[Λ1] Mathematical Logic, μΠλΑ, Εαρινό εξάμηνο 2016
Βιβλιογραφία
Ωρες διαλέξεων: Δευτέρα 11:00-13:00 (Γ33, Μαθηματικό), Τρίτη 14:00-16:00 (Γ43, Μαθηματικό)
Teaching Assistant: Αγγέλα Χαλκή.
Ημερολόγιο Μαθήματος
Ημερομηνια | Περιεχόμενο διάλεξης | [ΚΔ] | [YNM] | [HE] | [EM] |
---|---|---|---|---|---|
Δευτέρα, 15/2/2016 | Propositional Logic (PL): Syntax of PL, Induction Principle for formulas, Unique Readibility, Definitions by Structural Recursion. | Kεφ. 2, σελ. 7-11 | §1 (Syntax of PL) |
Section 1.1 | |
Παρασκευή, 19/2/2016 | Semantics of PL (Truth assignments, unique extension theorem, tree diagrams, truth tables, logical consequence, laws of PL). | Kεφ. 2, σελ. 12-18 | §2 (Semantics of PL) (minus 2A.) | Section 1.2 & 1.4 | |
Δευτέρα, 22/2/2016 | Boolean functions, Functional Completeness of PL, Complete sets of connectives. | Κεφ. 2.3 | 2.Α | Section 1.5 | |
Τρίτη, 23/2/2016 | Proof Theory of PL: Hilbert-style systems and formal deductions | Kεφ. 2.4 (Προτασιακός Λογισμός) σελ. 23-25. |
§3: (Formal Deduction) 3A, 3B | ||
Δευτέρα, 29/2/2016 | Proof Theory of PL: Deduction Theorem and other metatheorems, applications. | Kεφ. 2.4: σελ. 25-29 | 3C-3D.3 | ||
Τρίτη, 1/3/2016 | Soundness and Strong Completeness of PL (Maximal Consistent Sets of formulas and Lindenbaum construction) | 3B, 3D.5-3E | |||
Τρίτη, 8/3/2016 | Kalmár's proof of Completeness for PL, Gentzen-style deductions for PL, Compactness of PL. | Kεφ. 2.5 | 3D-3D.4, §4 | ||
Τρίτη, 15/3/2016 | First-Order Logic: examples of structures, examples of languages | §1 (LPCI) | |||
Δευτέρα, 21/3/2016 | Syntax of FOL: terms, formulae, induction principle for terms and wffs, free and bound variables, notational conventions, examples of FOL languages | Kεφ. 3 (37-42) | §2 (LPCI) | Section 2.1 | |
Τρίτη, 22/3/2016 | Semantics of FOL: structures, variable assignments, satisfaction relation and the Tarski truth conditions, truth and models | Kεφ. 3 (42-47) | §3 (LPCI) | Section 2.2 | |
Δευτέρα, 28/3/2016 | Logical Implication, Defianability within a structure, Definability of a Class of Structures. | Kεφ. 3.2 | Section 2.2 | ||
Τρίτη, 29/3/2016 | Elements of Model Theory: Homomorphisms, Isomorphisms, elementary equivalence, elementary extensions. | Kεφ. 3.6 | Section 2.2 | ||
Τρίτη 5/4/2016 | Deduction in FOL: Hilbert-style axiom system, substitution, metatheorems |
Kεφ. 3.4 (49-53) |
|
Section 2.4 (A deductive calculus) | |
Πέμπτη 14/4/2016 | Metatheorems: Generalization Theorem, Deduction Theorem, Reductio Ad Absurdum. | Section 2.4 | |||
Παρασκευή 15/4/2016 | Metatheorems (cont.): Contraposition, using metatheorems for proving (the existence of) formal deductions. | Section 2.4 | |||
Δευτέρα 18/4/2016 | Generalization on Constants, Existential Instantiation, Properties of Equality. | Section 2.4 | |||
Τρίτη 19/4/2016 | Soundness and Completeness of FOL. | Section 2.5 | |||
Πέμπτη 12/5/2016 | Introduction to Gödel's Incompleteness Theorems | Κεφ. 4.1 | |||
Παρασκευή 13/5/2016 | Roadmap to the proof of Gödel's Incompleteness Theorems (overview of the techniques) | ||||
Δευτέρα 16/5/2016 | Basic facts about Peano Arithmetic | Κεφ. 4.2 | Section 3.1 | ||
Τρίτη 17/5/2016 | Representable functions and expressible relations | Κεφ. 4.3 | Section 3.2 | ||
Δευτέρα 23/5/2016 | Primitive recursive & recursive functions | Κεφ. 4.3 | Section 3.3 | ||
Τρίτη 24/5/2016 | Primitive recursive & recursive functions (cont.) | Κεφ. 4.3 | Section 3.3 | ||
Δευτέρα 30/5/2016 | Gödel's β-function. Every recursive function is representable in PA | Κεφ. 4.3 | Section 3.3 | ||
Τρίτη 31/5/2016 | Arithmetization, Gödel numbering. | Κεφ. 4.4 | Section 3.4 | ||
Δευτερα 13/6/2016 | The class of recursive functions coincides with the class of functions representable in PA. | Κεφ. 4.4 | Section 3.4 | ||
Τρίτη 14/6/2016 | The Fixed-Point Theorem. First Incompleteness Theorem. | Κεφ. 4.5 | Section 3.5 | ||
Τρίτη 21/6/2016 | Gödel-Rosser Incompleteness Theorem. Hints on Hilbert-Bernays derivability conditions and the second incompleteness theorem. | Κεφ. 4.5 | Section 3.5 |
Ασκήσεις: οι ασκήσεις του μαθήματος θα αποστέλλονται με email και θα παραδίδονται κατα προτίμηση επίσης ηλεκτρονικά.
Η Πρώτη Σειρά, θα παραδοθεί την Παρασκευή 18 Μαρτίου.
Η Δεύτερη Σειρά, θα παραδοθεί την Παρασκευή 22 Απριλίου.
Η Τρίτη Σειρά, θα παραδοθεί την Παρασκευή 13 Μαίου.