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Abstract

Epistemic states are very useful in Knowledge Representation, in particular

for de�ning logics of minimal knowledge in NonMonotonic Reasoning. The most

successful example has been the introduction of stable belief sets by R. Stalnaker, a

notion which heavily in
uenced the development of modal nonomonotonic logics.

Up to now, the proposed epistemic states do not distinguish between knowledge

and belief, focusing mostly on an analysis of a rational agent's introspective power.

We de�ne and investigate here a structure incorporating what is true, what is

known and what is believed by a rational agent in possible worlds models. The

notion of KBR-structures introduced, provides a �ne-grained modal analysis of

an agent's epistemic state, actually one that di�erentiates knowledge from belief

and accounts for an agent without full introspective power concerning knowledge.

Many epistemic properties of this structure are proved and it is shown that belief

collapses in the form of a Stalnaker stable set, while knowledge does not. Finally,

a representation theorem is proved, which matches KBR-structures to models of

the logic S4:2, advocated by W. Lenzen as the `correct' logic of knowledge, a

statement further supported by the work of R. Stalnaker and other researchers.



1 Introduction

Epistemic Logic [Hin62, Len79] has been traditionally concerned with the rigorous anal-
ysis of the propositional attitudes `agenti knows '' and `agenti believes that ' holds '. It
grew up as an area of Philosophical Logic but it has been given a fresh new perspective
and a strong motivation through its applications in Computer Science (for instance the
analysis of distributed systems [FHMV03]) and Arti�cial Intelligence (autoepistemic
logics [MT93], multi-agent systems [Woo09] and many others). In its current form,
Epistemic Logic has been greatly bene�ted by the development of Modal Logic and, in
particular, by the advent of `possible worlds ' (or Kripke) semantics. Nowadays, many
rich epistemic languages have been introduced and applied in various �elds of comput-
ing; see [vB10] for a short presentation and many pointers to the literature. Epistemic
Logic has recently met Dynamic Logic in an area which deals with the dynamic phenom-
ena of public announcements, `rumours ' and other actions which a�ect the knowledge
state in a group of agents: Dynamic Epistemic Logic [vDvdHK07] deals with logics of
knowledge and change.

Arti�cial Intelligence has provided a new, `introspective' perspective on modal epis-
temic reasoning. In Knowledge Representation, the issue of a `good ' representation of
a rational agent's (typically acting in a domain of interest and holding partial, incom-
plete information about the world) epistemic state is very important. A simple, yet
very successful and in
uential notion is Stalnaker's de�nition of a stable belief set
([Sta93], [MT93]), which has played a signi�cant role in the development of modal Non-
Monotonic Reasoning (NMR). Succint and expressive logical de�nitions of an agent's
epistemic state are of interest to other branches of Knowledge Representation too, such
as belief revision and reasoning about actions.

In this paper we proceed to work on a detailed analysis of the epistemic and dox-
astic theories held by a rational agent, operating in a complex possible-worlds envi-
ronment, under the realistic condition that the information acquired by the agent allows
him to distinguish (at least) some of the possible worlds in the picture. This is de�nitely
di�erent from the S5 picture of the Stalnaker stable sets, worked around the universal
model paradigm, where no possible world is distinguishable for the others. Here, we ac-
tually place the (important for KR) question of the formal representation of an agent's
knowledge and belief, under the lens of classical modal epistemic reasoning and revisit
the notion of epistemic state(s) under a new, semantic perspective. Our objective is to
describe the epistemic and doxastic status of a rational agent without full introspection
(which has been strongly criticized in epistemic logic), taking a modal approach, which
di�erentiates knowledge from belief. We introduce a notion of KBR-structures,
intending to capture the interplay between truth, knowledge and belief held by
an agent operating in a domain modelled as a set of possible-worlds. We examine several
proof-theoretic properties of KBR-structures and provide a representation theorem for
these structures, which proves an exact correspondence to the models of S4:2, the logic
advocated by W. Lenzen as the `correct ' logic of knowledge [Len79]. It is hardly surpris-
ing that the initial motivation of this research has been the ambition to de�ne simple
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variants of Stalnaker's stable sets inspired from interesting epistemic models, such as
the models of S4:2.

The paper is organized as follows: in Section 2 we establish notation and terminology.
In Section 3.1 we provide a motivating example for the epistemic states introduced in
this paper. In the rest of Section 3 we de�ne the KBR-structures and examine their
formal properties. In Section 4 we prove a representation theorem which links KBR-
structures with models of the logic S4:2. In Sections 5 we provide a detailed example
for an epistemic situation, in view of our results in the previous sections. We conclude in
Section 6 with some references to related work and some questions for further research.

2 Notation and Terminology

2.1 Modal Logic

In this section we gather the necessary background material and results: for the ba-
sics of Modal Logic and modal Non-Monotonic Reasoning the reader is referred to the
books [BdRV01, Che80, HC96, MT93]. We assume a modal propositional language L2,
endowed with an epistemic operator 2', read as `it is known that ' holds '. Sentence
symbols include ⊤ (for truth) and ⊥ (for falsity). Some of the important axioms in
epistemic/doxastic logic are:

K: (2' ∧2(' ⊃  )) ⊃ 2 

T: 2' ⊃ ' (axiom of true, justi�ed knowledge)

4: 2' ⊃ 22' (axiom of positive introspection)

5: ¬2' ⊃ 2¬2' (axiom of negative introspection)

G: ¬2¬2' ⊃ 2¬2¬'

The epistemic interpretation of G will be made clear below. Modal logics are sets of
modal formulas containing classical propositional logic (i.e. containing all tautologies in
the augmented language L2) and closed under rule

MP:
'; ' ⊃  

 

The smallest modal logic is denoted as PC (propositional calculus in the augmented
language). Normal are called those modal logics, which contain all instances of axiom
K and are closed under the rule of generalization

RN:
'

2'

By KA1 : : :An we denote the normal modal logic axiomatized by axioms A1 to An.
Well-known epistemic logics comprise KT45 (S5) (a strong logic of knowledge) and
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KT4G (S4:2). Throughout this paper we use the notion of strong provability
from a theory I [MT93]. In the case of a normal modal logic Λ we write I ⊢Λ '
i� there is a Hilbert-style proof, where each step of the proof is a formula, which is a
tautology in L2, or an instance of K, or an instance of an axiom of Λ, or a member of I,
or a result of applying Uniform Substitution, MP or RN to formulas of previous steps.
We say that a theory I is consistent with logic Λ (denoted as: cΛ) i� I 0Λ ⊥. Theory �
is I-consistent with Λ (IcΛ) i� (∀n ∈ N)(∀'0; : : : ; 'n ∈ �) I 0Λ '0 ∧ : : : ∧ 'n ⊃ ⊥, and
theory � is maximal I-consistent with Λ (mIcΛ) i� � is IcΛ and (∀ =∈ �) � ∪ { } is
not I-consistent with Λ (IincΛ).

Furthermore, we say that I is closed under Λ-consequence i� I = CnΛ(I). By
de�nition, CnΛ(I) = {' ∈ L2 | I ⊢Λ '}. The notion of proof ⊢Λ depends on Λ.
Except of modus ponens, in case of a normal modal logic Λ, it contains generalization.
If propositional logic PCL is considered, and I ⊆ L (as in Prop.4.3 later on), then
we say that I is closed under propositional consequence i� I = CnPCL(I). This time
CnPCL(I) =def. {' ∈ L | I ⊢PCL '}, and proof ⊢PCL contains only modus ponens.

Normal modal logics are interpreted over Kripke models: a Kripke model M =
⟨W;R; V ⟩ consists of a set of possible worlds (states, situations) W and a binary acces-
sibility relation between them R ⊆ W ×W : whenever wRv, we say that world w `sees '
world v, or that v is an alternative to w. The valuation V determines which proposi-
tional variables are true inside each possible world. Within a world w, the propositional
connectives (¬, ⊃, ∧, ∨) are interpreted classically, while 2' is true at w i� it is true
in every world `seen' by w (notation: M; w 
 2'). The pair F = ⟨W;R⟩ is called the
frame underlying M. A logic Λ is determined by a class of frames i� it is sound and
complete with respect to this class; it is known that S5 is determined by the class of
frames with a universal accessibility relation, while S4:2 is determined by the class of
frames with a re
exive, transitive and directed1 accessibility relation [Gol92].

2.2 Stable belief sets

The following notion has been very in
uential in NonMonotonic Reasoning. Stable
belief sets, were introduced by R. Stalnaker in the early '80s [Sta93] as a formal
representation of the epistemic state of an ideally rational agent, with full introspective
capabilities. A set of formulas S in a monomodal epistemic language is a stable set if it
is `stable' under classical inference and epistemic introspection:

(i) CnPC(S) ⊆ S

(ii) ' ∈ S implies 2' ∈ S

(iii) ' =∈ S implies ¬2' ∈ S

1 i.e. (∀w; v ∈ W )(∃u ∈ W )(wRu & vRu).
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2.3 A digression on Bimodal Epistemic Logics and the epistemic

content of S4:2

W. Lenzen has advocated in [Len79] that S4:2 is the `correct' logic of knowledge and be-
lief. His results are further supported by R. Stalnaker's work [Sta06] who has arrived at
S4:2 through a di�erent (but equivalent) set of epistemic principles. Our perspective is
very much in
uenced by W. Lenzen's work in [Len79], where many interesting formula-
tions of knowledge and belief are discussed. To explain brie
y the epistemic importance
of S4:2 we will move temporarily to a bimodal language in order to express axioms that
capture the interplay between knowledge (K) and belief (B). Firstly let us explain that
the `basic' epistemic logic is S4K axiomatized byKK: K'∧K(' ⊃  ) ⊃ K , TK: K' ⊃ '
and 4K: K' ⊃ KK'. Another important logic is doxastic KD45B, axiomatized by KB,
4B and the axioms DB: B' ⊃ ¬B¬' and 5B: ¬B' ⊃ B¬B'.
The so called bridge axioms or interaction axioms attempt to capture the interaction
between the two attitudes. Following is a list of the most important ones, with the name
R. Stalnaker uses in [Sta06]; inside the parenthesis is the name used by W. Lenzen for
the same axiom, if the name is di�erent.

KB: K' ⊃ B'

Knowledge implies belief. (B1, entailment property in [Hal96])

(B2:3) B' ⊃ ¬B¬K'
Assuming that something is believed to be true, it cannot be the case that it
is believed not to be known2.

PIB: B' ⊃ KB'

Positive introspection regarding belief. (B2:4)

NIB: ¬B' ⊃ K¬B'
Negative introspection regarding belief.

SB: B' ⊃ BK'

`strong belief ' { `subjective certainty'. (B2:1)

The epistemic importance of S4:2. In the late '70s, W. Lenzen proved that assuming
S4K for knowledge, KD45B for belief and some plausible axioms for their interplay, we
arrive at a logic practically equivalent to S4:2, assuming that belief there is captured by
a derived modal operator introduced by the axiom DB: B' ≡ ¬K¬K' (which captures
belief through knowledge); we call this version S4:2KB. Similar results can be found in
R. Stalnaker's work.

2 According to W. Lenzen, a `realist epistemologist' should, at least, accept this principle [Len79,
p. 43].
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Proposition 2.1

S4+KD45B +B1+B2:3+B2:4=S4:2KB [Len79, Lenzen]

S4+CB+KB+ SB+PIB+NIB=S4:2KB [Sta06, Stalnaker]

Ending this digression, we wish to remind the reader that our language is monomodal
in this paper, we reserve 2' for knowledge and we keep Lenzen's shorthhand for belief
as ¬2¬2'. Some of the epistemic principles mentioned above, will be used below in
our results.

2.4 Cluster analysis of transitive logics

The cluster analysis of transitive logics is well known [Gol92, Chap.8][Seg71]. We
provide the necessary de�nitions and results below, with a bit of personal 
avour in
terminology.

Some useful facts. We will restrict ourselves to possible-worlds frames with a re
ex-
ive, transitive and directed relation (henceforth called rtd-relation), keeping in mind
that in the class of re
exive and transitive frames, directedness is equivalent to weak
directedness3 [Gol92, p. 30]. The following de�nition for these relations, captures the
notion of cluster, as a maximal subset of states, inside which the (restriction of the)
accessibility relation is universal. Following this de�nition, we gather some properties
of clusters inside rtd-relations.

De�nition 2.2 Let R ⊆ W ×W be any (binary) rtd-relation on W , and ∅ ̸= C ⊆ W .

(i) C is called a cluster of R i�
(∀s; t ∈ C)sRt and (∀u ∈ W \ C)(∃v ∈ C)(¬uRv or ¬vRu)

(ii) The cluster C of R is called �nal i� (∀u ∈ W \ C)(∀v ∈ C)(uRv & ¬vRu)

Fact 2.3

(i) (∀s ∈ W )(∃C : cluster) s ∈ C

(ii) (∀ clusters C;C ′ ⊆ W ) C ∩ C ′ = ∅

(iii) (∀ clusters C;C ′ ⊆ W )(∀s ∈ C; s′ ∈ C ′)(sRs′ =⇒ (∀t ∈ C; t′ ∈ C ′) tRt′)

(iv) (∀ clusters C;C ′ ⊆ W )(∀s ∈ C; s′ ∈ C ′)(
(C ̸= C ′ & sRs′) =⇒ (∀t ∈ C; t′ ∈ C ′) ¬t′Rt

)
(v) If a �nal cluster exists, it is unique. There is always a �nal cluster in �nite

models.

3 i.e. (∀w; v; u ∈ W )
(
(wRv & wRu) ⇒ (∃t ∈ W )(vRt & uRt)

)
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It is customary to order clusters too, and we employ the following de�nition to make
this concrete. As we will prove, there is no loss of generality in `collapsing ' the clusters
by de�ning a relation on the clusters' indices and we will work for simplicity with frames
possessing a �nite number of clusters (the indices will be members of D = {0; : : : ; n}).
The lemma following the de�nition makes clear that the relation constructed inherits
properties from its `generating ' relation R.

De�nition 2.4 Let R be an rtd-relation on W . Then, a pattern-relation Rp ⊆ D ×D
of R is any relation on D s.t. (∀i; j ∈ D)

iRpj ⇐⇒ (∃s ∈ Ci; t ∈ Cj) sRt

where C0; : : : ; Cn ⊆ W is an enumeration of the clusters of R.

Lemma 2.5 Let R be an rtd-relation on W and Rp a pattern-relation of R (for clusters
C0; : : : ; Cn ⊆ W ). Then,

(i) (∀i; j ∈ D)
(
iRpj ⇐⇒ (∀s ∈ Ci; t ∈ Cj) sRt

)
(ii) Rp is also an rtd-relation.

(iii) All clusters of Rp are singletons.

Proof. (i) It is immediate, by Def.2.4 and Fact 2.3(ii).

(ii) Follows easily by Def.2.4 and (i), since R is rtd.

(iii) First of all, in light of (ii), it is meaningful to refer to Rp-clusters, which contain
R-clusters. Suppose, for the sake of contradiction, that there is an Rp-cluster with more
than one elements. Let i; j be two of them. Since they belong to an Rp-cluster, by
Def.2.2(i), iRpj and jRpi, hence, by (i), (∀s ∈ Ci; t ∈ Cj) (sRt & tRs) (1)
But, by Fact 2.3(ii) (and since Cj ̸= ∅), there exists a u ∈ Cj \Ci, hence, by Def.2.2(i),
there is a v ∈ Ci s.t. ¬uRv or ¬vRu, which contradicts to (1). And since clusters are
by de�nition non-empty, they are singletons.

The property (iii) entails another one, which will be useful below, so we will focus on
rtd-relations endowed with (iii). These relations deserve a name.

De�nition 2.6 Every binary relation which is re
exive, transitive, directed and has
only singleton clusters (i.e. every cluster consists of only one re
exive element) is called
a simple rtd-relation (s-rtd).

Lemma 2.7 Let R be an s-rtd-relation on W . Then, there is an f ∈ W s.t.

(Gd) (∀i ∈ W )
(
iRf & (i ̸= f ⇒ ¬fRi)

)
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Proof. Let F ⊆ W be the �nal cluster, guaranteed by Fact 2.3(v), and i ∈ W . Since
every cluster is a singleton, let F = {f}. If i = f , then, since R is re
exive, iRf . If
i ̸= f , then, i ∈ W \ F , hence, by Fact 2.3(ii), iRf and ¬fRi.

The following fact is now obvious.

Corollary 2.8 Let R be an rtd-relation on W and Rp a pattern relation of R (for
clusters C0; : : : ; Cn ⊆ W ). Then, Rp is an s-rtd-relation and satis�es (Gd), where
W = D.

Let us mention here that it can be proved that S4:2 is also determined by the subclass
of its frames (�nite or in�nite) possessing a �nal cluster ; the result is implicit in [KT07]
and it can be also found at [KZ15].

3 KBR-structures

3.1 Motivation

We will work on an example of M. Fitting from [Fit93]; similar examples can be found
in various places at [vDvdHK07]. Assume that we are interested in the representation of
knowledge (and ignorance) of an agent about the current raining conditions in New York
and in Novosibirsk. We need two propositional variables (e.g. y; n), which represent \it's
raining in New York" and \it's raining in Novosibirsk" respectively. Then, there are
four di�erent situations, i.e. combinations of truth values of y and n. Suppose that
our agent resides in New York and knows whether it is raining there or not. Assume
that it is raining there. Then, she would consider both situations y; n and y;¬n as
two alternatives of the true state of the world. If she were in y; n, she could not be
able to distinguish her situation from y;¬n, and vice versa. And of course, y; n itself
is indistinguishable from y; n. In this case, since y is true in every alternative situation
for our agent (i.e. she knows y), 2y is true in y; n and in y;¬n. Analogously, if it
isn't raining in New York, situations ¬y; n and ¬y;¬n are not distinguishable to each
other by our agent, and 2¬y is true in both of them. This epistemic model could be
represented as in Figure 3.1 on page 8, provided that arrows connect indistinguishable
situations.

This is the standard approach of an epistemic model, and the model is considered
to be symmetric, i.e. that all arrows are bidirectional. This means in our model, for
instance, that our agent's ignorance about the weather conditions in Novosibirsk is
independent of what is really happening there, in other words, she knowns exactly the
same facts independently of where she is located, within the indistinguishable part of the
model. Generally, the standard approach assumes that all indistinguishable to eachother
situations, `see' one another, which is a result of the assumption that the information
given to the agent is the same in all indistinguishable situations.
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We claim that this assumption is not always true. For example, in the previous model
one might think of a special case, where the heavy rain in Novosibirsk was reported in the
news headlines, and our agent became aware of that. Then, assuming it isn't raining
in New York, from ¬y; n, situation ¬y;¬n is distinguishable, whereas from ¬y;¬n,
situation ¬y; n isn't, since we assume that in this case no comment about the (good)
weather in Novosibirsk was made by the news agencies, and our agent doesn't know
what's happening there.

Except of some special cases, which can not be covered by the assumption of uniform
distribution of information within indistinguishable situations, there is another draw-
back of the standard assumption and its entailment that all indistinguishable situations
`see' each other. Suppose that an agent, being in a situation (let us name it) i, does not
know '. Then, there must be an indistinguishable from i situation j, where ¬' holds.
Since every other indistinguishable from i situation k sees j, it will also in k be true that
our agent does not know ' (a witness for that is j). Hence, our agent does know in i
that she doesn't know '. So, in every situation, it holds that if the agent does not know
something, then she is aware of her ignorance about that. And this very fact, which is
known as negative introspection, is not acceptable by the vast majority of philosophers.

In our approach, trying to �nd a remedy for these drawbacks, we will assume that
information is not uniformly distributed all over the situations. We intend to
establish a formal representation of knowledge sets, which will not necessarily be the
same globally, but di�erent for each situation (in fact, we will describe the properties of
those sets, not necessarily for each situation, but for `blocks' of indistinguishable situ-
ations). So, assuming that there are n di�erent situations, we denote for any situation
i ∈ {0; : : : ; n} the agent's knowledge set as �i. To be able to de�ne those sets,
we have to consider sets Ti, which will contain all true formulas in situation
i. Our agent does not necessarily know every formula in Ti; and anything believed by
her, might not be true. Furthermore, being in a situation i the agent might distinguish
between her current situation and another, because she has some information, which
allows her to do so. But she might also not be able not distinguish between her current
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situation i and another j. As explained previously, if j is an alternative situation for i,
then it is not necessarily true that i is an alternative situation for j, since being in j, our
agent might be provided with extra information, which might allow her to distinguish
between j and i.

Note also, that - in the general case - the agent does not know in which sit-
uation she is located. If we know that the agent is in situation i and that, say, j,
k and l are alternative situations for i (i.e. indistinguishable from i), she might not
know that she is in i. She rather knows that i, j, k and l are all indistinguishable situ-
ations. Speaking about indistinguishable situations from i means that we do know that
if our agent were in i, she would consider these situations together with i as alternative
variations of her present situation, which is unknown to her.

Furthermore, we could know { since we enjoy the \eagle's view" { that if our
agent were in situation j, she would have the information to distinguish between her
situation and, say, k, but this is something that she does not know. Only if she actually
were in j she would know that. Now, assume that in the previous example our agent is
aware of the fact that in all alternative situations (included the unknown to her, current
situation i) a formula ' is true (i.e. ' ∈ Ti ∩ Tj ∩ Tk ∩ Tl). Then, it is natural to say
that she is sure about ', that she knows '. Therefore, given a relation R ⊆ {0; : : : ; n},
representing all couples of indistinguishable situations (i.e. iRj means that j is an
alternative situation for i), we will de�ne in the next section, �i as

∩
iRj Tj.

As mentioned previously, in our modal language L2 the modality denotes knowl-
edge. Hence, we have two ways of denoting knowledge of ': using formula 2', and
saying that ' ∈ �i. To be consistent with our intuitions, we have to demand that

if ' ∈ �i; then 2' ∈ Ti (3.0.i)

(i.e. if our agent knows ', then, obviously, it is true that she does know it!), and

if ' =∈ �i; then ¬2' ∈ Ti (3.0.ii)

One might wonder why don't we simply demand ' ∈ �i i� 2' ∈ Ti. Then, ' =∈ �i would
simply entail 2' =∈ Ti, which seams to be natural, since \it is not true that I know '"
looks equivalent to \it is true that I do not know '"! This equivalence is obviously true,
if we see each situation i as a unique state of a�airs, as we did hitherto. But in a more
general case, we could consider bunches of situations (possibly, in�nite many situations
in a bunch), where all situations of the same bunch are indistinguishable to each other,
i.e. for every situation s of a bunch, any other of the same bunch, is an alternative one
for s. From now on we will call those bunches, clusters and we will denote them as i, j,
k etc. The situations themselves will be denoted as s, t, u etc.

We intend to de�ne those clusters in a such way, that if some situation s of a
cluster i considers situation t of any other cluster as an alternative one, then every
other situation of i will consider t as an alternative one. And if we say that ' is true
in cluster i, obviously, we would like to mean that ' is true in every situation of i,
i.e. that Ti contains all formulas valid in i. Hence, 2' =∈ Ti does not necessarily entail
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that ¬2' ∈ Ti. But the inverse is true. That's why we chose the stronger property:
' =∈ �i ⇒ ¬2' ∈ Ti. Note also that now, R does not anymore relate situations, rather
than clusters, in the sense that iRj means that our agent, being in any situation s of i
considers as indistinguishable from s any situation of j.

We will also adopt the option of de�ning belief through knowledge. To do so,
we will follow the idea introduced by W. Lenzen [Len79], who argued that the following
de�nition of belief is acceptable even by the `most scrupulous epistemologist ': an agent
believes ' i� she does not know that she doesn't know ' (i.e. ¬2¬2' de�nes
`believing in ''). Now, our agent knows that she doesn't know ' i� ' =∈ �j for every
alternative situation j for i, hence, she would believe ' i� ' ∈ �j for some alternative
situation j for i. Therefore { assuming that the belief sets, containing everything be-
lieved by our agent in any situation of i, will be denoted as �i { it is consistent with
Lenzen's de�nition to identify �i as

∪
iRj �j. As noted above, there exists a direct way

to speak about \believing" ': ¬2¬2'. So, to be consistent with our intuitions, we
have to de�ne the theories Ti and �i in such a way, that they will satisfy the following
conditions:

if ' ∈ �i; then ¬2¬2' ∈ Ti (3.0.iii)

(i.e. if our agent believes in ', then, it is true that she does not know that she doesn't
know it), and

if ' =∈ �i; then 2¬2' ∈ Ti (3.0.iv)

Let us now sum up, everything we have discussed so far. We began, considering
an agent, who might be in some situation, and who accepts as possible from there, all
other situations, which she can not distinguish. We presumed that there is a relation R
connecting those situations, in the sense that, sRt i� situation t is indistinguishable from
s. We decided that R should be re
exive, transitive and directed (rtd), and we saw that
in that case, there are clusters of situations, which (situations) are indistinguishable
from eachother. Then, by de�ning the pattern relation Rp of R, which connects all
clusters of R, we proved that it is an s-rtd-relation, i.e. rtd and, additionally, it has only
singleton-clusters, which entails that there is one \�nal" element (property (Gd)). So,
henceforth, we will focus on this pattern relation, which links clusters to eachother, and
everytime we mention R, we refer to the pattern relation, which is s-rtd.

We also declared that we want Ti to be the set of all valid formulas in all situations
of cluster i. We found out that �i =

∩
iRj Tj should be the set of all formulas known in

cluster i, and �i =
∪

iRj �j the set of all formulas believed there. We were interested only
to clusters, rather that to single situations, since in all situations of a cluster, exactly
the same formulas are known. This is immediate, since to `know in a situation s' means
`true in all indistinguishable situations from s' and every situation in a cluster considers
as indistinguishable exactly the same set of situations.

Hence, assuming that we were given an s-rtd-relation between clusters of situations,
we should describe all requirement the Ti's should meet, so that the intuitive properties
(3.0.i){(3.0.iv) about knowledge and belief are true. This is exactly what we are going
to do in next section.
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3.2 De�nition of KBR-structures

Let us have in mind that D = {0; : : : ; n} contains the (indices of the) clusters of the
epistemic situations considered, and that T0; : : : ; Tn are the corresponding theories, con-
taining exactly all formulas, valid there. Firstly, we describe all those properties, which
these theories should satisfy, and privide the overall structure a name.

De�nition 3.1 Let R ⊆ D × D be an s-rtd-relation on D and T0; : : : ; Tn ⊆ L2 be
consistent theories s.t. (∀i ∈ D)

(PCi) PCL2
⊆ Ti and Ti is closed under MP

(Pi) (∀' ∈ L2)(' ∈
∩

iRj Tj ⇒ 2' ∈ Ti)

(Ni) (∀' ∈ L2)(' =∈ Ti ⇒ ¬2' ∈
∩

jRi Tj)

Furthermore, for any i ∈ D, we de�ne �i and �i as

�i =
∩
iRj

Tj and �i =
∪
iRj

�j

Then, the ordered triple ⟨(Ti); (�i); (�i)⟩Ri∈D is called a KBR-structure. In fact, it is a
triple consisting of n-tuples of theories.

The following simple example demonstrates that Stalnaker stable sets correspond to a
trivial case of our setting, i.e. one that originates from a simple cluster.

Example 3.2 Consider D = {0}, a consistent theory T0 ⊆ L2, and the corresponding
KB{(0;0)}-structure ⟨T0; �0;�0⟩{(0;0)} (for the trivial s-rtd-relation overD, {(0; 0)}). Then,
by Def. 3.1, T0 satis�es: (∀' ∈ L2)

(PC0) PCL2
⊆ T0 and T0 is closed under MP

(P0) ' ∈ T0 ⇒ 2' ∈ T0

(N0) ' =∈ T0 ⇒ ¬2' ∈ T0

T0 is a stable set according to Stalnaker's de�nition. Furthermore, �0 = �0 = T0.

Example 3.3 Let us consider now the s-rtd-relation R = {(0; 0); (1; 1); (1; 0)} and the
corresponding KBR-structure ⟨(Ti); (�i); (�i)⟩Ri∈D. Then, Def.3.1 says that T0 and T1 are
meant to be consistent and to satisfy all conditions listed below: (∀' ∈ L2)

(PC0;1) PCL2
⊆ T0; T1 and T0; T1 are closed under MP

(P0) ' ∈ T0 ⇒ 2' ∈ T0

11



(N0) ' =∈ T0 ⇒ ¬2' ∈ T0 & ¬2' ∈ T1

(P1) ' ∈ T0 & ' ∈ T1 ⇒ 2' ∈ T1

(N1) ' =∈ T1 ⇒ ¬2' ∈ T1

Furthermore, �0 = T0, �1 = T0 ∩T1, �0 = T0 and �1 = T0 ∪ (T0 ∩T1) = T0. The fact that
�0 = �1 = T0 is not a coincidence, but a result of some properties, which are satis�ed
by R, and which will be proved below (Fact 3.14).

The next Fact shows that everything in De�nition 3.1 is consistent with what we said
in section 3.1.

Fact 3.4 (∀i ∈ D)
(
(Pi) ⇐⇒ (3:0:i) & (Ni) ⇐⇒ (3:0:ii)

)
De�nition 3.1 entails properties (3.0.iii), (3.0.iv) and (∀i ∈ D)(∀' ∈ L2)

' ∈ �i ⇐⇒ 2' ∈ Ti and ' ∈ �i ⇐⇒ ¬2¬2' ∈ Ti (3.4.v)

Proof. The equivalence of (Pi) and (3.0.i) is immediate, by de�nition of �i. Next,

assume that (∀i ∈ D)(Ni) holds and let ' =∈ �i. Then, by de�nition of �i, there is a
j ∈ D s.t. iRj and ' =∈ Tj, and by (Nj), ¬2' ∈ Ti.

Conversely, assume that (∀i ∈ D) (3.0.ii) holds and let ' =∈ Ti and j ∈ D s.t.
jRi. Suppose for the sake of contradiction, that ' ∈ �j. Then, by de�nition of �j,
' ∈

∩
jRk Tk, and since jRi, ' ∈ Ti, which is a contradiction. Hence, ' =∈ �j, so, by

(3.0.ii), ¬2' ∈ Tj. Therefore, ¬2' ∈
∩

jRi Tj, and (Ni) is true.

For (3.0.iii), assume that ' ∈ �i. Then, by de�nition of �i, there is an i ∈ D s.t. iRj
and ' ∈ �j. Hence, by (3.0.i), 2' ∈ Tj, and since Tj is consistent, ¬2' =∈ Tj, so,
¬2' =∈

∩
iRj Tj, therefore, by de�nition of �i, ¬2' =∈ �i, and by (3.0.ii), ¬2¬2' ∈ Ti.

For (3.0.iv), let ' =∈ �i. Then, by de�nition of �i, for all j ∈ D s.t. iRj, ' =∈ �j, hence,
by (3.0.ii), (∀j ∈ D)(iRj ⇒ ¬2' ∈ Tj), so, ¬2' ∈

∩
iRj Tj, i.e., by de�nition of �i,

¬2' ∈ �i, and �nally, by (3.0.i), 2¬2' ∈ Ti.

For (3.4.v), if ' =∈ �i, then, by (3.0.ii), ¬2' ∈ Ti, hence, since every Ti is consistent,
2' =∈ Ti. Therefore, using also (3.0.i), ' ∈ �i ⇔ 2' ∈ Ti. Furthermore, if ' =∈ �i, then,
by (3.0.iv), 2¬2' ∈ Ti, hence, since Ti is consistent, ¬2¬2' =∈ Ti. So, by (3.0.iii),
' ∈ �i ⇔ ¬2¬2' ∈ Ti.

3.3 Epistemic properties of KBR-structures

Even without any restrictions to R, Def. 3.1 would endow all theories appearing there
with axiomK, as the �rst lemma veri�es. Further on in our discussion in the motivation
section, it would be desirable that the properties of R would lead to the incorporation of
some intuitively acceptable properties of knowledge and belief in �i and �i. The following
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lemmata state that re
exivity leads to two desirable properties: the entailment thesis
(knowledge implies belief) and the property requiring that knowledge implies
certainty.

Lemma 3.5 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀';  ∈ L2) K ∈ Ti

Proof. If ¬2' ∈ Ti or ¬2(' ⊃  ) ∈ Ti, then, by (PCi), K ∈ Ti.

If ¬2' =∈ Ti and ¬2(' ⊃  ) =∈ Ti, then, by (3.0.ii), ' ∈ �i and ' ⊃  ∈ �i, hence, by
de�nition of �i, ' ∈

∩
iRj Tj and ' ⊃  ∈

∩
iRj Tj, so, by (PCj),  ∈

∩
iRj Tj, therefore,

by (Pi), 2 ∈ Ti, and �nally, by (PCi), again K ∈ Ti.

Lemma 3.6 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then, (∀i ∈ D) �i ⊆ Ti∩�i

(i.e. everything our agent knows is true, and she believes it).

Proof. Assume i ∈ D and ' ∈ �i. By de�nition of �i, ' ∈
∩

iRj Tj, and since iRi,

' ∈ Ti. Furthermore, since iRi, ' ∈
∪

iRj �j = �i.

Lemma 3.7 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀' ∈ L2) T ∈ Ti

Proof. If ¬2' ∈ Ti, then, by (PCi), T ∈ Ti.
If ¬2' =∈ Ti, then, by (3.0.ii), ' ∈ �i, i.e. by de�nition of �i, ' ∈

∩
iRj Tj, and since R

is re
exive, iRi, so, ' ∈ Ti, hence, by (PCi), again T ∈ Ti.

Not really surprisingly, transitivity entails positive introspection concerning knowl-
edge, as a context rule. Next, Lemma 3.8 along with the de�nition of �i entail Lemma
3.9.

Lemma 3.8 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then, (∀i ∈ D)

(PIi) (∀' ∈ L2)(' ∈ �i ⇒ 2' ∈ �i)

Proof. Suppose that ' ∈ �i, i.e. by de�nition of �i, ' ∈
∩

iRj Tj. Then,

(∀j ∈ D)(iRj ⇒ ' ∈ Tj) (∗)

Let now k ∈ D s.t. iRk, and l ∈ D s.t. kRl. Since R is transitive, iRl, so, by (∗),
' ∈ Tl. Hence, ' ∈

∩
kRl Tl, subsequently, by (Pk), 2' ∈ Tk. Therefore, 2' ∈

∩
iRk Tk,

i.e. by de�nition of �i, 2' ∈ �i.

Lemma 3.9 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀' ∈ L2)(' ∈ �i ⇒ 2' ∈ �i)

13



Note that Lemma 3.9 in light of (3.4.v) (see section 3.1) shows that if our agent believes
something, then she believes that she knows it (which is similar to Lenzen's property
(B2.1) [Len79]). Transitivity of R is embedded in every theory of Def. 3.1 through
axiom 4. Finally, Lemma 3.11 is technically useful in the next section.

Lemma 3.10 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀' ∈ L2) 4 ∈ Ti

Proof. If ¬2' ∈ Ti, then, by (PCi), 4 ∈ Ti.
If ¬2' =∈ Ti, then, by (3.0.ii), ' ∈ �i, and by Lemma 3.8, 2' ∈ �i, hence, by (3.0.i),
22' ∈ Ti, so, by (PCi), again 4 ∈ Ti.

Lemma 3.11 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then, (∀i; j ∈ D)

iRj ⇒ �i ⊆ �j

Proof. Let ' ∈ �i and k ∈ D s.t. jRk. Then, since R is transitive, iRk, and by
de�nition of �i, ' ∈ Tk, hence, by de�nition of �j, ' ∈ �j.

Finally, directedness of R leads to properties, similar to Lenzen's (B2.3) and (B2.4)
[Len79, p.43-44]. The former one, which should be acceptable by a \realistic epistemol-
ogist", says that if an agent believes something, then she can not believe that
she doesn't know it. The latter property, which should be acceptable { according to
Lenzen { by a \simpli�er", states that if an agent believes something, then she
knows that she believes it.

Lemma 3.12 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then,
(∀i ∈ D)(∀' ∈ L2)

(B2:3) ' ∈ �i ⇒ ¬2' =∈ �i and (B2:4) ' ∈ �i ⇒ ¬2¬2' ∈ �i

Proof. Since both implications have the same premise, we start proving both of them,
assuming that ' ∈ �i. Then, by de�nition of �i, there is a j ∈ D s.t. iRj and ' ∈ �j.
Let now l ∈ D s.t. iRl. Then, since R is weakly directed 4, there must be an m ∈ D s.t.
jRm and lRm. Furthermore, assume that s ∈ D be s.t. mRs. Since jRm and since
R is transitive, jRs, hence, since ' ∈ �j =

∩
jRk Tk, ' ∈ Ts. So, ' ∈

∩
mRs Ts, and by

(Pm), 2' ∈ Tm, and since Tm is consistent, ¬2' =∈ Tm.

For (B2.3). It has been proved so far, that there is an m ∈ D s.t. lRm and ¬2' =∈ Tm.
Consequently, by de�nition of �l, ¬2' =∈ �l, hence, (∀l ∈ D)(iRl ⇒ ¬2' =∈ �l), so, by
de�nition of �i, ¬2' =∈ �i.

For (B2.4). Since ¬2' =∈ Tm and since lRm, by (Nm), ¬2¬2' ∈ Tl, hence, ¬2¬2' ∈∩
iRl Tl, and by de�nition of �i, ¬2¬2' ∈ �i.

4 As we have said in section 2, since R is re
exive and transitive, being directed is equivalent to
being weakly directed.
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Now, let us focus on the last presumption for R: being a simple rtd-relation. Then,
by Lemma 2.7, property (Gd) is true for R. Without loss of generality, we will tacitly
assume that the `�nal ' element of R is 0, i.e. that (Gd) appears in the following form:

(Gd) (∀i ∈ D) (iR0 & (i > 0 ⇒ ¬0Ri))

This property endows every theory of Def. 3.1 with axiom G and leads to next two
results.

Lemma 3.13 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then,

(∀i ∈ D)(∀' ∈ L2) G ∈ Ti

Proof. If 2¬2' ∈ Ti, then, by (PCi), G ∈ Ti.

If 2¬2' =∈ Ti, then, by (Pi), there is a j ∈ D s.t. iRj and ¬2' =∈ Tj, hence, since (by
(Gd)) jR0, by (N0), ' ∈ T0, therefore, because T0 is consistent, ¬' =∈ T0, and by (N0),
¬2¬' ∈

∩
jR0 Tj, so, by (Gd), (∀j ∈ D)¬2¬' ∈ Tj, hence of course, ¬2¬' ∈

∩
iRj Tj,

and by (Pi), 2¬2¬' ∈ Ti, consequently, by (PCi), again G ∈ Ti.

Fact 3.14 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then, (∀i ∈ D)

(i) �i = �0 = T0

(ii) �i is a stable theory according to Stalnaker's de�nition

Proof. (i) Suppose that ' ∈ �i. Then, by de�nition of �i, there is a j ∈ D s.t. iRj
and ' ∈ �j, hence, by de�nition of �j, ' ∈

∩
jRk Tk, and since { by (Gd) { jR0, ' ∈ T0.

Conversely, assume that ' ∈ T0. But, by de�nition of �0 and (Gd), �0 =
∩

0Rj Tj = T0,
hence, ' ∈ �0. But, again by (Gd), iR0, hence, ' ∈

∪
iRj �j, so, by de�nition of �i,

' ∈ �i.

It has been proved that �i = T0, but also that �0 = T0.

(ii) (PC0), (P0) and (N0) guarantee that T0 is Stalnaker stable. Then, so is every �i, by
(i).

Now, it is immediate that our belief sets follow the principle of consistency of belief,
i.e. that if an agent believes ', she can not believe ¬'.

Lemma 3.15 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then,
(∀i ∈ D)(∀' ∈ L2)

' ∈ �i ⇒ ¬' =∈ �i

Proof. If ' ∈ �i, then, by Fact 3.14, ' ∈ T0, hence, by consistency of T0, ¬' =∈ T0,
and again by Fact 3.14, ¬' =∈ �i.
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All the previous lemmata seem to justify the choice of the KBR notion in Def. 3.1:
KBR-structures containK(nowledge) theories (the �i's), and B(elief) theories (the �i's).
According to Fact 3.14, one of the �i's coincides with everything believed in any situation.
Without loss of generality, it is assumed that this one is �0. In the following section we
will present a model-theoretic characterization of KBR-structures. To do so, we need
the next important result, in which we employ a notion of strong provability.

Lemma 3.16 If ⟨(Ti); (�i); (�i)⟩Ri∈D is any KBR-structure, then, (∀i ∈ D)

(i) �i is closed under strong S4:2 provability, i.e. �i = {' ∈ L2 | �i ⊢S4:2 '}.

(ii) �i is a consistent with S4:2 theory (cS4:2-theory).

Proof. (i) It is obvious that, if ' ∈ �i, then �i ⊢S4:2 '. Conversely, suppose that
�i ⊢S4:2 '. It will be proved, by induction on the length of �i ⊢S4:2 ', that ' ∈ �i.

Ind.Basis. For length of proof equal to 1. Let j ∈ D be s.t. iRj.
If ' ∈ PCL2

, then, by (PCj), ' ∈ Tj. If ' is an instance of K or T or 4 or G, then, by
Lemmata 3.5, 3.7, 3.10 and 3.13 respectively, ' ∈ Tj. Hence, in any case ' ∈ Tj, and
since iRj, by de�nition of �i, ' ∈ �i.

Ind.Step. If  and  ⊃ ' are formulas of the proof in previous steps, then, by
Ind.Hypothesis,  ∈ �i and  ⊃ ' ∈ �i, i.e. (∀j ∈ D)(iRj ⇒ ( ∈ Tj &  ⊃ ' ∈ Tj),
and so, by (PCj), ' ∈ Tj, hence, by de�nition of �i, ' ∈ �i.
If ' = 2 and  is a formula of the proof in a previous step, then, by Ind.Hypothesis,
 ∈ �i and so, by (PIi) (Lemma 3.8), 2 ∈ �i.

(ii) Suppose, for the sake of contradiction, that �i was an incS4:2-theory. Then �i ⊢S4:2
⊥, hence, by (i), ⊥ ∈ �i, i.e. by de�nition of �i and (Gd), ⊥ ∈ T0, hence, T0 is
inconsistent, which is a contradiction, by Def.3.1.

4 S4:2 representation of KBR-structures

First of all, we need to de�ne the theories we will use.

De�nition 4.1 Assume any Kripke model M = ⟨W;R; V ⟩ and any C ⊆ W . Then,

ThM(C) =def {' ∈ L2 | (∀w ∈ C) M; w 
 '}

KM(C) =def {' ∈ L2 | (∀w ∈ C) M; w 
 2'}

BM(C) =def {' ∈ L2 | (∀w ∈ C) M; w 
 ¬2¬2'}

Intuitively, ThM(C) is the theory containing formulas, which are true in every situation
of C, KM(C) is everything our agent knows in every situation of C, and BM(C) is
everything she believes in, in every situation of C. Our �rst result states that in the case
of an epistemic S4:2-model, everything she knows and everything she believes in, can

16



be captured syntactically by the notion of KBR-structures. Furthermore, everything
she believes in, is the same in all clusters, and coincides with everything she knows in
the �nal cluster. For an example, see Section 5.

Theorem 4.2 Let M = ⟨W;R; V ⟩ be any S4:2-model with clusters Ci ⊆ W (i ∈
D), where C0 is the �nal cluster. Then, there is a relation P ⊆ D × D such that
⟨(ThM(Ci)); (KM(Ci)); (BM(Ci))⟩Pi∈D is a KBP -structure and BM(Ci) = KM(C0).

Proof. According to De�nition 3.1 we should:

(a) prove that all ThM(Ci) are consistent theories, and

(b) �nd a simple, re
exive, transitive and directed relation P ⊆ D ×D s.t. (∀i ∈ D)

(c) KM(Ci) =
∩

iP j Tj and (PCi), (Pi) and (Ni) hold for ThM(Ci).
As far as the BM(Ci)'s is concerned, by Fact 3.14, it su�ces to prove that (∀i ∈ D)

(d) BM(Ci) =
∪

iP jKM(Cj).

Here are the proofs of (a) to (d).

(a) For convenience, let us denote each ThM(Ci) as Ti. Obviously, Ti ̸= ∅ and ' ∈
Ti ⇒ ¬' =∈ Ti, so they are consistent.

(b) Since R is rtd, by Def.2.4, it is meaningful to refer to its pattern-relations. So, let
P ⊆ D ×D be a pattern-relation of R (for clusters C0; : : : ; Cn), i.e.

iP j
def⇐⇒ (∃w ∈ Ci)(∃v ∈ Cj) wRv

Then, by Corollary 2.8, P is an s-rtd-relation.

(c) By Def.4.1, we have to show that for any i ∈ D;' ∈ L2

(∀w ∈ Ci) M; w 
 2' ⇐⇒ (∀j ∈ D)(iP j ⇒ (∀v ∈ Cj) M; v 
 ')

For (⇒), consider any j ∈ D s.t. iP j and any v ∈ Cj. Then, assuming any w ∈ Ci, by
Lemma 2.5(i), wRv, hence, by premise, M; v 
 '. For (⇐), take any w ∈ Ci and any
v ∈ W s.t. wRv. Then, since

∪
j∈D Cj = W , there is a j ∈ D s.t. v ∈ Cj, hence, by

de�nition of P , iP j, so, by premise, M; v 
 ', therefore, M; w 
 2'.

(PCi) This propery is obvious, since all formulas of PCL2
are valid in every Kripke

model, and since closure of Ti under MP is actually the de�nition of truth of ' ⊃  in
a Kripke model.

(Pi) Assume that ' ∈
∩

iP j Tj i.e. ∀j ∈ D s.t. iP j, (∀w ∈ Cj) M; w 
 '. Let w ∈ Ci

and v ∈ W s.t. wRv. Then, there is a j ∈ D s.t. v ∈ Cj, so, by de�nition of P , iP j,
hence, by assumption, M; v 
 ', consequently, M; w 
 2', so 2' ∈ Ti.

(Ni) Suppose that ' =∈ Ti i.e. there exists a w ∈ Ci s.t. M; w 
 ¬'. Let j ∈ D be s.t.
jP i and v ∈ Cj. Then, by Lemma 2.5(i), vRw, hence, since M; w 
 ¬', M; v 
 ¬2',
so, ¬2' ∈ Tj, and ¬2' ∈

∩
jP i Tj.

(d) By Def. 4.1, it su�ces to show that for any i ∈ D;' ∈ L2

(∀w ∈ Ci) M; w 
 ¬2¬2' ⇐⇒ (∃j ∈ D)(iP j & (∀v ∈ Cj) M; v 
 2')
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For (⇒), after considering any w ∈ Ci, using the premise, it must be a u ∈ W s.t. wRu
and M; u 
 2'. Since

∪
j∈D Cj = W , there is a j ∈ D s.t. u ∈ Cj, hence, by de�nition

of P , iP j. Furthermore, consider any v ∈ Cj. Since Cj is a cluster, uRv. Finally, let
s ∈ W s.t. vRs. R is transitive, so uRs, hence (because M; u 
 2') M; s 
 ' i.e.
M; v 
 2'.

For (⇐), consider any w ∈ Ci and any v ∈ Cj, where j is the integer, whose existence
is guaranteed by the premise. Then, M; v 
 2' and, since iP j, by Lemma 2.5(i), wRv,
hence, M; w 
 ¬2¬2'.

Similarly to parts (a), (b) and (c) of the proof of Theorem 4.2 one can prove that,
having �xed modal-free, consistent and closed under propositional consequence theories
S0; : : : ; Sn and an s-rtd-relation P , we can �nd a KBP -structure ⟨(Ti); (�i); (�i)⟩Pi∈D such
that the non-modal part of the theories T0; : : : ; Tn, is exactly S0; : : : ; Sn respectively.

Proposition 4.3 Let S0; : : : ; Sn ⊆ L be modal-free, consistent and closed under propo-
sitional consequence theories, and P ⊆ D × D an s-rtd-relation. Then, there exists a
KBP -structure ⟨(Ti); (�i); (�i)⟩Pi∈D s.t. Ti ∩ L = Si (i ∈ D).

Proof. Consider the model M = ⟨W;R; V ⟩, where

• W =
∪

i∈D Ci, where

Ci = {(i; w) ∈ D × (Φ 7→ {t; f}) | (∀' ∈ Si) w(') = t} (i ∈ D)

• R =
∪

iP j Ci × Cj

• V (p) =
∪

i∈D{(i; w) ∈ Ci | w(p) = t} (p ∈ Φ)

Every Ci consists of all (indexed by i) propositional valuations which satisfy Si (note
that Φ is the set of all propositional variables and (Φ 7→ {t; f}) is the set of all functions
from Φ to {t; f}). Let us now �x any i ∈ D. First of all, let us point out that the notion
w(') is meaningful, since Si ⊆ L, and so, ' ∈ L.
Furthermore, Ci ̸= ∅, since Si is consistent, and hence, by the completeness Theorem for
propositional logic, Si is satis�able. Next, using the de�nitions of V and of propositional
valuations, by a trivial induction on the complexity of ', we can prove that, (∀(i; w) ∈
W )(∀' ∈ L)

M; (i; w) 
 ' ⇐⇒ w(') = t (4.3.i)

Now, consider any ' ∈ Si. Then, by the de�nition of Ci, (∀(i; w) ∈ Ci) w(') = t, so, by
(4.3.i), since ' ∈ L, (∀(i; w) ∈ Ci) M; (i; w) 
 ', hence, ' ∈ ThM(Ci), and of course,
' ∈ ThM(Ci) ∩ L.
Conversely, let ' ∈ ThM(Ci) ∩ L. Then, (∀(i; w) ∈ Ci) M; (i; w) 
 ', consequently, by
(4.3.i), since ' ∈ L, (∀(i; w) ∈ Ci) w(') = t, so, by the de�nition of Ci, Si � ', hence,
by the completeness Theorem for propositional logic, Si ⊢PC ', and since Si is closed
under propositional consequence, ' ∈ S.
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Hence, the assertion will follow for theories ThM(Ci), by proving additionally that
⟨(ThM(Ci)); (�i); (�i)⟩Ri∈D is a KBP -structure. But, by the construction of R, since
P is rtd, so is R. Then, it is meaningful to refer to its pattern-relations. Let us focus
on P . Firstly, P is a binary relation on D. Next, for any i; j ∈ D, assume that iP j.
Then, by de�nition of R, (∀(i; w) ∈ Ci; (j; v) ∈ Cj) (i; w)R(j; v), and since Ci; Cj ̸= ∅,
(∃(i; w) ∈ Ci; (j; v) ∈ Cj) (i; w)R(j; v).

Conversely, suppose that (∃(i; w) ∈ Ci; (j; v) ∈ Cj) (i; w)R(j; v). Then, by de�nition of
R, there must be i′; j′ ∈ D and Ci′ ; Cj′ s.t. i

′Pj′ and (i; w) ∈ Ci′ ; (j; v) ∈ Cj′ . But then,
by the de�nition of the Ci's, i

′ = i and j′ = j, hence, iP j. Furthermore, by construction
of R, all Ci (i ∈ D) are clusters of R. Hence, all this shows, by Def.2.4, that P is a
pattern-relation of R (for clusters C0; : : : ; Cn). Now, we continue our proof exactly as
in parts (a), (b) and (c) (only for (PCi), (Pi) and (Ni)) of the proof of Theorem 4.2,
and we conclude that ⟨(ThM(Ci)); (�i); (�i)⟩Ri∈D is a KBP -structure.

As an application of Proposition 4.3, let us consider again Ï�Î·Îµ s-rtd-relation R of
example 3.3. Furthermore, consider p ∈ Φ, S0 = CnPCL({p}) and S1 = CnPCL(∅). It
is easy to see that S0 = CnPCL(S0) and S1 = CnPCL(S1). Clearly, both are satis�able,
hence, by the soundness theorem for propositional logic, they are consistent. So, by
Proposition 4.3, there is a KBR-structure ⟨(T0; T1); (�0; �1); (�0;�1)⟩R s.t. T0 ∩ L = S0

and T1 ∩ L = S1. Hence, p ∈ T0 and p =∈ T1 (for otherwise, p ∈ S1, so ⊢PCL p, hence p
would be a tautology, which is absurd). Then, since p =∈ T1, by de�nition of �1, p =∈ �1.
But, p ∈ T0, hence, by (P0), 2p ∈ T0, and since T0 is consistent, ¬2p =∈ T0, so, ¬2p =∈ �1.
Therefore, p =∈ �1 ; ¬2p ∈ �1. This counterexample veri�es the next lemma, which is
most welcomed.

Lemma 4.4 There are KBR-structures, whose knowledge-part (some �i's) does not sat-
isfy the negative introspection property concerning knowledge.

Our next goal is to prove the converse of Theorem 4.2, i.e. for a givenKBR-structure,
there is an epistemic S4:2-model, in which everything an agent knows and believes,
is described by the KBR-structure given, and furthermore, everything she believes,
is described by one of the knowledge-theories in structure KBR. The model we are
searching for, will be a construction similar to the well known canonical model for a
modal logic, and it will be based on the normal modal logic S4:2, which we will denote
as Λ.

De�nition 4.5 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. The canonical model for
it, is Kripke model Mc = ⟨W c; Rc; V c⟩, where

(i) W c =
∪

i∈DW
c
i , where W

c
i = {(i;�) ∈ D × P(L2) | � : m�icΛ} (i ∈ D)

(ii)
(
∀(i;�); (j; Z) ∈ W c

)(
(i;�)Rc(j; Z) ⇐⇒
(iRj & (∀' ∈ L2)(2' ∈ � ⇒ ' ∈ Z))

)
(iii) (∀p ∈ Φ)(V c(p) = {(i;�) ∈ W c | p ∈ �})
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The following lemmata will be useful in our main theorem. The �rst two are presented
without proofs, since they are well-known, classical results.

Lemma 4.6 Let Λ be any normal modal logic, I a cΛ-theory, � a mIcΛ-theory and
';  L2-formulae. Then,

(i) � is closed under MP

(ii) either ' ∈ � or ¬' ∈ �

(iii) I ⊢Λ ' ⇐⇒ (∀Z : mIcΛ)' ∈ Z

(iv) ' ∧  ∈ � ⇐⇒ (' ∈ � and  ∈ �)

Lemma 4.7 (Lindenbaum) Let Λ be any normal modal logic, I a cΛ-theory and T
an IcΛ-theory. Then, there is a mIcΛ theory � s.t. T ⊆ �.

Remark 4.8 Firstly, notice that W c is the disjoint union of all m�icΛ theories with
indexes in D. Furthermore, by Lemma 3.16(ii), every �i (i ∈ D) is cΛ, hence, to refer
to m�icΛ-theories is meaningful, and �i 0Λ ⊥, so, {⊤} is �icΛ, and by Lindenbaum's
Lemma, there exists a m�icΛ-theory (which, by the way, contains {⊤}), therefore, every
W c

i ̸= ∅ (i ∈ D).

Lemma 4.9 (Truth Lemma) (∀' ∈ L2)(∀(i;�) ∈ W c)(Mc; (i;�) 
 '⇔ ' ∈ �)

Proof. The proof runs by induction on the complexity of '. The induction basis follows
immediately from Def. 4.5(iii). For the induction step, the �rst part, concerning ' ⊃  ,
follows trivially from the induction hypothesis using items (i) to (iv) of Lemma 4.6.
Now, for the second part of the induction step, the 2' case:

Mc; (i;�) 
 2' i� (∀(j; Z) ∈ W c)((i;�)Rc(j; Z) ⇒ Mc; (j; Z) 
 ') i� (by Ind.Hyp.)
(∀(j; Z) ∈ W c)((i;�)Rc(j; Z) ⇒ ' ∈ Z). It su�ces to show that this is equivalent to the
fact that 2' ∈ �.

(⇒): Suppose that 2' =∈ �. Notice that, since (i;�) ∈ W c, � is m�icΛ. Now, let us
de�ne H = { ∈ L2 | 2 ∈ �} and I = {¬'}∪H. Suppose, for the sake of contradiction,
that I was �iincΛ i.e. there exist  1; : : : ;  n ∈ I s.t. �i ⊢Λ  1 ∧ : : : ∧  n ⊃ ⊥.

• if n = 1 and  1 = ¬' i.e. �i ⊢Λ ', then, by (RN), �i ⊢Λ 2', hence, since � is
m�icΛ, by Lemma 4.6(iii), 2' ∈ �, which is a contradiction.

• if  1; : : : ;  n ∈ H, then �i ⊢Λ  1 ∧ : : : ∧  n ⊃ �, since ⊥ ⊃ ' ∈ PC.
if n > 1 and  1; : : : ;  n−1 ∈ H and  n = ¬', then �i ⊢Λ  1 ∧ : : : ∧  n−1 ⊃ �.
So, in both cases, there are  1; : : : ;  n ∈ H with n ≥ 1 s.t. �i ⊢Λ  1 ∧ : : :∧ n ⊃ '.
Hence, by RN and using K (and by a trivial induction), �i ⊢Λ 2 1 ∧ : : :∧2 n ⊃
2', so, by Lemma 4.6(iii), 2 1 ∧ : : :∧2 n ⊃ 2' ∈ �. But, since  1; : : : ;  n ∈ H,
by de�nition, 2 1; : : : ;2 n ∈ �, therefore, by Lemma 4.6(iv),(i), 2' ∈ �, which
is again a contradiction.
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So, I is a �icΛ-theory, and by Lindenbaum's lemma, there is a m�icΛ-theory Z s.t. I ⊆ Z,
hence, ¬' ∈ Z, which entails, by Lemma 4.6(ii), that ' =∈ Z.

Furthermore, since R is re
exive, iRi, and (∀ ∈ L2), if 2 ∈ �, then, by de�nition,
 ∈ H, hence,  ∈ I, so,  ∈ Z. Therefore, by Def.4.5(ii), (i;�)Rc(i; Z).

(⇐) Suppose that 2' ∈ � and let (j; Z) ∈ W c be s.t. (i;�)Rc(j; Z). Then, by Def.4.5(ii),
' ∈ Z.

Lemma 4.10 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure, andM
c its canonical model.

Then, (∀i ∈ D)(∀' ∈ L2)

�i ⊢Λ ' ⇐⇒ (∀(i;�) ∈ W c
i ) M

c; (i;�) 
 2'

Proof. For (⇒), assume that �i ⊢Λ '. Then, by (RN), �i ⊢Λ 2', hence, by Lemma
4.6(iii), (∀� : m�icΛ) 2' ∈ �, so, by Truth Lemma, (∀(i;�) ∈ W c

i ) M
c; (i;�) 
 2'.

For (⇐), suppose that �i 0Λ ' and, for the sake of contradiction, that {¬2'} was
�iincΛ. Then, �i ⊢Λ 2', hence, since T ∈ Λ, �i ⊢Λ ', which is a contradiction. So,
{¬2'} is �icΛ, therefore, by Lindenbaum's Lemma, there is a � : m�icΛ, i.e. a pair
(i;�) ∈ W c

i s.t. ¬2' ∈ �, hence, by Truth Lemma, Mc; (i;�) 1 2'.

Now, we are ready to prove a representation theorem for KBR-structures.

Theorem 4.11 Let ⟨(Ti); (�i); (�i)⟩Ri∈D be any KBR-structure. Then, there exists an
S4:2-model M = ⟨W;R; V ⟩ and Ci ⊆ W s.t. (∀i ∈ D)

�i = KM(Ci) �i = BM(Ci) = �0

Proof. Consider the canonical model Mc for KBR-structure ⟨(Ti); (�i); (�i)⟩Ri∈D and
set Ci =def W

c
i . First of all, we will check whether Mc is indeed an S4:2-model.

For re
exivity, �x any i ∈ D and consider any (i;�) ∈ W c
i and a ' ∈ L2 s.t. 2' ∈ �.

Then, since �i ⊢Λ T and since � is m�icΛ, by Lemma 4.6(iii), T ∈ �, hence, by
Lemma 4.6(i), ' ∈ �. Furthermore, since R is re
exive, iRi, hence, by Def. 4.5(ii),
(i;�)Rc(i;�).

For transitivity, let (i;�) ∈ W c
i , (j; Z) ∈ W c

j and (k; H) ∈ W c
k be s.t. (i;�)Rc(j; Z) and

(j; Z)Rc(k; H). Furthermore, consider any ' ∈ L2 s.t. 2' ∈ �. Then, since �i ⊢Λ 4
and since � is m�icΛ, by Lemma 4.6(iii), 4 ∈ �, hence, by Lemma 4.6(i), 22' ∈ �,
so, since (i;�)Rc(j; Z), 2' ∈ Z, and since (j; Z)Rc(k; H), ' ∈ H. Furthermore, since R is
transitive and since iRj and jRk, iRk. Hence, by Def. 4.5(ii), (i;�)Rc(k; H).

For directedness, we will �rstly prove that

(∀(i;�) ∈ W c
i )(∀(0; H) ∈ W c

0 ) (i;�)Rc(0; H) (4.11.i)

Let ' ∈ L2 be s.t. 2' ∈ �. Suppose, for the sake of contradiction, that ¬2' ∈ �i.
Then, �i ⊢Λ ¬2', hence (since � ism�icΛ), by Lemma 4.6(iii), ¬2' ∈ �, so, � would be
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inconsistent, and hence, �iincΛ, which is a contradiction. So, ¬2' =∈ �i, i.e. by de�nition
of �i, there is a k ∈ D s.t. iRk and ¬2' =∈ Tk. But then, by (2) of Fact 3.4, ' ∈ �k.
Furthermore, by (Gd), kR0, hence, by Lemma 3.11, �k ⊆ �0, so, ' ∈ �0, consequently,
�0 ⊢Λ ', and since H is m�0cΛ, by Lemma 4.6(iii), ' ∈ H. It has been proved that,
if 2' ∈ �, then ' ∈ H. Additionally, iR0, hence, by Def. 4.5(ii), (i;�)Rc(0; H). So,
(4.11.i) has been proved.

Now, consider any (i;�) ∈ W c
i , (j; Z) ∈ W c

j and �x a (0; H) ∈ W c
0 . Then, by (4.11.i),

(i;�)Rc(0; H) and (j; Z)Rc(0; H), which entails directedness of Mc.

We come now to theories of Knowledge KMc . By Lemma 3.16(i), ' ∈ �i i� �i ⊢Λ '.
Furthermore, �i ⊢Λ ' i�, by Lemma 4.10, (∀(i;�) ∈ Ci) M

c; (i;�) 
 2' i�, by Def. 4.1,
' ∈ KMc(Ci). Hence,

�i = KMc(Ci) (4.11.ii)

Finally, we will focus on theories of Belief BMc . Consider any ' ∈ BMc(Ci). Then,
(∀(i;�) ∈ W c

i )M
c; (i;�) 
 ¬2¬2', i.e. there exists a (j; Z) ∈ W c

j s.t. (i;�)Rc(j; Z) and
Mc; (j; Z) 
 2'. Now, assume that (0; H) ∈ W c

0 and let (k; H′) ∈ W c
k s.t. (0; H)Rc(k; H′),

i.e. by Def. 4.5(ii), 0Rk, hence, by (Gd), k = 0. This means that (k; H′) = (0; H′) ∈ W c
0 .

But then, by (4.11.i), (j; Z)Rc(0; H′). So, and since Mc; (j; Z) 
 2', it is true that
Mc; (k; H′) 
 ', hence, Mc; (0; H) 
 2', consequently, (∀(0; H) ∈ W c

0 ) M
c; (0; H) 
 2',

which entails, by Def. 4.1, ' ∈ KMc(W c
0 ), and by (4.11.ii), ' ∈ �0.

Conversely, suppose that ' ∈ �0, i.e. again by (4.11.ii), ' ∈ KMc(W c
0 ). Consider any

(i;�) ∈ W c
i . Then, by (4.11.i), there is a (0; H) ∈ W c

0 s.t. (i;�)Rc(0; H) (in fact, it
is true for all elements of W c

0 , which is, by Remark 4.8, non-empty). Hence, since
' ∈ KMc(W c

0 ), by Def. 4.1, Mc; (0; H) 
 2', so, Mc; (i;�) 
 ¬2¬2', i.e. by Def. 4.1,
' ∈ BMc(Ci). Therefore, proof of BMc(Ci) = �0 (i ∈ D) is complete. And of course, by
Fact 3.14(i), �i = �0 (i ∈ D).

5 A detailed example

Let us present here an epistemic model example, where an agent (A) is provided with
information, which depends on the current agent's situation. Suppose that (A) is in-
terested in the current raining conditions in Stockholm, Athens and Paris, and tries to
get some information from a friend of hers, which is a meteorologist (M). The source
of information for (A) is only (M). We assume that (M) responds to (A)'s struggle for
information very reluctantly, as follows.

1. If it is raining only in Athens, then (M) tells (A) that \It's raining in Stockholm
or in Athens".

2. If it is raining in Stockholm and not in all three cities, then (M) says \It's raining
in Stockholm or in two cities overall".

3. If it isn't raining in Stockholm nor in Athens, then (M) says \It isn't raining in
Stockholm nor in Athens, or it is raining in Athens and Paris".
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4. If it is raining in Athens and Paris, then (M) is very talkative this time and
announces \It's raining in Athens and Paris"!

Assuming a language with only three propositional variables, namely s; a and p
(corresponding to the facts that it is raining in Stockholm, Athens or Paris, respectively),
and considering the assertions above, we can construct the epistemic model shown in
Figure 1 on page 23. This is a typical S4:2-model with clusters C0 to C3. C0 is the
�nal cluster. Since each Ti contains all formulas true (everywhere) in Ci, and taking
in account the assertions 1 to 4 (in this order), we conclude that ¬s ∧ a ∧ ¬p ∈ T3,
s ∧ ¬(a ∧ p) ∈ T2, ¬s ∧ ¬a ∈ T1, and a ∧ p ∈ T0.
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Figure 1:

Now, Theorem 4.2 and De�nition 3.1 state that everything that is true (Ti) in each
cluster satis�es the following properties (the s-rtd-relation onD = {0; 1; 2; 3} guaranteed
by Theorem 4.2 is P = {(0; 0); (1; 1); (1; 0); (2; 2); (2; 0); (3; 3); (3; 2); (3; 0)}):

(PC0;1;2;3) PCL2
⊆ T0; T1; T2; T3 and T0; T1; T2; T3 are closed under MP

(P0) ' ∈ T0 ⇒ 2' ∈ T0

(N0) ' =∈ T0 ⇒ ¬2' ∈ T0 & ¬2' ∈ T1 & ¬2' ∈ T2 & ¬2' ∈ T3

(P1) ' ∈ T0 & ' ∈ T1 ⇒ 2' ∈ T1
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(N1) ' =∈ T1 ⇒ ¬2' ∈ T1

(P2) ' ∈ T0 & ' ∈ T2 ⇒ 2' ∈ T2

(N2) ' =∈ T2 ⇒ ¬2' ∈ T2 & ¬2' ∈ T3

(P3) ' ∈ T0 & ' ∈ T2 & ' ∈ T3 ⇒ 2' ∈ T3

(N3) ' =∈ T3 ⇒ ¬2' ∈ T3

Furthermore, Theorem 4.2 and De�nition 3.1 say that everything an agent knows (�i)
in a cluster Ci is exactly: �0 = T0, �1 = T0 ∩ T1, �2 = T0 ∩ T2, and �3 = T0 ∩ T2 ∩ T3, and
everything she believes in any situation is the same and builds set T0.

Now, taking into accountthe properties above, some examples follow, of what our
agent knows and believes in this epistemic model.

• Since each Ti is closed under propositional consequence ((PC0) to (PC3)),

s ∨ a ∈ T3; T2; T0
s ∨ (a ∧ p) ∈ T2; T0

(¬s ∧ ¬a) ∨ (a ∧ p) ∈ T1; T0
a ∧ p ∈ T0

Hence, s ∨ a ∈ �3, s ∨ (a ∧ p) ∈ �2, (¬s ∧ ¬a) ∨ (a ∧ p) ∈ �1, and a ∧ p ∈ �0.

• If it is raining only in Athens, our agent is in C3, and since ¬s ∧ a ∧ ¬p ∈ T3, by
(PC3), ¬p ∈ T3, hence, since T3 is consistent, p =∈ T3, therefore, a ∧ p =∈ T3, and by
de�nition of �3, a ∧ p =∈ �3, i.e. she is not sure that it is raining in Athens and Paris
(which is good, since it isn't true!). But, by de�nition of �3, since a ∧ p ∈ �0 and
(3; 0) ∈ P , a ∧ p ∈ �3, i.e. she believes that it is raining in Athens and Paris.

• In the same situation as above, ¬s ∧ a ∧ ¬p =∈ �3 (since one can easily see that
¬s∧a∧¬p =∈ T0, and (3; 0) ∈ P ), i.e. our agent doesn't know that it is raining only in
Athens; she doesn't know in which situation she is located. Furthermore, since
¬s∧ a∧¬p =∈ T0 and (3; 0); (2; 0); (0; 0) ∈ P , by (N0), ¬2(¬s∧ a∧¬p) ∈ T0∩T2∩T3,
hence, ¬2(¬s∧a∧¬p) ∈ �3, i.e. she is aware of her ignorance about the fact that
it is raining only in Athens.

• By construction of this model, it is not necessarily true that it is raining in Athens in
every situation of C2, i.e. a =∈ T2, hence, since (3; 2) ∈ P , a =∈ �3, which means that in
the situation of C3 our agent does not know that it is raining in Athens, although
it is true. Furthermore, a ∈ T0, so, by (P0), 2a ∈ T0, hence, ¬2a =∈ T0, and since
(3; 0) ∈ P , ¬2a =∈ �3, i.e. our agent does not know that she doesn't know that
it is raining in Athens; she believes she might know it! (this is also veri�ed by the
fact that 2a ∈ T0 = �0 = �3). So, in this case our agent does not possess negatine
introspection.
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• In any situation of C2, since s ∧ ¬(a ∧ p) ∈ T2, a ∧ p =∈ T2, hence, a ∧ p =∈ �2, i.e.
she doesn't know that it is raining in Athens and Paris, which is rather expectable,
since this fact is simply false in every situation of C2. But, a ∧ p ∈ T0, so, by (P0),
2(a∧ p) ∈ T0, therefore, ¬2(a∧ p) =∈ T0, and since (2; 0) ∈ P , ¬2(a∧ p) =∈ �2, hence,
she does not know that she doesn't know this fact. And, 2(a∧p) ∈ T0 = �0 = �2,
hence, she believes (falsely) that she knows that it is raining in both cities. This time,
our agent is again not negative-introspective, but in a more `severe' situation, since
she believes that she knows something, which is wrong.

6 Related Work - Further Research

The identi�cation of logical theories, which capture the epistemic content of a rational
agent's view of the world, is a very important topic in Knowledge Representation. A very
important notion has been the notion of a stable belief set, introduced by R.Stalnaker
[Sta93] and further investigated in modal non-monotonic reasoning [MT93]. The original
motivation of this paper (rather distinctly far from the �nal result) has been the idea
to derive logically interesting notions of stable epistemic states out of a model-theoretic
starting point, and prove that they posses intuitive syntactic characterizations. This
seems natural to do: stable belief sets can be represented as S5 theories or sets of beliefs
held inside a KD45 situation [Hal97],[MT93]. In a previous paper [KZ10] we obtained
interesting syntactic variations of epistemic states and proved representating theorems,
in terms of possible-world models for non-normal modal logics. It (still) seems natural
to investigate the other way around: to de�ne epistemic theories in terms of possible
worlds models for interesting epistemic logics (such as S4:2;S4:4), and then match
this de�nitions to closure under intuitive context-rules, such as the ones encountered
in Stalnaker's initial de�nition. On the way, it became clear to us that, from a purely
epistemological viewpoint that takes into account the information available to the agent
inside each situation, the S5-like analysis of epistemic reasoning is too simple to furnish a
realistic view (although there exists a compensation, in terms of various handy technical
properties). Thus, we took a step back to start from the very beginning: the notion of
accessibility between possible worlds, its epistemic content and logical interpretations.
This led us to the semantic analysis discussed in section 3.1 and to the origination of
KBR-structures.

The KBR-structures introduced here represent a somewhat complex, yet interesting,
description of the epistemic status of a rational (but not fully introspective) agent,
allowing a di�erentiation of knowledge from belief. It would be interesting to embed
them in core KR techniques, such as default reasoning or belief revision; actually it is a
very challenging (albeit complex) task to de�ne reasoning procedures that will take into
account the subtle di�erences between knowledge and belief. Such a task is bound to be
complex but it will be necessarily useful to deviate from the currently dominating model
of a logically omniscient, fully introspective agent. As a short-term goal, it is de�nitely
interesting to identify the computational complexity of reasoning with KBR-structures.
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