. The query subsumptions in this set were manually identified to allow for
comparison with the ones automatically generated by the variations of algorithm
QSub; to do so we generated all possible combinations of query pairs, and a user
evaluation study identified 118 correct subsumption pairs. Table 2(a) presents
some of the queries and correct/incorrect subsumption relations between them,
as identified by users. The query set along with all the user-identified correct sub-
sumption pairs have been provided as supplementary material to this submission
and are available to the reviewers through the submission system.

Large Query Sets. This collection contains three sets of 1000 randomly chosen
queries from an AOL query log that contained random web queries of more than
600.000 users, collected in March, April and May 2006 [25]. The queries were
categorised, two query sets were chosen to be thematically focused to the Sports
and Health categories, while the third query set was thematically unfocused
(named All in the graphs) and comprised of queries from all categories in the
given query log. The Sports query set contains many names of colleges, sports
teams, and leagues, the Health query set contains mainly queries about drugs,
pharmaceutical companies, symptoms and treatments for various diseases, while
the unfocused query set contains queries ranging from ancient philosophers to
submarines and constitutes a stress test for the algorithm. Table 2(b) presents
some of the queries and correct/incorrect subsumption relations between them,
as identified by users.

Experimental Setup. All the algorithms were implemented in Java and exe-
cuted in an off-the-shelf PC. The time shown in the graphs is wall-clock time and
all algorithm measurements are derived by using the best-performing parameter
setup from our evaluation (I = 3, F = 50, T = 3, ϑ = 0.3); the experiments
needed to determine these values are omitted due to space considerations.

In our evaluation, we use standard information retrieval metrics to evalu-
ate the quality of the derived subsumption pairs and hierarchy. These metrics
involve (i) precision (P ), defined as the percentage of correctly identified sub-
sumption pairs from the set of all returned pairs, (ii) recall (R) defined as the
ratio of correctly returned subsumption pairs to the total number of all correct
subsumption pairs for all queries, (iii) Fi = (i2 + 1)PR/(i2P + R) measure,
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Fig. 4. (a) IR measures and (b) subsumption pairs for the hand-crafted query set.

and especially F1 and F0.5 as our emphasis is on precision [3], and (iv) number
of returned subsumption pairs. These measures can only be computed for the
hand-crafted query set since all correct subsumption pairs have to be known to
calculate recall and F -measure. For this reason precision and number of returned
subsumption pairs are used to assess the performance of the algorithms in the
large query sets.

Results for the Hand-crafted Query Set. Initially, we consider the per-
formance of the algorithms in terms of the quality of the derived subsumption
hierarchy for the hand-crafted query set. As we observe in Figure 4(a), QSub-W
presents the highest precision and the lowest recall value among all variants of the
QSub algorithm, resulting in the lowest F1 and F0.5 values. This demonstrates
the necessity of query expansion in the quality of the identified subsumption
pairs. All expansion techniques have comparable performance in precision, with
QSub-Q performing slightly better than its competitors, and QSub-A present-
ing the worst performance of all three query expansion techniques. This was
expected as QSub-A does not consider the query-topic similarity in weight-
ing the feature vector of the expanded queries. As also shown in Figure 4(b)
more correct subsumption pairs are discovered by algorithm QSub-Q, since the
meaning of the initial query is not distorted by the query expansion process.
Additionally, Figure 4(b) shows that QSub-W returns the lowest number of
correct and incorrect subsumption pairs due to the lack of query expansion that
matches queries only with highly related topics. Finally, algorithm QSub-Q re-
turns the highest number of correct pairs, while the number of incorrect pairs is
comparable to the rest of the query expansion variants.

Results for the Large Query Sets. In this set of experiments, we measure
only precision and number of identified subsumption pairs, as recall, F1, and F0.5

measures cannot be computed for these query sets due to the large number of
subsumption pairs that need to be evaluated manually (i.e., consider all possible
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Fig. 5. (a) Precision and (b) number of subsumption pairs for the large query sets.

subsumption pairs among 1000 queries, and manually identify the correct ones).
In Figure 5(a), we observe that QSub-W presents the highest precision value in
two out of three query sets, followed by QSub-Q that outperforms the rest of the
query expansion algorithms. The performance of the QSub-Q algorithm in the
Health query set is notable, and is due to the type of subsumption relations that
may be found in this set: drugs produced by companies, and symptoms/illnesses
that are favoured by query expansion.

Figure 5(b) shows the number of returned pairs per algorithm; algorithm
QSub-C returns the highest number of subsumption pairs, followed by QSub-
Q. When observing Figures 5(a) and 5(b) together we conclude that algorithm
QSub-Q is again the best choice as it manages to combine high-precision values
with a high number of identified subsumption pairs. Contrary, algorithm QSub-
W presents high precision but low number of identified pairs, while QSub-C
achieves a high number of identified pairs but low precision.

Time and Space measurements. Figure 6(a) presents the running time for all
query sets and for algorithms QSub-W and QSub-Q; the other competitors are
left out to avoid cluttering the graph as they have exactly the same performance
as QSub-Q since they just differ in the way of computing the expanded features
for the query vectors. Additionally, the time measurement of the All query set
is truncated to better illustrate the differences among the rest of the algorithms;
the actual time measurement for the All query set was 2055 seconds. It is worth
noting that the construction of the query feature vector (step 1) and the mapping
of the queries to the DMOZ hierarchy (step 2) are the most time consuming tasks.
Additionally, although all query sets (except the hand-crafted one) contain 1000
queries, the execution time of the algorithms varies. This can be explained by
the number of topics the query vectors have to be matched against; the lower
the number of DMOZ topics related to a category, the fewer the comparisons
that have to be performed between each query and the category topics. Finally,
memory requirements for all algorithms and query sets are shown in Figure 6(b);
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notice that all algorithms have similar memory requirements as memory usage
is heavily dominated by the size of the topic vectors.

5 Future Work

We are currently working on offering an online tool to identify subsumption
relations on query logs and tags. We are also planning to deploy our methods in
a distributed environment to quantify the gain in message traffic from caching
due to subsumption.
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