
Logic and Computational Complexity for
Boolean Information Retrieval

Manolis Koubarakis, Spiros Skiadopoulos, and Christos Tryfonopoulos

Abstract—We study the complexity of query satisfiability and entailment for the Boolean Information Retrieval modelsWP and AWP
using techniques from propositional logic and computational complexity. WP and AWP can be used to represent and query textual

information under the Boolean model using the concept of attribute with values of type text, the concept of word, and word proximity

constraints. Variations of WP and AWP are in use in most deployed digital libraries using the Boolean model, text extenders for

relational database systems (e.g., Oracle 10g), search engines, and P2P systems for information retrieval and filtering.

Index Terms—Boolean information retrieval, computational complexity, data models, query languages, satisfiability, entailment,

proximity.

Ç

1 INTRODUCTION

WE study two well-known data models of Information
Retrieval (IR) [2] and digital libraries [9], [10], [8],

which we have calledWP and AWP in [21], [19], [30], [29],
[28], [20]. Data modelWP is based on free text and its query
language is based on the Boolean model for word patterns.
Word patterns are formulas that enable the expression of
constraints on the existence, nonexistence, or proximity of
words in a text document. Data model AWP extends WP
with named attributes with free text as values. The query
language of AWP is also a simple extension of the query
language of WP so that attributes are included.

Models such as WP that are based on word patterns
were introduced in the early days of IR and have been
implemented in many digital library systems in wide use
today [2]. Word patterns are also used in 1) all current
search engines, 2) advanced IR models such as the model of
proximal nodes [22] which allows proximity operators
between arbitrary structural components of a document
(e.g., paragraphs or sections), and 3) recent full-text
extensions to XML-based languages e.g., TeXQuery [1].

The model AWP has been used recently in our systems
DIAS, P2P-DIET, DHTrie, and LibraRing [17], [19], [30],
[29], [28]. DIAS [19] is a distributed alert service for digital
libraries which utilizes a P2P architecture and protocols
similar to that of the event dissemination system SIENA [7].
DIAS uses WP and AWP as an expressive data model and
query language for textual information. P2P-DIET [17] is the
ancestor of DIAS and uses AWP as a metadata model for

describing and querying digital resources. An extension of

model AWP, called AWPS, that introduces a similarity

operator based on the IR vector space model, is used in the

P2P systems DHTrie [29] and LibraRing [28] that are built

on top of distributed hash tables [3].
In the database literature, word patterns have been

studied by Chang and colleagues in the context of

integrating heterogeneous digital libraries [9], [10], [8].

The model AWP is essentially the model of [8] but with a

slightly different class of word patterns.
Even though many deployed systems are usingWP and

AWP and many papers have appeared on their variations,

only [9], [10], [8], [21], [19] have studied in depth the logical

foundations of these data models. As we have previously

discussed in [21], we would like to develop information

retrieval and filtering systems in a principled and formal way.

With this motivation and the architectures of [19], [17], [30],

[29], [28] in mind, we have posed the following require-

ments for models and languages to be used in information

retrieval and filtering systems [21]:

1. Expressivity. The languages for documents and
queries must be rich enough to satisfy the demands
of information consumers and capabilities of infor-
mation providers.

2. Formality. The syntax and semantics of the proposed
models and languages must be defined formally.

3. Computational efficiency. The following problems
should be defined formally and algorithms must be
provided for their efficient solution (keeping in mind
that there will be a trade-off with the expressivity
requirement):

a. The satisfiability problem: Deciding whether a
query can be satisfied by any document at all.

b. The satisfaction problem: Deciding whether a
document satisfies a query.

c. The filtering problem: Given a collection of
queries Q and an incoming document d, find
all queries q 2 Q that satisfy d.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006 1659

. M. Koubarakis is with the Department of Informatics and Telecommunica-
tion, National and Kapodistrian University of Athens, Panepistimiopolis,
Ilisia, Athens 15784 Greece. E-mail: koubarak@di.uoa.gr.

. S. Skiadopoulos is with the Department of Computer Science and
Technology, University of Peloponnese, Karaiskaki Street, 22100, Tripoli,
Greece. E-mail: spiros@uop.gr.

. C. Tryfonopoulos is with the Department of Electronic and Computer
Engineering, Technical University of Crete, 73100 Chania, Crete, Greece.
E-mail: trifon@intelligence.tuc.gr.

Manuscript received 18 Oct. 2005; revised 3 Apr. 2006; accepted 15 June
2006; published online 18 Oct. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0484-1005.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

d. The entailment problem: Deciding whether a
query is more or less “general” than another.

In previous work, we have defined formally the models
WP and AWP [19] and presented efficient centralized and
distributed algorithms for the filtering problem [30], [29]. In
this paper, we continue our formal work in this area and
concentrate on model-theoretic questions for the logics of WP
and AWP that have been ignored in previous papers. We
study the model theory of WP and AWP and especially-
questions related to satisfiability and entailment. We show
that the satisfiability problem for queries inWP andAWP is
NP-complete and the entailment problem is coNP-complete.
We also discuss cases where these problems can be solved in
polynomial time. Our results are original and complement
the studies of [8], [21] where no such complexity questions
were posed.

The rest of the paper is organized as follows: In the next
section, we present the models WP and AWP. Sections 3
and 4 presents our complexity results on satisfiability and
entailment. Then, Section 5 discusses related work. The last
section concludes the paper and discusses our plans for
future work.

2 THE MODELS WP AND AWP
Let us start by presenting the data modelWP and its query
language. WP has been inspired by [10]. It assumes that
textual information is in the form of free text and can be
queried by word patterns (hence, the acronym for the model).

We assume the existence of a finite alphabet �. A word is a
finite nonempty sequence of letters from �. We also assume
the existence of a (finite or infinite) set of words called the
vocabulary and denoted by V. A text value s of length n over
vocabulary V is a total function s : f1; 2; . . . ; ng ! V. In
other words, a text value s is a finite sequence of words
from the assumed vocabulary and sðiÞ gives the ith element
of s. jsjwill denote the length of text value s (i.e., its number
of words).

We now give the definition of word pattern. We assume
the existence of a set of (distance) intervals

I ¼f½l; u� : l; u 2 NN; l � 0 and l � ug [f½l;1Þ : l 2 NN

and l � 0g:

Let ii be an interval in I . We will denote the left-endpoint
(respectively, right-endpoint) of ii by infðiiÞ (respectively,
supðiiÞ).
Definition 1. Let V be a vocabulary. A word pattern over

vocabulary V is a formula in any of the following forms:

1. w, where w is a word of V.
2. w1 �ii1 � � � �iin�1

wn, where w1; . . . ; wn are words of V
and ii1; . . . ; iin�1 are intervals of I .

3. :�, �1 _ �2, or �1 ^ �2, where �, �1, and �2 are word
patterns.

Example 1. The following are word patterns:

constraint ^ ððoptimization _ programmingÞ
:algorithms ^ ððcomplexity �½1;5� satisfactionÞ_

ðcomplexity �½1;8� filteringÞÞ:

Operator �ii is called a proximity operator and is a
generalization of the traditional IR operators kW and kN
[10]. Proximity operators are used to capture the concepts of
order and distance between words in a text document. They
can be used to construct formulas of WP that we will call
proximity word patterns (Case 2 of Definition 1). The
proximity word pattern w1 �½l;u� w2 stands for “word w1 is
before w2 and is separated by w2 by at least l and at most u
words.” The interpretation of proximity word patterns with
more than one operator �ii is similar.

Traditional IR systems have proximity operators kW and
kN where k is a natural number. The proximity word pattern
wp1 kW wp2 stands for “word patternwp1 is beforewp2 and is
separated bywp2 by at most kwords.” In our work, this can be
captured bywp1 �½0;k� wp2. The operator kN is used to denote
distance of at most k words where the order of the involved
patterns does not matter. InWP, the expression wp1 kN wp2

can be approximated by wp1 �½0;k� wp2 _ wp2 �½0;k� wp1.
Chang et al. [10] gives an example (page 23) that demon-
strates why these two expressions are not equivalent given
the meaning of operator kN . The example involves qa text
value and word patterns with overlapping positions in that
text value hence the difference.

The development of proximity word patterns in [9], [10],
[8] follows closely the IR tradition, i.e., operators kW and kN
(already mentioned above) are used together with the
boolean operators AND and OR. These operators can be
intermixed in arbitrary ways (e.g., ððw1 AND ðw2 ð8WÞ w3ÞÞ
ð10WÞ w4Þ, where w1; w2; w3; w4 are words is a legal expres-
sion), and the result of their evaluation on document
databases is defined in an algebraic way. WP opts for an
approach which is more in the spirit of Boolean logic, allows
negation and carefully distinguishes word patterns with and
without proximity operators. This leads to a simpler
language because cumbersome (and not especially useful)
constructions such as the above are avoided. In the spirit of
Boolean logic, an atomic word pattern (i.e., a word or a
proximity word pattern) allows us to distinguish between
text values: those that satisfy it, and those that do not.
Boolean operators are then given their standard semantics.

In addition to the above operators, WP allows the
expression of simple order constraints between words using
operators �½0;1� . Order constraints of the form �½0;1�
between various text structures are also present in more
advanced text model proposals such as the model of
proximal nodes of [22].

Definition 2. A word pattern will be called positive if it does
not contain negation. A word pattern will be called
proximity-free if it does not contain formulas of the form
w1 �ii1 � � � �iin�1

wn. A word pattern will be called conjunc-
tive if it does not contain disjunction.

Example 2. The following are positive word patterns:

satisfiability

local ^ search ^ algorithms;

information ^ ðretrieval _ disseminationÞ;
logic �½0;1� computational �½0;0� complexity:

The first three are proximity-free word patterns. The
first, second, and fourth word pattern is conjunctive.

1660 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

Definition 3. Let V be a vocabulary, s a text value over V, and

wp a word pattern over V. The concept of s satisfying wp

(denoted by s � wp) is defined as follows:

1. If wp is a word of V, then s � wp iff there exists p 2
f1; . . . ; jsjg and sðpÞ ¼ wp.

2. If wp is a proximity word pattern of the form
w1 �ii1 � � � �iin�1

wn, then s � wp iff there exist
p1; . . . ; pn 2 f1; . . . ; jsjg such that, for all j ¼
2; . . . ; n we have sðpjÞ ¼ wj and pj � pj�1 � 1 2 iij�1.

3. If wp is of the form :wp1; wp1 ^ wp2; wp1 _ wp2 or
ðwp1Þ, then s � wp is defined exactly as satisfaction
for Boolean logic.

A word pattern wp is called satisfiable if there is a text value s
that satisfies it. Otherwise, it is called unsatisfiable.

Example 3. The word patterns of Examples 1 and 2 are
satisfiable. Word patterns

:programming ^ ðconstraint �½0;0� programmingÞ;
ðconstraint �½0;0� programmingÞ ^ :ðconstraint �½0;2�Þ

programmingÞ

are unsatisfiable.

Definition 4. Let wp1 and wp2 be word patterns. We will say

that wp1 entails wp2 (denoted by wp1 � wp2) iff for every text

value s such that s � wp1, we have s � wp2. If wp1 � wp2

and wp2 � wp1, then wp1 and wp2 are called equivalent
(denoted by wp1 	 wp2).

Example 4. Word pattern constraint ^ programming en-
tails word pattern constraint. Word pattern

optimization ^ ðconstraint �½0;0� programmingÞ

entails constraint �½0;10� programming.
Finally, word patterns

constraint �½0;4� programming;
constraint ^ ðconstraint �½0;4� programmingÞ

are equivalent.

Proposition 1. Let wp1 and wp2 be two word patterns. wp1 �
wp2 iff wp1 ^ :wp2 is unsatisfiable.

Let us close this section by pointing out that proximity

word patterns have been considered as atomic formulas of
WP (Definition 1) because, in general, negation cannot be

moved inside a proximity word pattern as in the case of

Boolean operators. The interested reader can be persuaded

by trying to do this for the following formula:

:ðluxurious �½0;3� hotel �½0;3� beachÞ

If we restrict our attention to proximity formulas with a

single proximity operator, this restriction can easily be

lifted. For example, the word pattern

:ðluxurious �½0;3� hotelÞ

is equivalent to the following:

:luxurious _ :hotel _ hotel �½0;1� luxurious_
luxurious �½4;1� hotel:

Let us now use the machinery of WP to define data
model AWP. The new concept of AWP is the concept of
attribute with value free text (in the acronym AWP, the
letter A stands for “attribute”).

We assume the existence of a countably infinite set of
attributes U called the attribute universe. A document schema
D is a pair ðA;VÞ, where A is a subset of the attribute
universe U and V is a vocabulary. A document d over
schema ðA;VÞ is a set of attribute-value pairs ðA; sÞ where
A 2 A, s is a text value over V, and there is at most one pair
ðA; sÞ for each attribute A 2 A.

Example 5. The following is a document over schema

ðfAUTHOR; TITLE; ABSTRACTg;VÞ:

fðAUTHOR; 00John Brown00Þ;
ðTITLE; 00Local search and constraint programming00Þ;

ðABSTRACT; 00In this paper we show . . .00Þg:

The syntax of the query language of AWP is given by the
following recursive definition.

Definition 5. A query over schema ðA;VÞ is a formula in any of

the following forms:

1. A w wp, where A 2 A and wp is a word pattern over
V (this is read as “A contains word pattern wp”).

2. A ¼ s, where A 2 A and s is a text value over V.
3. :�, �1 _ �2, �1 ^ �2, where �, �1, and �2 are queries.

Example 6. The following is a query over the schema shown

in Example 5:

AUTHOR w Brown ^
TITLE w search ^ ðconstraint �½0;0� programmingÞ:

Definition 6. Let D be a document schema, d a document over D,
and � a query over D. The concept of document d satisfying
query � (denoted by d � �) is defined as follows:

1. If � is of the form A w wp, then d � � iff there exists a
pair ðA; sÞ 2 d and s � wp.

2. If � is of the form A ¼ s, then d � � iff there exists a
pair ðA; sÞ 2 d.

3. If � is of the form :�1, then d � � iff d 6� �1.
Similarly, for wedge and _.

Example 7. The query of Example 6 is satisfied by the
document of Example 5.

Proposition 2. Let A be an attribute and wp1; wp2 be word
patterns. Then, the following equivalences hold:

1. :A w wp 	 A w :wp.
2. A w ðwp1 ^ wp2Þ 	 ðA w wp1Þ ^ ðA w wp2Þ.
3. A w ðwp1 _ wp2Þ 	 ðA w wp1Þ _ ðA w wp2Þ.
4. :ðA w ðwp1 ^ wp2ÞÞ 	 ð:A w wp1Þ _ ð:A w wp2Þ.
5. :ðA w ðwp1 _ wp2ÞÞ 	 ð:A w wp1Þ ^ ð:A w wp2Þ.

KOUBARAKIS ET AL.: LOGIC AND COMPUTATIONAL COMPLEXITY FOR BOOLEAN INFORMATION RETRIEVAL 1661

Definition 7. A query is called atomic if it is of the form A ¼ t
where t is a text value, or A w wp where wp is a word or a

proximity word pattern. A query is called conjunctive if it

does not contain disjunction.

Example 8. The following queries are atomic:

AUTHOR ¼ 00James Brown;00

TITLE w search;

ABSTRACT w constraint �½0;0� programming:

Proposition 3. Every query is equivalent to a Boolean

combination of atomic queries.

Proof. Use the first three equivalences of Proposition 2

repeatedly. tu

3 SATISFIABILITY AND ENTAILMENT IN WP
An instance of the satisfiability problem for proximity-free

word patterns can be considered as an instance of the

satisfiability problem for Boolean logic (SAT) and vice

versa (by interchanging the roles of words and Boolean

variables). Thus, we have to consider any complications

that might arise due to proximity word patterns only.

In what follows, we will need the binary operation of

concatenation of two text values.

Definition 8. Let s1 and s2 be text values over vocabulary V.

Then, the concatenation of s1 and s2 is a new text value

denoted by s1s2 and defined by the following:

1. js1s2j ¼ js1j þ js2j
2.

s1s2ðxÞ ¼
s1ðxÞ for all x 2 f1; . . . ; js1jg
s2ðx� js1jÞ for all x 2 fjs1j þ 1; . . . ;

js2j þ js1jg:

8<
:

We will also need the concept of the empty text value
which is denoted by � and has the property j�j ¼ 0. The
following properties of concatenation are easily seen:

1. ðs1s2Þs3 ¼ s1ðs2s3Þ, for all text values s1, s2, and s3.
2. s� ¼ �s ¼ s for every text value s.

The associativity of concatenation allows us to write
concatenations of more than two text values without using
parentheses.

The following variant of the concept of satisfaction
captures the notion of a set of positions in a text value
containing exactly the words that contribute to the satisfac-
tion of a positive proximity-free word pattern. This variant is
used in Lemma 1 and in Proposition 4.

Definition 9. Let V be a vocabulary, s a text value over V, wp a
positive proximity-free word pattern over V, and P a subset of
f1; . . . ; jsjg. The concept of s satisfying wp with set of
positions P (denoted by s �P wp) is defined as follows:

1. If wp is a word of V, then s �P wp iff there exists
x 2 f1; . . . ; jsjg such that P ¼ fxg and sðxÞ ¼ wp.

2. If wp is of the form wp1 ^ wp2, then s �P wp iff there
exist sets of positions P1; P2
 f1; . . . ; jsjg such that
s �P1

wp1, s �P2
wp2 and P ¼ P1 [P2.

3. If wp is of the form wp1 _ wp2, then s �P wp iff s �P
wp1 or s �P wp2.

4. If wp is of the form ðwp1Þ, then s �P wp iff s �P wp1.

We also need the following notation: Let P be a subset of

the set of natural numbers NN, and x 2 NN. We will use the

notation P þ x to denote the set of natural numbers

fpþ x : p 2 Pg.
Lemma 1. Let s and s0 be text values, wp be a positive proximity-

free word pattern, and P
 f1; . . . ; jsjg. If s �P wp, then

ss0 �P wp and s0s �Pþjs0 j wp.

Positive proximity-free word patterns are satisfiable as

we show below.

Proposition 4. If wp is a positive proximity-free word pattern,

then wp is satisfiable. In fact, there exists a text value s0 such

that

1. js0j � jwpj � opsðwpÞ, where opsðwpÞ is the number of

operators of wp (or 1 if wp has no operators).
2. Every word of s0 is a word of wp.
3. s0 �f1;...;js0jg wp.

Proof. The proof is by induction on the structure of wp.

Base case: Let wp be a word w 2 V. In this case, wp is

satisfiable because we can form a text value s0 such that

s0 �f1g w, where js0j ¼ 1 and s0ð1Þ ¼ w. The conclusion

of the lemma is now obviously satisfied.

Inductive step: Let wp be a positive proximity-free

word pattern of the form wp1 ^ wp2, and assume that the

inductive hypothesis holds for wp1 and wp2. Then, we

can form text values s1
0 and s2

0 such that s1
0 �f1;...;js1

0
jg wp1

and s2
0 �f1;...;js2

0
jg wp2. Then, from Lemma 1, we have

s1
0s

2
0 �f1;...;js1

0
jg wp1

and

s1
0s

2
0 �f1;...;js2

0
jgþjs1

0
j wp2:

Finally, from Definition 9, we have

s1
0s

2
0 �f1;...;js1

0
j;js1

0
jþ1; ...;js1

0
jþjs2

0
jg wp1 ^ wp2

as required. It is also easy to see that

js1
0s

2
0j ¼ js1

0j þ js2
0j �

jwp1j � opsðwp1Þ þ jwp2j � opsðwp2Þ <
½opsðwp1Þ þ opsðwp2Þ� � jwpj < opsðwpÞ � jwpj:

The _ case is done similarly. tu

Obviously, proximity word patterns are also satisfiable.

Proposition 5. Let wp be a proximity word pattern of the form

w1 �ii1 � � � �iin�1
wn. Then, wp is satisfied by the text value

s ¼ w1z1 � � � zn�1wn, where zl, l ¼ 1; . . . ; n� 1 are text values

of the following form. If infðiilÞ > 0 then zl is formed by

infðiilÞ successive occurrences of the special word # which is

1662 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

not contained in wp. Otherwise, if infðiilÞ, then zl is the empty

text value �.

Moreover, any text value satisfying a proximity word

pattern is of a very special form.

Proposition 6. Let wp be a proximity word pattern of the form

w1 �ii1 � � � �iin�1
wn. If s � wp, then s is of the form.

s ¼ ? � � � ?|fflfflffl{zfflfflffl}
i0 times

w1 ? � � � ?|fflfflffl{zfflfflffl}
i1 times

w2 � � � wn�1 ? � � � ?|fflfflffl{zfflfflffl}
in�1 times

wn ? � � � ?|fflfflffl{zfflfflffl}
in times

;

where 0 � i0, i1 2 ii1; . . . ; in�1 2 iin�1, 0 � in, and each

occurrence of the symbol ? represents an arbitrary (and not

necessarily the same) word.

Example 9. Let us consider the proximity word pattern

wp ¼ constraint �½0;0� programming �½0;1� methods:

It is easy to verify that text value “many applications

use constraint programming algorithms and methods to

solve interesting problems” 1) is of the form set by

Proposition 6 and 2) satisfies word pattern wp.

Finally, we show that any positive word pattern is

satisfiable.

Proposition 7. If wp is a positive word pattern, then wp is

satisfiable.

Proof. We will construct a text value t such that t � wp. If

wp contains m proximity word patterns �1; . . . ; �m, text

value t is of the form s0s1 � � � sm where:

. s0 is a sequence formed by the juxtaposition of all
words appearing in wp in any order, and

. for every j ¼ 1; . . . ;m, sj is a text value, formed as
in Proposition 5, such that sj � �j. tu

Lemma 2. Let wp1 and wp2 be proximity word patterns of the
following form:

wp1 ¼ a1 �ii1 � � � �iin�1
an and

wp2 ¼ b1 �jj1 � � � �jjm�1
bm:

Word pattern wp1 entails wp2 iff the following conditions
hold:

Condition 1. Word pattern wp2 is equal to

ap1
�jj1 . . . �jjm�1

apm ;

where 1 � p1 < � � � < pm � n.

Condition 2. For every v ¼ 1; . . . ;m� 1, we have:

infðjjvÞ � infðiipvÞ þ � � � þ infðiipvþ1
Þ þ pvþ1 � pv�1

supðjjvÞ is
�

supðiipvÞ þ � � � þ
supðiipvþ1

Þþ
pvþ1 � pv�1

0
B@

1
CA

if all supðiipvÞ; . . . ;

supðiipvþ1
Þ are diffe-

rent than1

1 otherwise:

8>>>><
>>>>:

Proof. The “if” case is obvious. For the “only if” part, let us

assume that wp1 � wp2 holds. We will prove that wp2 is

of the form set by the lemma. The proof is in three steps.

Step 1 (Condition 1). We will first prove that the words
of wp2 are a subset of the words in wp1, i.e.,

fb1; . . . ; bmg
 fa1; . . . ; ang:

By contradiction, let us assume that there exists a

word bv, 1 � v � m, of wp2 such that bv 62 fa1; . . . ; ang. Let

us now consider text value � defined as:

� ¼ a1 # � � �#|fflfflfflffl{zfflfflfflffl}
i1 times

a2 � � � an�1 # � � �#|fflfflfflffl{zfflfflfflffl}
in�1 times

an; ð1Þ

where # is a special word which is not contained in wp1

and wp2 and i1 2 ii1; . . . ; in 2 iin. It is easy to verify that �

satisfies wp1 but, since � does not include word bv, it does

not satisfies wp2. Thus, we have wp1 6� wp2 which

contradicts our initial assumption.
Step 2 (Condition 1). We will now prove that the

words of wp1 that appear in wp2 actually appear in the
same order as they do in wp1, i.e., word pattern
wp2 ¼ ap1

�jj1
� � � �jjm�1

apm , where 1 � p1 < � � � < pm � n.
By contradiction, let us assume that there exist two
distinct words bv ¼ apv and bv0 ¼ apv0 , 1 � v < v0 � m, of
wp2 such that pv � pv0 . In other words,

wp1 ¼ a1 �ii1 � � � �iip
v0 �1

apv0 �iipv0 � � � �iipv�1

apv �iipv � � � �iin�1
an;

wp2 ¼ ap1
�jj1 � � � �jjv�1

apv �jjv � � � �jjv0�1

apv0 �jjv0 � � � �jjm�1
apm:

It is easy to verify that text value � (defined in (1))

satisfies wp1 but it does not satisfies wp2; a contradiction.
Step 3 (Condition 2). Finally, we will prove that for

every v ¼ 1; . . . ;m� 1, we have:

infðjjvÞ � infðiipvÞ þ � � � þ infðiipvþ1
Þ þ pvþ1 � pv�1

supðjjvÞ is
�

supðiipvÞ þ � � � þ
supðiipvþ1

Þþ
pvþ1 � pv�1

0
B@

1
CA

if all supðiipvÞ; . . . ;

supðiipvþ1
Þ are diffe-

rent than1

1 otherwise:

8>>>><
>>>>:

By contradiction, let us assume that there exists a

subformula apv �jjv apvþ1
of wp2 such that

infðjjvÞ >2fðiipvÞ þ � � � þ infðiipvþ1
Þ þ pvþ1 � pv � 1: ð2Þ

From Step 2, word patterns wp1 and wp2 are of the
following form:

wp1 ¼ a1 �ii1 � � � �iipv�1

apv �iipv � � � �iipv�1�1

apvþ1
�iipv � � � �iin�1

an;

wp2 ¼ ap1
�jj1 � � � �jjv�1

apv �jjv
apvþ1

�jjvþ1
� � � �jjm�1

apm:

KOUBARAKIS ET AL.: LOGIC AND COMPUTATIONAL COMPLEXITY FOR BOOLEAN INFORMATION RETRIEVAL 1663

Let us now construct a text value � 0 defined as:

� 0 ¼ a1 # � � �#|fflfflfflffl{zfflfflfflffl}
i1 times

a2 � � �

apv # � � �#|fflfflfflffl{zfflfflfflffl}
ipv times

apvþ1
� � �

apvþ1�1 # � � �#|fflfflfflffl{zfflfflfflffl}
ipvþ1�1 times

apvþ1
� � �

an�1 # � � �#|fflfflfflffl{zfflfflfflffl}
in�1 times

an;

ð3Þ

where # is a special word which is not contained in wp1

and wp2, and for every s, 1 � s � n� 1, is ¼ infðiisÞ
holds. It is easy to verify that � 0 satisfies wp1. Notice that
between words apv and apvþ1

in � 0 there are exactly
infðiipvÞ þ � � � þ infðiipvþ1

Þ þ pvþ1 � pv � 1 words. There-
fore, since (2) holds, � 0 does not satisfy the subformula
apv �jjv apvþ1

of wp2 and, thus, it does not satisfy wp2.
Thus, we have wp1 6� wp2 which contradicts our initial
assumption.

The proof involving supðjjvÞ is similar. It differs only in
the way we construct text value � 0 (3) and specifically in
the values of i1; . . . ; in�1. We now require that i1 2
ii1; . . . ; in�1 2 iin�1 and for every s, pv � s � pvþ1, we
define:

is ¼
supðiisÞ if supðiisÞ is different

than1
supðjjvÞ þ 1 otherwise:

8><
>:

tu

Proposition 8. Let wp1 and wp2 be proximity word patterns with

n and m words, respectively. Deciding whether wp1 � wp2

can be done in OðnþmÞ time.

Let SAT ðWPÞ denote the satisfiability problem for
formulas of WP. The following two propositions show that
the problems SAT and SAT ðWPÞ are equivalent under
polynomial time reductions.

Proposition 9. SAT is polynomially reducible to SAT ðWPÞ.
Proof. Trivial by considering propositional variables to be

words. tu
Proposition 10. SAT ðWPÞ is polynomially reducible to SAT.

Proof. Let � be a formula of WP. We transform � into an
instance �0 of SAT as follows: We start with �0 being �

(words of � play the role of propositional variables in �0).
Then, we substitute each proximity word pattern wp of �0

by a brand new propositional variable vwp. Finally, we
conjoin to �0 the following formulas:

. vwp¼)w, for each proximity word pattern wp and
word w of wp.

. vwp1
¼)vwp2

, for each pair of proximity word
patterns wp1; wp2 such that wp1 � wp2.

The above steps can be done in polynomial time
because entailment of proximity word patterns can be
done in polynomial time (Proposition 8). It is also easy to

see that � is a satisfiable formula of WP iff �0 is a
satisfiable formula of Boolean logic. Then, the result
holds. tu

Propositions 9 and 10 have the following corollary.

Corollary 1. Deciding whether a word pattern is satisfiable is a
NP-complete problem. Deciding whether a word pattern
entails another is a coNP-complete problem.

Let us close this section by pointing out that satisfiability
and entailment of conjunctive word patterns can be done in
PTIME.

Proposition 11. The satisfiability and entailment problems for

conjunctive word patterns can be solved in polynomial time.

Proof. This is easy to see given Proposition 8. tu

4 SATISFIABILITY AND ENTAILMENT IN AWP
Let SAT ðAWPÞ denote the satisfiability problem for
queries of AWP. The following two propositions show that
the problems SAT and SAT ðAWPÞ are equivalent under
polynomial time reductions.

Proposition 12. SAT is polynomially reducible to SAT ðAWPÞ.
Proof. Let � be an instance of SAT (i.e., a Boolean formula).

For every propositional variable p in � introduce an
attribute Ap. Then, substitute every occurrence of p in �

by Ap ¼ 00true00 to arrive at an instance of SAT ðAWPÞ.
Obviously, � is satisfiable iff is satisfiable. tu

Proposition 13. SAT ðAWPÞ is polynomially reducible to SAT.

Proof. Let � be a query of AWP. Using Proposition 2, � can
easily be transformed into a formula � which is a Boolean
combination of atomic queries. This transformation can
be done in time linear in the size of the formula.

The next step is to substitute in � atomic formulas
A ¼ s and A w wp (where wp is a word or a proximity
word pattern) by propositional variables pA¼s and pAwwp,
respectively, to obtain formula �0. Finally, the following
formulas are conjoined to �0 to obtain :

1. If A ¼ s1 and A ¼ s2 are conjuncts of �0 and
s1 6¼ s2, then conjoin pA¼s1

	 :pA¼s2
.

2. If A ¼ s and A w wp are conjuncts of �0 and
s � wp, then conjoin pA¼s¼)pAwwp.

3. If A ¼ s and A w wp are conjuncts of �0 and
s 6� wp, then conjoin pA¼s¼):pAwwp.

4. If A w wp1 and A w wp2 are conjuncts of �0 and
wp1 � wp2, then conjoin pAwwp1

¼)pAwwp2
.

The above step can be done in polynomial time
because satisfaction and entailment of word patterns in �
can be done in polynomial time. The result for satisfac-
tion is obvious and the result for entailment is from
Proposition 8. It is also easy to see that � is a satisfiable
query iff is a satisfiable formula of Boolean logic. Then,
the result holds. tu
Propositions 12 and 13 have the following corollary.

Corollary 2. Deciding whether a query of AWP is satisfiable is a

NP-complete problem. Deciding whether a query of AWP
entails another is a co-NP-complete problem.

1664 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

The following proposition shows that, as in the case of
WP, satisfiability and entailment of conjunctive queries in
AWP can be done in PTIME. This is good news given that
conjunctive AWP queries are typically utilized in imple-
mentations such as [19], [17], [28].

Proposition 14. The satisfiability and entailment problems for
conjunctive AWP queries can be solved in polynomial time.

To obtain a more accurate picture of the tractable versus
intractable classes of queries in AWP one can profitably
utilize such results from the propositional satisfiability
literature. For example, it is easy to see now that each
tractable class C of SAT formulas has a corresponding class
C0 of tractable formulas of WP or AWP if the 2-variable
propositional formulas used in the proofs of Propositions 10
and 13 belong to C (e.g., this holds for C being the class of
propositional formulas with at most two variables using the
tractability of 2-SAT).

5 RELATED WORK

In this section, we discuss related research. Since formal
analysis based on logic and complexity as done in this
paper is not common in Information Retrieval research, this
section briefly surveys other data models (and systems)
related to the ones studied in this paper.

5.1 WP
To the best of our knowledge, the papers by Chang and
colleagues [9], [10], [8] and the present paper are the only
comprehensive formal treatments of proximity word
patterns in the literature.

Search engines use models similar toWP and AWP. The
most common support for word patterns in search engines
includes the ability to combine words using the Boolean
operators ^, _, and :. However, search engines support a
version of negation in the form of binary operator
AND-NOT which is essentially set difference, and therefore
safe in the database sense of the term [26]. For example, a
search engine query wp1 AND-NOT wp2 will return the set
of documents that satisfy wp1 minus these that satisfy wp2.
Note also that the previous work of [10] has not considered
negation in its word pattern language but has considered
negation in the query language which supports attributes
(the one that corresponds to our model AWP).

Proximity operators are a useful extension of the concept
of “phrase search” used in current search engines. Limited
forms of proximity operators have been offered in the past
by various search engines of the pre-Google era (e.g.,
Altavista had an operator NEAR which meant word-
distance 10, Lycos had an operator NEAR which meant
word-distance 25, and Infoseek used to have a more
sophisticated facility). Google supports proximity by the
use of operator “�” which, when used between two
keywords, specifies a minimum distance of one word
between them (multiple occurences of � can also be used to
specify a larger minimum distance). The search engine
Exalead1 has an operator NEAR which returns documents

that contain given keywords in a vicinity of a fixed number
of words, but no ordering of words is supported.

The need to change their index structures and the high

computational cost of proximity search, is probably the

reason why current search engines limit proximity support

to less general operators compared to those used in models

WP and AWP.
Proximity operators have also been implemented in

other systems such as freeWAIS [23] and INQUERY [5].

There are also advanced IR models such as the model of

proximal nodes [22] with proximity operators between

arbitrary structural components of a document (e.g.,

paragraphs or sections). Data models and query languages

for full-text extensions to XML, e.g., TeXQuery [1] is the

most recent area of research where proximity operators

have been used.
Proximity word patterns can also be viewed as a

particular kind of order constraints in the sense of constraint

networks [14] and databases [25]. There are many papers

that discuss algorithms and complexity of various kinds of

order constraints, e.g., gap-order constraints [24] or tempor-

al constraints [18], [18]. The algorithms and complexity

results regarding WP can also be viewed as a contribution

to this research area.

5.2 AWP
The data model AWP discussed in Section 2 complements

recent proposals for representing and querying textual

information in publish/subscribe systems [7], [6] by using

linguistically motivated concepts such as word and tradi-

tional IR operators (instead of strings and operators such as

string containment [7], [6]). The methodology and techni-

ques of this paper can be used to study the complexity of

satisfiability and entailment for the subscription query

language of [6] and we expect the complexity results to be

similar.
In [21], [19], we have extended the model AWP by

introducing a “similarity” operator based on the IR vector

space model [2]. The similarity concept of this model, called

AWPS (where S stands for similarity), has in the past been

used in database systems with IR influences (e.g., WHIRL

[13]) and, more recently, in XML-based query languages,

e.g., ELIXIR [12], XIRQL [16], and XXL [27].

6 OUTLOOK

We have studied the model theory of WP and AWP and

especially questions related to satisfiability and entailment.

We showed that the satisfiability problem for queries inWP
and AWP is NP-complete and the entailment problem is

co-NP-complete. We also discussed cases where these

problems can be solved in polynomial time.
We would like to use the lessons learned in this paper to

study the complexity of query evaluation in RDBMS with

text functionalities, combinations of RDBMS and IR systems

[11], and proposals for full-text extensions to XML [1]. This

recent paper [4] is a good example of such a study where

the authors consider the concept of strings in various query

languages.

KOUBARAKIS ET AL.: LOGIC AND COMPUTATIONAL COMPLEXITY FOR BOOLEAN INFORMATION RETRIEVAL 1665

1. Exalead (http://www.exalead.com/) is a search engine developed in
France. We mention it here because Exalead is involved in the Quaero
project launched in Europe in the summer of 2005 as the European response
to Google.

ACKNOWLEDGMENTS

This work was performed while Manolis Koubarakis was
with the Technical University of Crete.

REFERENCES

[1] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram, “TeXQuery:
A Full-Text Search Extension to Query,” Proc. 13th Int’l World Wide
Web Conf., pp. 583-594, 2004.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison Wesley, 1999.

[3] H. Balakrishnan, M.F. Kaashoek, D.R. Karger, R. Morris, and I.
Stoica, “Looking Up Data in P2P Systems,” Comm. ACM, vol. 46,
no. 2, pp. 43-48, 2003.

[4] M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin, “Definable
Relations and First-Order Query Languages over Strings,” J. ACM,
vol. 50, no. 5, pp. 694-751, 2003.

[5] J. Callan, W. Croft, and S. Harding, “The INQUERY Retrieval
System,” Proc. Third Int’l Conf. Database and Expert Systems
Applications, pp. 78-83, 1992.

[6] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient
Filtering in Publish Subscribe Systems Using Binary Decision
Diagrams,” Proc. 23rd Int’l Conf. Software Eng. (ICSE ’01), pp. 443-
452, May 2001.

[7] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, “Achieving
Scalability and Expressiveness in an Internet-Scale Event Notifica-
tion Service,” Proc. 19th ACM Symp. Principles of Distributed
Computing (PODC ’00), pp. 219-227, 2000.

[8] K.C.-C. Chang, “Query and Data Mapping across Heterogeneous
Information Sources,” PhD thesis, Stanford Univ., Jan. 2001.

[9] K.C.-C. Chang, H. Garcia-Molina, and A. Paepcke, “Boolean
Query Mapping across Heterogeneous Information Sources,”
IEEE Trans. Knowledge and Data Eng., vol. 8, no. 4, pp. 515-521,
1996.

[10] K.C.-C. Chang, H. Garcia-Molina, and A. Paepcke, “Predicate
Rewriting for Translating Boolean Queries in a Heterogeneous
Information System,” ACM Trans. Information Systems, vol. 17,
no. 1, pp. 1-39, 1999.

[11] S. Chaudhuri, R. Ramakrishnan, and G. Weikum, “Integrating DB
and IR Technologies: What is the Sound of One Hand Clapping?”
Proc. Second Biennial Conf. Innovative Data Systems Research, pp. 1-
12, 2005.

[12] T. Chinenyanga and N. Kushmerick, “Expressive Retrieval from
XML Documents,” Proc. ACM SIGIR ’01, Sept. 2001.

[13] W.W. Cohen and “WHIRL: A Word-Based Information Repre-
sentation Language,” Artificial Intelligence, vol. 118, nos. 1-2,
pp. 163-196, 2000.

[14] R. Dechter, Constraint Processing. Morgan Kaufmann, 2003.
[15] R. Dechter, I. Meiri, and J. Pearl, “Temporal Constraint Net-

works,” Artificial Intelligence, special volume on knowledge
representation, vol. 49, nos. 1-3, pp. 61-95, 1991.

[16] N. Fuhr and K. Großjohann, “XIRQL: An XML Query Language
Based on Information Retrieval Concepts,” ACM Trans. Informa-
tion Systems, vol. 22, no. 2, pp. 313-356, Apr. 2004.

[17] S. Idreos, C. Tryfonopoulos, M. Koubarakis, and Y. Drougas,
“Query Processing in Super-Peer Networks with Languages
Based on Information Retrieval: the P2P-DIET Approach,” Proc.
Int’l Workshop Peer-to-Peer Computing and Databases (P2P&DB),
Mar. 2004.

[18] M. Koubarakis, “The Complexity of Query Evaluation in
Indefinite Temporal Constraint Databases,” Theoretical Computer
Science, L.V.S. Lakshmanan, ed., special issue on uncertainty in
databases and deductive systems, vol. 171, pp. 25-60, Jan. 1997.

[19] M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou,
“Information Alert in Distributed Digital Libraries: The Models,
Languages, and Architecture of DIAS,” Proc. Sixth European Conf.
Research and Advanced Technology for Digital Libraries (ECDL),
pp. 527-542, Sept. 2002.

[20] M. Koubarakis, C. Tryfonopoulos, S. Idreos, and Y. Drougas,
“Selective Information Dissemination in P2P Networks: Problems
and Solutions,” SIGMOD Record, special issue on peer-to-peer
data management, vol. 32, no. 3, pp. 71-76, 2003.

[21] M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris,
“Data Models and Languages for Agent-Based Textual Informa-
tion Dissemination,” Proc. Sixth Int’l Workshop Cooperative Informa-
tion Agents (CIA), pp. 179-193, Sept. 2002.

[22] G. Navarro and R. Baeza-Yates, “Proximal Nodes: A Model to
Query Document Databases by Content and Structure,” ACM
Trans. Information Systems, vol. 15, no. 4, pp. 400-435, 1997.

[23] U. Pfeifer, N. Fuhr, and T. Huynh, “Searching Structured
Documents with the Enhanced Retrieval Functionality of Free-
WAIS-sf and SFgate,” Computer Networks and ISDN Systems,
vol. 27, no. 6, pp. 1027-1036, 1995.

[24] P. Revesz, “A Closed Form Evaluation for Datalog Queries with
Integer (Gap)-Order Constraints,” Theoretical Computer Science,
vol. 116, no. 1, pp. 117-149, 1993.

[25] P. Revesz, Introduction to Constraint Databases. Springer, 2002.
[26] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.

Addison Wesley, 1995.
[27] A. Theobald and G. Weikum, “Adding Relevance to XML,”

WebDB (Selected Papers), pp. 105-124, 2000.
[28] C. Tryfonopoulos, S. Idreos, and M. Koubarakis, “LibraRing: An

Architecture for Distributed Digital Libraries Based on DHTs,”
Proc. Ninth European Conf. Research and Advanced Technology for
Digital Libraries (ECDL), pp. 25-36, Sept. 2005.

[29] C. Tryfonopoulos, S. Idreos, and M. Koubarakis, “Publish/
Subscribe Functionality in IR Environments Using Structured
Overlay Networks,” Proc. 28th Ann. Int’l ACM SIGIR Conf.,
pp. 322-329, Aug. 2005.

[30] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas, “Filtering
Algorithms for Information Retrieval Models with Named
Attributes and Proximity Operators,” Proc. 27th Ann. Int’l ACM
SIGIR Conf., pp. 313-320, July 2004.

Manolis Koubarakis received a degree in
mathematics from the University of Crete, the
MSc degree in computer science from the
University of Toronto, and the PhD degree in
computer science from the National Technical
University of Athens. He joined the Depart-
ment of Informatics and Telecommunications,
National and Kapodistrian University of Athens
in October 2005. Before coming to Athens, he
held positions in the Department of Electronic

and Computer Engineering, Technical University of Crete, where he
was an assistant and associate professor and director of the
Intelligent Systems Laboratory (www.intelligence.tuc.gr), at UMIST,
Manchester, where he was a lecturer and at Imperial College,
London, as a research associate. Professor Koubarakis has
published papers in the areas of database and knowledge-base
systems, constraint programming, intelligent agents, semantic Web,
and peer-to-peer computing. More information is available at
www.di.uoa.gr/~koubarak.

Spiros Skiadopoulos received the diploma the
National Technical University of Athens and the
MSc degree from UMIST, and the PhD degree
from the National Technical University of
Athens. He is an assistant professor at the
University of Peloponnese. His research inter-
ests include spatial and temporal databases,
constraint databases, query evaluation and
optimization, and constraint reasoning and
optimization. He has published more than

25 papers in international refereed journals and conferences.

Christos Tryfonopoulos received the BSc
degree in computer science from the University
of Crete in 2000 and the MSc degree in
computer engineering from the Technical Uni-
versity of Crete in 2002. He is currently pursuing
a PhD degree at the Technical University of
Crete. His research interests include informa-
tion retrieval and filtering over wide-area net-
works, P2P and Grid computing, publish/
subscribe systems, and multiagent systems.

He has published more than 20 research papers in journals,
international conferences, and workshops. His work has been cited
by more than 45 research papers. He has received two scholarships
from the Greek Ministry of Education and a best student paper award at
ECDL 2005. He has also worked as a research assistant in European
IST FET projects DIET and Evergrow. More details on his research
work can be found at http://www.intelligence.tuc.gr/~trifon.

1666 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 12, DECEMBER 2006

