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Abstract

The `in many cases ' modality is used to handle patterns of default reasoning,

like `normally ' holds ' or `probably ' is the case'. It is of interest in Knowledge

Representation and it has found interesting applications in epistemic logic, typ-

icality logics, and `normality ' conditionals. Such a generalized `most ' quanti�er

can be interpreted over collections of `large' subsets of a set W of possible worlds.

The notion of `weak �lter ' has been introduced independently by K. Schlechta and

V. Jauregui as an incarnation of such a collection and the modal logic of weak

�lters has been axiomatized by V. Jauregui, providing a minimal logic of the `in

many cases ' modality. In this paper we contribute to the study of this modality,

providing results on the `majority logic' � of V. Jauregui. We provide a tableaux

proof procedure for � and prove its soundness and completeness with respect to

the class of Scott-Montague semantics based on weak �lters. The tableaux-based

decision procedure allows us to prove that the satis�ability problem for � is NP-

complete. We discuss an alternative interpretation of `majorities' di�erentiating

between �nite and in�nite sets of worlds and we prove that it comes at the high

cost of destroying the �nite model property for the resulting logic. Then, we show

how to extend our results for the modal logic of weak ultra�lters, suited for ap-

plications where either a proposition or its negation (but not both) have to be

considered `true in many cases ', a notion useful in epistemic logic.



1 Introduction

Commonsense Reasoning often deals with patterns of default reasoning captured by
sentences of the form `in most days, Jim will have a co�ee after work ' or `in almost all
cases, rain causes a terrible tra�c jam in Athens '. These are typical examples of an
inference pattern which falls within a certain scheme: a fact is considered to be plausibly
true if it holds in `many ' (`most ', `almost all ', `a majority of ') states of a�airs the agent
can think or imagine of; thus, it can be considered to be `true by default ', in case there
is no information to the contrary.

This is one, out of several forms of Commonsense Reasoning that involve `weighting'
of possible cases: nonmonotonic reasoning is interested in the most `normal ' situations,
conditional logic is interested in the worlds closest to the actual world, deontic logic is
interested in the morally acceptable worlds and plausibility logics are interested in `large'
subsets of possible worlds. The interpretation of `normally ' as a `most ' (`in many cases ')
modality - a generalized majority quanti�er - is of interest in Knowledge Representation
and, as a notion of quali�ed truth, can be naturally handled with the machinery of Modal
Logic, in as much the same way as `necessity ', `knowledge' and `belief '. The modality
of interest is variably read as `in many cases ', `in almost all cases', `majority true'
[Jau08], `probably true' [Her03, Bur69], `true by default ' [Jau07] and has been employed
in Epistemic Logic in order to capture weak notions of belief [Her03, AKZ12, KMZ14].
Most certainly, the study of logics for this modality is of interest for KR.

Of course, the main issue is themodel-theoretic interpretation of `most '. Which
subsets count as `majorities' in a set of possible worlds? The question is not at
all new; it has been addressed early enough in classical Model Theory, in the endeavour
to de�ne generalized quanti�ers: `we can regard generalized quanti�ers as operations
which pick out certain subsets from among all the subsets of a domain of a given real-
ization. Thus, the existential quanti�er picks out the non-empty sets and the universal
quanti�er just the whole domain itself ' [BS69, p. 261]. The situation is similar in our
context: a normal modal (`necessity ') operator is a bounded universal quanti�er
and we wish to axiomatize a `majority' modality, conceived as a generalized `most'
quanti�er. And actually, the notion of (collections of) `large' sets we use in this pa-
per, originated in K. Schlechta's work on generalized quanti�er semantics for defaults
[Sch95]. The same notion of a weak �lter was independently discovered by V. Jauregui
[Jau08] who also axiomatized the modal logic of weak �lters. The de�nitions for this
and other notions of `majority' can be found in Section 3.1 below.

In this paper we work on the logic � of weak �lters from [Jau08], a minimal logic
of the `in many cases ' modality, in the sense that weak �lters capture a minimum set
of requirements expected to hold in any de�nition of `large' sets; see Remark 3.2 below.
We provide a sound and complete tableaux-based proof procedure for � in Section 4.
The decision procedure allows us to pin down the complexity of � which is shown to be
at the lower level expected for a modal logic (Section 5.2), completing thus the picture
for the computational properties of �.
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We further contribute to the study of the `majority ' modality by investigating in
Section 7 the logic of weak ultra�lters which are maximal (`complete') weak �lters
corresponding to negation-complete `normality' theories. We show that our results carry
through in this case with a reasonable number of adjustments to the machinery we
provide. En route, we discuss in Section 6 the possibility of maintaining a di�erent notion
of `majority' for the �nite and the in�nite case, keeping the natural and meaningful `clear
majority ' case (exceeding half the cardinality of the `universe') for the �nite case. This
certainly makes sense and it works ([Zik12]); yet, it comes at the cost of destroying the
�nite model property, as we prove with a combinatorial argument. Finally, in Section 8
we discuss related work and future research questions.

2 Background Material

Modal Logic traditionally studies logics of quali�ed truth: `necessarily true',
`known or believed to be true', `henceforth true', are some of the most important and
well-known interpretations of the modal operator, in areas such as epistemic, doxastic
and temporal logic. We only provide some basic de�nitions below and we assume that
the reader is acquainted with the notions and techniques of Modal Logic. For a com-
plete treatment, the reader is referred to [HC96, Gol92, BdRV01]. For a readable and
thorough treatment of modal tableaux, we refer the reader to the books of M. Fitting
[Fit83, FM98], whose methods, notation and terminology we use in this paper.

The language of propositional modal logic, extends classical logic with a modal
operator 2', traditionally read as `necessarily ''. In this paper, it will be read as `in
most cases ''. A dual `possibly '' operator 3' is just an abbreviation for ¬2¬'. Modal
logics are sets of modal formulas containing classical propositional logic (i.e. containing
all tautologies in the augmented language L2) and closed under rule

MP:
'; ' ⊃  

 

The smallest modal logic is denoted as PC (propositional calculus in the augmented
language). Normal are called thosemodal logics, which contain all instances of axiom
K:2'∧2(' ⊃  ) ⊃ 2 and are closed under rule MP, Uniform Substitution and the
rule

RN:
'

2'

By KA1 : : :An we denote the normal modal logic axiomatized by axioms A1 to An.

Relational possible-worlds models. Normal modal logics are interpreted overKripke
(or relational) possible-worlds models: a Kripke model M = ⟨W;R; V ⟩ consists of a set
W of possible worlds (states, situations), a binary accessibility relation between them
R ⊆ W ×W and a valuation V : Φ → 2W assigning to each propositional variable from
Φ a set of worlds. V extends uniquely to a valuation V for all well-formed formul�
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of the modal language. The pair F = ⟨W;R⟩ is called a Kripke (relational) frame.
The normal modal logics correspond exactly to the relational possible worlds models;
to de�ne weaker modal logics, one has to resort to other modal semantics.

Scott-Montague possible-worlds models. The so-called Scott-Montague semantics,
also called neighborhood semantics or minimal models [Che80], were introduced
independently by D. Scott and R. Montague. The reader is referred to [Che80] and
[Seg71, Pac07] for details. In Scott-Montague models, each possible world w is associated
to its `neighborhood ': a collection of sets of possible worlds, intended to be a collection
of `propositions ' necessary at w. A neighborhood model is a triple N = ⟨W;N ; V ⟩,
where W is a set of possible worlds, N : W → 22

W

is a neighborhood function
assigning to a possible world its `neighborhood ' and V is again a valuation extending
uniquely to a V over all formul� of the language. Inside a state w, formul� of the form
2' become true at w i� the set of possible worlds V (') where ' holds (called the truth
set of ', also denoted as |'|) V (') = {v ∈ W | N; v |= '} (intuitively the `proposition'
denoted by ' inside N) is among the propositions populating the neighborhood of w:
|'| ∈ N (w). The pair F = ⟨W;N⟩ is called a Scott-Montague (neighborhood) frame.

Using the machinery of Scott-Montague semantics, di�erent families of modal logics
can be de�ned. From the weaker to the strongest: classical, monotonic, regular and
normal modal logics [Che80, Chapters 7 & 8]. Of interest to us in this paper, is the class
of monotonic modal logics which are logics closed under the rule of monotonicity

RM:
' ⊃  

2' ⊃ 2 

The smallest monotonic modal logic is determined by the class of Scott-Montague frames
with upwards-closed neighborhoods, that is, frames in which each collection of pos-
sible worlds (neighborhood) is closed under the superset relation (also called supple-
mentations in [Che80]).
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3 Weak Filters and their modal logic

3.1 Weak Filters as collections of `large' subsets

We assume a set W of `states ' or `possible worlds '. Which subsets of W would we
accept to consider as large? Which subsets of W correspond to the phrase: `many'
states? Well, `many ' can be de�ned in a number of ways and there exist di�erent real-life
concepts of `majority ' (simple majority, overwhelming majority, signi�cant majority,
clear majority, some of which is even di�cult to de�ne precisely). For a �nite W ,
a rational answer could be to collect the subsets with cardinality strictly more than
|W |/2, a simple (or clear) majority. This practically amounts to the �rst method for
de�ning `majorities' proposed by K. Schlechta in [Sch04]: counting. Another possibility
could be via the mathematical theory of measure. The third one, which we use here,
originated in Set Theory and Model Theory, and captures collections of `large' subsets
via �lters.

A �lter over a nonempty set W is a collection F of subsets of W , such that

• W ∈ F and ∅ =∈ F

• X ∈ F and X ⊆ Y ⊆ W implies Y ∈ F
(�lters are upwards closed)

• X ∈ F and Y ∈ F implies (X ∩ Y ) ∈ F
(�lters are closed under intersection)

This de�nition disallows the improper �lter over W , which is just the whole powerset
algebra of W . Ultra�lters over W are the maximal (proper) �lters, or equivalently,
the �lters satisfying in addition the following completeness requirement:

• for every X ⊆ W , either X ∈ F or (W \X) ∈ F

A �lter of the form F = {Y ⊆ W |X ⊆ Y }, where X is a �xed non-empty subset of
W , is called a principal �lter over W , the principal �lter generated by X. In case
X is a singleton, F is a principal ultra�lter.

The following de�nition from [Jau08] introduces the notion of weak �lter.

De�nition 3.1 Let W be a non-empty set and K ⊆ 2W be a non-empty collection of
subsets of W . K is a weak �lter over W i� it satis�es the following conditions:

(i) W ∈ K (non-emptiness)

(ii) X ∈ K and X ⊆ Y ⊆ W implies Y ∈ K (upwards closure)

(iii) X ∈ K implies (W \X) =∈ K (K cannot contain a set and its complement)
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In [Sch97] a di�erent, but provably equivalent, notion of large sets had been given: it is
essentially the same with the previous one, replacing the third condition for the following
one:

(iv) If X;Y ∈ K, then X ∩ Y ̸= ∅ (pairwise coherence)

Since (iii) and (iv) are provably equivalent (given (i) and (ii)), we will switch freely
between them and use them under the same name. A notion of weak ultra�lter has
been proposed in [AKZ12] by replacing item (iii) of Def. 3.1 with

(iii)′ X =∈ K ⇔ (W \X) ∈ K (exactly one, out of a set and its complement, is in K)

The class of weak Ultra�lters is of an independent set-theoretic interest. In [KMNZ15]
various results are collected, including the fact that every weak �lter can be extended
to a weak ultra�lter, assuming the Axiom of Choice. Some comments are in order, with
respect to the intuitive meaning of weak �lters and ultra�lters.

Remark 3.2 The weak �lter is a simple `weakening' of a classical �lter, obtained by
relaxing the requirement of closure under intersection to the condition of pairwise coher-
ence. Obviously every (ultra)�lter is a weak (ultra)�lter, but not vice versa [KMNZ15].
This raises some questions on the applicability of weak �lters as embodiments of the
notion of `a collection of large subsets ', despite the fact that genuinely weak �lters on
�nite and in�nite sets come closer to this intuition than their classical counterparts. In
any case, it is not reasonable to consider a principal �lter or ultra�lter as a collection
of `large' subsets, given that they may contain de�nitely `small ' sets, even singletons.

The reader should keep in mind that weak �lters represent a mathematical abstraction,
intended to capture only the minimum requirements, the essential ingredients of the
intuitive abstraction of a `large' subset. As stated by K. Schlechta `a reasonable abstract
notion of size without the properties of weak �lters seems di�cult to imagine. The full
set seems to be the best candidate for a `big' subset, `big' should cooperate with inclusion,
and �nally no set should be `big' and `small' at the same time' [Sch04].

3.1.1 Other notions of `majority'

Other notions of collections of `large sets' exist. A �ne-grained de�nition of a collection
F of `majorities' has been given by E. Pacuit and S. Salame [PS04, Sal06]. Assuming a
universe W , a collection F of subsets of W is a majority space i�

• either X ∈ F or (W \X) ∈ F

• X ∈ F , Y ∈ F and X ∩ Y = ∅ imply that X = (W \ Y )

• if X is a large set, and a �nite subset of it is replaced by a set of greater cardinality
that the one removed, a large set is obtained.
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The motivation for this de�nition has to do with applications of graded modal logic
[vdH92]. Table 1 summarizes the various approaches mentioned in this paper, so that
the reader can grasp their similarities and di�erences.

weak majority weak
�lter ultra�lter �lter space ultra�lter

[Sch97, Jau08] [PS04, Sal06] [AKZ12]
C ̸= ∅ • •
(∀X ∈ C)(∀Y ⊆ W )
(X ⊆ Y ⇒ Y ∈ C) • • • •
(∀X; Y ∈ C)
X ∩ Y ∈ C • •
(∀X ⊆ W )
(X ∈ C ⇒ W \X =∈ C) • • •
(∀X ⊆ W )
(X =∈ C ⇒ W \X ∈ C) • • •
(∀X; Y ∈ C)
(Y ̸=W \X ⇒ X ∩ Y ̸= ∅) •
(∀X ∈ C)(∀ �niteF ⊆ X)
(∀Y ⊆ W )
(X ∩ Y = ∅ & F ≤c Y ⇒ •

(X \ F ) ∪ Y ∈ C)

Table 1: Notions of `collections of large subsets '

3.2 �: the modal logic of weak �lters

The modal logic of weak �lters has been axiomatized in [Jau08]. We wish to pin down
the principles governing the `in many cases ' modality, when `majority' is interpreted
over weak �lters. The resulting logic is not expected to be normal, as the axiom K does
not cooperate smoothly with the `majority' modality; see [Jau08] for a counterexample.
Thus, we aim in axiomatizing the modal logic of the class of Scott-Montague frames, in
which each neighborhood is a collection of `large subsets ' of possible worlds, i.e. a weak
�lter over W .

De�nition 3.3 (�-frame,[Jau08]) A Scott-Montague frame F = ⟨W;N⟩ is a �-
frame if for every w ∈ W , N (w) is a weak �lter over W :

1. W ∈ N (w)

2. N (w) is upwards closed

3. X ∈ N (w) implies W\X =∈ N (w)

6



The modal logic of the class of �-frames turns out to be a simple monotonic modal
logic.

De�nition 3.4 ([Jau08]) � is the smallest modal logic which contains the axioms

N: 2⊤

D: 2' ⊃ 3'

and is closed under the rule

RM:
' ⊃  

2' ⊃ 2 

For those acquainted with the modal logics determined by classes of Scott-Montague
frames, it is not hard to check that this is the logic of �-frames. The axiom N cor-
responds to the non-emptiness condition (W ∈ N (w), N (w) contains the unit in the
terminology of [Che80]), the rule RM corresponds to upwards closure (�-frames are
supplemented in the terminology of [Che80]) and the axiom D ensures the pairwise co-
herence of propositions inside each neighborhood [Che80, pp. 223-224]. The proofs of
soundness and completeness of � with respect to the class of �-frames can be found in
[Jau08, Chapter 3]; they are typical canonical model arguments.

4 Tableaux for �

In this section we present a tableau system for �. We assume the reader has a working
knowledge of tableaux proof procedures; we follow [Fit83] to which we refer for details.
This logic, not involving axiom B, or a notion of symmetry in terms of Scott-Montague
frames [Che80], suggests that a tableau system like the one used in [Fit83] for the logics
K;T;D etc., can be adopted. Such a system indeed works; however, in order to develop
a systematic procedure for �nding (or not �nding) a proof, we opt for a pre�xed
tableau system. Although we will not be using the pre�xes to ultimately represent a
notion of accessibility (there is none), the pre�xes still provide a notation for naming
worlds. A systematic procedure will not only be useful for proving completeness, but
will allow us to prove decidability and the �nite model property.

Some terminology is in order: The version of pre�x used is simply a positive integer
(the pre�xes used for universal Kripke frames). A pre�xed formula is an expression
of the form n ', where n is a pre�x and ' is a formula. A tableau branch is closed if
it contains both n ' and n ¬' for some pre�x n and formula '. A tableau is closed
if all of its branches are closed. A tableau or branch is open if it is not closed. The
terminology and the techniques we use come from M. Fitting's work [FM98, Fit83].
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4.1 Tableaux Rules

For the alphabet of our tableaux, we assume 3'; ' ⊃  ; ' ≡  are abbreviations for
¬2¬'; ¬'∨  ; (' ⊃  )∧ ( ⊃ ') respectively, thus no corresponding rules have to be
speci�ed.

De�nition 4.1 A �-tableau for a formula ' is a tableau that starts with the pre�xed
formula 1 ¬' and is extended using any of the rules below.

[Double negation rule]
n ¬¬'
n '

[Conjunctive rules]
n ' ∧  
n '
n  

n ¬(' ∨  )
n ¬'
n ¬ 

[Disjunctive rules]
n ' ∨  
n ' n  

n ¬(' ∧  )
n ¬' n ¬ 

[D-rule]
n 2'

n ¬2¬'

[�1-rule]
n ¬2 
m ¬ 

for any pre�x m new to the branch.

[�2-rule]

n 2'
n ¬2 
m '
m ¬ 

for any pre�x m new to the branch.

The double negation, conjunctive and disjunctive rules, are standard for the proposi-
tional part of any modal logic. Regarding [D-rule], as its name suggests, it takes care
of axiom D. Next, � is a monotonic modal logic. The appropriate rule, is that for
any pair 2';3 there is a world such that ';  hold ([�2-rule], see [Fit83, Chapter 6.13]
regarding the Logic U and its tableaux). Finally, the e�ect of axiom N is reected by
[�1-rule], since introducing a new pre�x due to a single 3-formula implies that it is true
for a reason, and not by default. Note that ' can be the same as  .

De�nition 4.2 A closed �-tableau for a formula ' is a �-tableau proof for '.

Example 4.3 We give a tableau proof for axiom M: 2(p ∧ q) ⊃ (2p ∧ 2q) which is a
theorem of �.
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1 ¬(¬2(p ∧ q) ∨ (2p ∧2q)) (1)
1 ¬¬2(p ∧ q) (2)
1 ¬(2p ∧2q) (3)
1 2(p ∧ q) (4)
1 ¬2p 1 ¬2q (5)
2 p ∧ q 2 p ∧ q (6)
2 ¬p 2 ¬q (7)
2 p 2 p (8)
2 q 2 q (9)

Lines (2) and (3) are by a conjunctive rule. Line (4) is from (2) by double negation
rule. Line (5) is from (3) by a disjunctive rule. Lines (6) and (7) are from (4) and (5)
by [�2-rule]. Lines (8) and (9) are from (6) by conjunction. Then the tableau is closed.

We proceed to de�ne soundness and completeness of the teableau proof procedure.

4.2 Soundness

We need �rst to de�ne what is a satis�able set of pre�xed formul�.

De�nition 4.4 Suppose S is a set of pre�xed formul�. We say S is �-satis�able
if there is a �-model ⟨W;N ; V ⟩ and a function � : pre�xes → W such that for any
n � ∈ S, it holds that �(n) |= �.

A branch is �-satis�able if the set of pre�xed formul� on it is �-satis�able. A branch is
�-satis�able if the set of pre�xed formul� on it is �-satis�able. We say that a tableau
is �-satis�able if some branch of it is �-satis�able.

Proposition 4.5 A closed tableau is not �-satis�able.

Proof. Suppose a tableau was closed and satis�able. This means that for some formula
' and pre�x n, both n ' and n ¬' occur on a tableau's branch. By Def. 4.4 there
exists a model ⟨W;N ; V ⟩ and a function � such that �(n) |= ' and �(n) |= ¬'. A
contradiction.

Proposition 4.6 Applying any of the rules to a �-satis�able tableau, gives another
�-satis�able tableau.

Proof. Suppose we have a satis�able tableau and let B be the branch to which we
apply any of the tableau rules. If there is another branch B′ that is satis�able, then the
resulting tableau is trivially also satis�able. So we assume the only satis�able branch is
B.
[Conjunctive rules]: Suppose n ' ∧  occurs on B. By applying the corresponding
rule we add n ' and n  to the end of B. Since B is satis�able, Def. 4.4 provides a
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aforementioned model ⟨W;N ; V ⟩ and function � such that �(n) |= '∧  . Consequently
�(n) |= ' and �(n) |=  , so the extended branch is also satis�able, using the same
model and function �. The other conjunctive rule, as well as the double negation rule,
are treated similarly.

[Disjunctive rules]: Suppose n ' ∨  occurs on B. By applying the corresponding
rule we split the end of B, adding n ' to the left fork and n  to the right. Since
B is satis�able there is a model ⟨W;N ; V ⟩ and a function � such that �(n) |= ' ∨  .
Consequently �(n) |= ' or �(n) |=  , and so at least one extension of B is satis�able.
The other disjunctive rule is treated similarly.

[D-rule]: Suppose n 2' occurs on B. By applying the corresponding rule we add
n ¬2¬' to the end of B. Since B is satis�able there is a model ⟨W;N ; V ⟩ and a
function � such that �(n) |= 2'. We already know that the axiomatization includes
axiom D so it is valid in any �-model. Consequently �(n) |= ¬2¬'.
[�2-rule]: Suppose n 2' and n ¬2 occur on B. By applying the corresponding rule
we add m ' and m ¬ to the end of B, where m is new to B. Since B is satis�able there
is a model ⟨W;N ; V ⟩ and a function � such that �(n) |= 2' and �(n) |= ¬2 . That is
|'| ∈ N (n) and | | =∈ N (n). For the sake of contradiction suppose |'| ∩ |¬ | = ∅. By
Def. 3.3 |'| ⊆ | | ∈ N (n) and hence the contradiction. So there is a world w such that
w |= ';¬ . We need only de�ne �(m) = w and the extended branch is satis�able.

[�1-rule]: Similarly to [�2-rule], we know 2⊤ is valid.

We are ready to prove soundness of our procedure.

Theorem 4.7 [Soundness] If ' is not �-valid, there is no �-tableau proof for '.

Proof. If ' is not �-valid , there is a �-model M and a world w of M, such that
M; w |= ¬'. So the tableau with the pre�xed formula 1 ¬' is satis�able, using the
model M and de�ning �(1) = w. Now for the sake of contradiction suppose there is a
�-tableau proof for ', so by applying tableau rules we get a closed tableau. But due to
Prop. 4.6, the resulting tableau will also be satis�able, hence the contradiction due to
Prop. 4.5.

4.3 Completeness

Towards the proof of completeness, we will provide a systematic procedure of apply-
ing the tableaux rules, making sure everything that can be derived actually is. If the
systematic procedure fails to produce a proof, then it will actually construct a �-model
satisfying ¬', a counter-model witnessing non-validity.

4.3.1 Systematic procedure

Notation 3n and 2n for some pre�x n are sets (intended to serve as registries so as
to remember 3-formul� and 2-formul� that were found on a branch).
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Stage 1: Write down 1 ¬'. Also 31 = 21 = ∅.
After stage k we stop when tableau is closed or all occurrences of formul� are

�nished (see below). Otherwise we proceed with stage k + 1:

Stage k + 1 : Reading the formul� starting with the leftmost branch and from top to
bottom, we encounter the �rst un�nished occurrence of a pre�xed formula F .

1. If F is n ¬¬'; n ' ∧  ; n ¬(' ∨  ); n ' ∨  ; n ¬(' ∧  ); n 2' use the appropriate
rule, for each open branch including F . That is, for the disjunctive case we split
the end of each branch and for the rest of the cases we just add the appropriate
formul� at the end of the branch, provided they do not already occur.

2. If F is n 2', we add ' to 2n. For each open branch B that includes F and for
each formula  ∈ 3n, if there is no pre�x m such that B includes m ' and m  ,
we add m ' and m  , where m is now the smallest positive integer new to B.

3. If F is n ¬2', we add ¬' to 3n. For each open branch B that includes F and
for each formula  ∈ 2n, if there is no pre�x m such that B includes m ¬' and
m  , we add m ¬' and m  , where m is the smallest positive integer new to B.
If 2n = ∅ (we repeat the same without the use of 2-formul�) if there is no pre�x
m such that B includes m ¬' for some pre�x m, we add m ¬', where m is the
smallest positive integer new to B.

F might not fall into one of the above cases (e.g. n P , P atomic) but then we just skip
it. After the above we declare that occurrence of F �nished.

4.3.2 Construction of a counter-model

Notation. Given a branch of a tableau we de�ne ['] = {n | n ' is on the branch}. We
remind that, given a model, |'| = V (') is the truth set of '.

De�nition 4.8 Let T be an open tableau generated by the systematic procedure and B
an open branch of T . We de�ne a model M = ⟨W;N ; V ⟩ as follows:

• W is the set of pre�xes on B.

• If n P for P atomic, occurs on the branch then n |= P . Otherwise n |= ¬P .

• N (n) = {S ⊆ W | ∃' ∈ L2 such that S ⊇ ['] & n 2' occurs on B} ∪ {W}.

Proposition 4.9 M is a �-model.

Proof. W is of course non-empty. It remains to show that each N (w) satis�es Def-
inition 3.3. Indeed, all N (w) contain W and are closed under supersets by de�ni-
tion. Now suppose A;B ∈ N (w). It must be the case that A ⊇ [']; B ⊇ [ ] and
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w 2';w 2 appear on B, for some formul� ';  . Due to the systematic procedure,
we have applied [D − rule] and w ¬2¬ appears on the branch. We have also applied
[�-rule] so u '; u ¬¬ , and due to [Double negation rule] u  , also occur. That is
['] ∩ [ ] ̸= ∅ ⇒ A ∩B ̸= ∅.

Proposition 4.10 [Key fact] Let M be a model as in Def. 4.8. For any pre�x n and
formula ':

(i) if n ' occurs on B then M; n |= '.

(ii) if n ¬' occurs on B then M; n |= ¬'.

Proof. The proof is by induction on the complexity of '.

• Base case: ' is atomic.

If n P occurs on B then n |= P by de�nition. If n ¬P occurs on B then n P does
not occur, because B is open, and again by de�nition n |= ¬P .

• Induction step:

{ ' is ¬ . If n ¬ occurs on B, due to the induction hypothesis n |= ¬ . If
n ¬¬ occurs, having followed the systematic procedure, n  also occurs.
Due to the induction hypothesis n |=  .

{ ' is  ∧�. If n  ∧� occurs on B, having followed the systematic procedure,
n  and n � also occur. Due to the induction hypothesis n |=  ,n |= �
so n |=  ∧ �. If n ¬( ∧ �) occurs on B, having followed the systematic
procedure, n ¬ or n ¬� occurs. Due to the induction hypothesis n |= ¬ 
or n |= ¬� so n |= ¬( ∧ �). The disjunctive case is treated similarly.

{ ' is 2 . Due to the induction hypothesis [ ] ⊆ | | and [¬ ] ⊆ |¬ |. If n 2 
occurs on B then by de�nition [ ] ⊆ | | ∈ N (n). Consequently n |= 2 . If
n ¬2 occurs we need to show that | | =∈ N (n). For the sake of contradiction
suppose the opposite. Then either |'| = W or n 2� occurs for some formula
� such that [�] ⊆ | |. In the �rst case |¬'| = ∅ ⇒ [¬'] = ∅ which is absurd
since m ¬ occurs for some pre�x m due to the systematic procedure. In the
latter case, again due to the systematic procedure, m �;m ¬ occur. Hence
[�]∩ [¬ ] ̸= ∅ ⇒ | | ∩ |¬ | ̸= ∅ which is again absurd. The possibility case
¬2 is treated similarly.

Theorem 4.11 [Completeness] If ' has no �-tableau proof, ' is not �-valid.

Proof. Since ' has no �-tableau proof, the tableau generated by following the sys-
tematic procedure has an open branch from which we construct a counter model. 1 ¬'
occurs on the branch, and by the Key Fact (Prop. 4.10) 1 |= ¬'. So ¬' is �-satis�able
i.e. ' is not �-valid.

12



Example 4.12 Using the methods described, we will show that the axiom

C: (2p ∧2q) ⊃ 2(p ∧ q)

is not a theorem of �. The resulting tree is quite large. For illustration purposes, we
only follow one of the branches that will stay open.

1 ¬(¬(2p ∧2q) ∨2(p ∧ q)) (1)
1 ¬¬(2p ∧2q) (2)
1 ¬2(p ∧ q) (3)
1 2p ∧2q (4)
2 ¬(p ∧ q) (5)
1 2p (6)
1 2q (7)
2 ¬p (8)
1 ¬2¬p (9)
3 ¬(p ∧ q) (10)
3 p (11)
1 ¬2¬q (12)
4 ¬(p ∧ q) (13)
4 q (14)
5 ¬¬p (15)
5 p (16)
6 ¬¬p (17)
6 q (18)
3 ¬q (19)
7 ¬¬q (20)
7 p (21)
8 ¬¬q (22)
8 q (23)
4 ¬p (24)

After (3)
31 21

¬(p ∧ q)

After (9)
31 21

¬(p ∧ q) p
¬¬p q

After (7)
31 21

¬(p ∧ q) p
q

After (12)
31 21

¬(p ∧ q) p
¬¬p q
¬¬q

The counter-model M = ⟨W;N ; V ⟩ derived from this branch has W = {1; : : : ; 8},
V (p) = {3; 5; 6; 7}; V (q) = {4; 6; 7; 8}. The only pre�x with 2-formul� is 1 so for
w ̸= 1 we have N (w) = W and N (1) contains all supersets of |p| and |q|. We refrain
from writing them down explicitly.

5 Decidability and Complexity

5.1 Finite model property

Notation S(') = {� ∈ L2 | � is  ;¬ ;¬¬ or ¬2¬ , where  a subformula of '}.
The following easy facts will prove to be useful.
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Fact 5.1 All formul� occurring on a �-tableau for a formula ' belong to S('). An
easy proof is by induction on the number of rules applied.

Fact 5.2 S(') is �nite, in fact of size O(m).

Fact 5.3 A �-tableau branch has a �nite amount of pre�xes, in fact O(m2).

For a pre�x to be introduced, a ¬2-formula or a combination of one ¬2-formula with
a 2-formula (with the same pre�x) is needed on the branch.

Let ' be a �-satis�able formula. Then an attempt to prove ¬' using the systematic
procedure will fail. So there exists an open branch from which we can construct a model
(Def. 4.8) that satis�es '. The number of pre�xes on the branch is �nite (Fact 5.3),
and so the model derived will also be �nite.

5.2 Complexity

It has been shown that the satis�ability problem for a multi-agent extension of the
smallest (epistemic) monotonic modal logic is in NP ([Var89], the logic E{3}). Logic
� deals with the reasoning of a single agent, and occurs from the smallest monotonic
modal logic by adding axioms N and D. Assuming tableaux can provide the basis of an
NP algorithm for the satis�ability in E{3}, one may guess that also �-SAT is in NP;
the [D-rule] and [�1-rule] rules reect the e�ect of these two axioms on �-models and
intuitively, they do not seem to burden the complexity. We prove this is indeed the case;
the systematic procedure in Section 4.3.1 will be used in the NP algorithm mentioned.

Let a formula ' be the `input' for the satis�ability problem, and size(') = m.

Algorithm �-sat

1. Run the systematic procedure for the tableau starting with 1 ' with the exception
that when you read a disjunction formula, non-deterministically choose which
subformula to keep.

2. When the procedure stops

(a) if it was because the branch closed, answer NO

(b) else, answer YES.

Remark 5.4 The resulting tableau has only one branch; using non-determinism we
chose a single (computation) path.
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The correctness of the algorithm, based on our soundness and completeness results, is
evident. However, we must show it is indeed an algorithm.

Proposition 5.5 The algorithm described terminates in a �nite number of steps.

Proof. Assume not. Then the single resulting branch is in�nite. Due to Fact 5.2 and
the fact that existing formul� do not get added again, only a �nite number of formul�
can occur with the same pre�x. So it must be the case that there are in�nite pre�xes.
Using Fact 5.3 we derive a contradiction.

Proposition 5.6 �-SAT is in NP.

Proof. Reading or writing any formula takes time O(m). The algorithm described is
non-deterministic, and for any choice made, it holds that each pre�x has O(m) formul�
and there are O(m2) pre�xes. So (i) checking if a formula already exists,(ii) checking if
the tableau is closed, (iii) adding pre�xes for each pair of 2 and ¬2 formul�, these all
can be accomplished in polynomial time.

Proposition 5.7 �-SAT is NP-hard.

Proof. Satis�ability in propositional logic is a special case of �-SAT.

Theorem 5.8 �-SAT is NP-complete.

6 A digression: `majorities' on �nite vs in�nite sets of

worlds

Let us make a digression here and return to the discussion on what really deserves to
be called a `large' subset of W , keeping in mind the de�nitions of Section 3.1 and in
particular Remark 3.2. It is tempting to try to alter the de�nition of `large' subsets,
keeping the original de�nition of weak �lters for the in�nite case and allowing only
`clear' majorities for the �nite case. That is, allowing only the subsets which exceed half
the cardinality of W , when W is �nite. This, de�nitely makes sense. It disallows the
problematic cases of principal �lters which may well include `small' subsets and comes
closer to a reasonable notion of `majority'. We prove here that, despite its intuitive
appeal, the resulting logic will not have the �nite model property; a high cost.

Assume that we adopt the following de�nition for `a collection of large subsets of W ':

De�nition 6.1 Let W be a non-empty set. A non-empty collection F of subsets of W
is a collection of large subsets i�
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• If |W | > !, same as in De�nition 3.1.

• If |W | = n; n ∈ !, B ∈ F ⇒ |B| > n=2.

Note that if F is a collection of large sets by De�nition 6.1 it is also so by De�nition 3.1.
Collections of subsets of a �nite W complying with the requirement of De�nition 6.1
are weak �lters indeed, and actually weak ultra�lters when n is odd (see [KMNZ15] for
a proof).

We will now construct a modal formula which is majority-satis�able, but not satis�able
in a `clear majority ' �nite model complying with De�nition 6.1. To achieve this, we
employ a simple combinatorial trick: we construct propositional formul� which share
exactly one common satisfying assignment to their propositional variables and thus a
possible world can simultaneously satisfy at most two of them. And then, proceed to
show that these formul� cannot be simulaneously `majority '-true in a world, whose
neighborhood should contain only truth sets exceeding half the cardinality of W , as
De�nition 6.1 requires.

Assume the propositional variables p, q, r, s and pick up the following ten (out of
sixteen) propositional valuations:

Atoms
Valuation

1 2 3 4 5 6 7 8 9 10

p T T T T T T T T F F
q T T T T F F F F T T
r T T F F T T F F T T
s T F T F T F T F T F

Employing a familiar technique from classical propositional logic, we construct the fol-
lowing propositional formul� in disjunctive normal form, ensuring that they pairwise
share exactly one common satisfying assignment, distinct for each pair.

'1 ≡ (p ∧ q ∧ r ∧ s) ∨ (p ∧ q ∧ r ∧ ¬s) ∨ (p ∧ q ∧ ¬r ∧ s) ∨ (p ∧ q ∧ ¬r ∧ ¬s)
'2 ≡ (p ∧ q ∧ r ∧ s) ∨ (p ∧ ¬q ∧ r ∧ s) ∨ (p ∧ ¬q ∧ r ∧ ¬s) ∨ (p ∧ ¬q ∧ ¬r ∧ s)
'3 ≡ (p ∧ q ∧ r ∧ ¬s) ∨ (p ∧ ¬q ∧ r ∧ s) ∨ (p ∧ ¬q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ q ∧ r ∧ s)
'4 ≡ (p ∧ q ∧ ¬r ∧ s) ∨ (p ∧ ¬q ∧ r ∧ ¬s) ∨ (p ∧ ¬q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ q ∧ r ∧ ¬s)
'5 ≡ (p ∧ q ∧ ¬r ∧ ¬s) ∨ (p ∧ ¬q ∧ ¬r ∧ s) ∨ (¬p ∧ q ∧ r ∧ s) ∨ (¬p ∧ q ∧ r ∧ ¬s)

This is readily checked from the following table:

Satis�ed by
'1 valuations 1,2,3,4
'2 valuations 1,5,6,7
'3 valuations 2,5,8,9
'4 valuations 3,6,8,10
'5 valuations 4,7,9,10
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Now, we are ready to prove the desired result.

Proposition 6.2 The formula  = 2'1 ∧2'2 ∧2'3 ∧2'4 ∧2'5

(i) is satis�able in an in�nite �-model.

(ii) is not satis�able in a �nite model of De�nition 6.1.

Proof. (i)We construct a model, in which the worlds inW are propositional valuations
and V (w) = w for any w ∈ W . We start with the ten valuations of the table above and
add in�nite copies of each of them. Then, we de�ne

N (w) = {S ⊆ W | |'i| ⊆ S for some i = 1; : : : 5}

It is easy to check that w |=  .

(ii) Suppose  is satis�ed in a model of size n, at some world w ∈ W . Note that ||'i||
is the cardinality of the truth set |'i|. We remind that, for a formula 2� to be true in
a world w, the truth set |�| should belong to the neighborhood of w: |�| ∈ N (w) (see
Section 2).

• The formula  is a conjunction, so each 2'i is true in w. By construction, each
'i corresponds to a di�erent `large' set in N (w).

• Each 'i should be true in more than half of the worlds, so
∑

||'i|| > 5n=2.

• A single valuation satis�es at most two of the given formul� 'i. Thus, a world
can belong to at most two truth sets. Summing up the cardinalities of the truth
sets, we cannot exceed twice the size of W :

∑
||'i|| ≤ 2n.

Then it has to be the case that 5n=2 < 2n, a contradiction.

A short explanation of the combinatorial trick is in order. We wanted to come up with
formul� '1; : : : ; 'm that impose di�erent valuations such that n worlds are not enough.
Each pair of these formul� must have at least one common satisfying valuation, so that
their truth sets can qualify as large subsets. We make it so that they have exactly
one common satisfying valuation, unique for each pair. Given this we can close under
supersets. Which is the smallest number of formul� that can serve for this purpose?
On the one hand, it has to be that

∑
||'i|| > mn=2 (De�nition 6.1). On the other hand

each world will satisfy at most two formul� so
∑

||'i|| ≤ 2n. For these two to lead to
a contradiction we want mn=2 > 2n ⇒ m > 4. We therefore need �ve formul�. Also,
we need four propositional variables involved, which is the least amount so that there

are at least

(
5
2

)
= 10 valuations available.
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7 Θc: the modal logic of weak ultra�lters

We proceed now to the modal logic of weak ultra�lters, which are `complete' weak
�lters, in the sense that exactly one of a subsetX ⊆ W and its complementW \X should
be present in the ultra�lter. In [KMNZ15] it is proved that this is a genuine notion (in
the sense that there exist weak ultra�lters which are not classical ultra�lters), they
possess interesting set-theoretic properties, and moreover the following variant of the
classical ultra�lter theorem holds.

Proposition 7.1 ([KMNZ15]) Consider a weak �lter F over a non-empty set W .
Then, assuming the Axiom of Choice, there exists a weak ultra�lter U over W extending
F .

We are interested in axiomatizing the modal logic Θc of the subclass of �-frames,
in which neighborhoods are weak ultra�lters. It is not hard to see that it su�ces to
add in the axiomatization of De�nition 3.4 the modal axiom Dc:3' ⊃ 2', which, in
combination with D: 2' ⊃ 3' guarantees the `completeness' of the weak �lters in the
neighborhood of a possible world. The soundness and completeness of this Hilbert-style
axiomatization of Θc is easy to prove, along the lines of [Jau08]. We will not do so, we
will rather proceed to outline the modi�cations needed in our tableaux machinery for
adjusting it to the logic Θc. It turns out that with a reasonable number of additions
and minor modi�cations, we can prove soundness and completeness and identify the
complexity of Θc.

Tableaux rules

- propositional rules

[CD-rule]
n ¬2'
n 2¬'

[�-rule]

n 2'
n 2 

m '
m  

for any pre�x m new to the branch.

We still have axiom D in the axiomatization, however, by choosing to turn 3 into 2

we have no need for [D-rule]. For the same reason [�1-rule] and [�2-rule] also become
obsolete; we use the new [�-rule] instead. We do need a rule for a single 2-formula; it
is a matter of notation, ' can be the same as  .

Soundness [CD-rule]: We cannot of course rely on existing axiomatization and must
use the de�nition of our (new) models. We have �(n) |= ¬2' ⇒ |'| =∈ N (�(n)) ⇒
|¬'| ∈ N (�(n)) ⇒ �(n) |= 2¬'.
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[�-rule]: We have �(n) |= 2 ⇒ | | ∈ N (�(n)) ⇒ |¬ | =∈ N (�(n)) ⇒ �(n) |= ¬2¬ .
Now the proof follows as in Proposition 4.6.

Completeness Systematic procedure: everything is the same as in Section 4.3.1,
except that there is no use for 3n sets and:

1. If F is n ¬¬'; n '∧ ; n ¬('∨ ); n '∨ ; n ¬('∧ ); n ¬2¬' use the appropriate
rule, for each open branch including F . That is, for the disjunctive case we split
the end of each branch and for the remaining cases we just add the appropriate
formul� at the end of the branch provided they do not already occur.

2. If F is n 2', we add ' to 2n. For each open branch B that includes F and for
each formula  ∈ 2n, if there is no pre�x m such that B includes m ' and m  ,
we add m ' and m  , where m is the smallest positive integer new to B.

Existence of Counter-model: as in De�nition 4.8. However we have to make sure
the counter-model complies with the requirements for a weak ultra�lter:

• N−(n) = {S ⊆ W | ∃' ∈ L2 such that S ⊇ ['] & n 2' occurs on B} ∪ {W}.
Then we take N (n) to be any complete extension. Such an extension exists.

We temporarily use the term `existence' and not `construction' of a counter-model.
The reason is that the existence of a counter-model is now based on Proposition 7.1 which
in turn is based on an equivalent of the Axiom of Choice. After discussing decidability for
�c one should be convinced that also in this case, the number of pre�xes, and therefore,
the number of the worlds in the counter-model, is �nite. And so a counter-model can
be constructed algorithmically.

The proofs for the respective needed propositions, that the counter-model is indeed
a �c-model and the [Key fact], follow along the same lines.

Decidability and Complexity It is easy to see that all relevant remarks regarding
� still hold for �c, perhaps with some changes in S('). That is, each pre�x has at
most �nite O(m) formul� and there are at most O(m2) pre�xes. We can readily deduce
the presence of the �nite model property and that �c-SAT is NP-complete.

8 Related Work and Future Research

The modal logic of weak �lters is from [Jau07]. Yet, similar `most ' modalities have
appeared earlier in the Modal Logic and the Commonsense Reasoning literature.

In [Her03], a `probably true' modality is axiomatized, in combination with a belief
operator ; it is interesting that the axiomatization of `probably ' is essentially the logic �
of V. Jauregui. The belief & probability possible-words models of [Her03] are similar to
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the majority frames (�-frames here) of [Jau07]; however, Herzig's work emphasizes in
applications of this framework in more complex logics of action. A. Herzig attributes the
essential ideas of his `probably true' operator to the earlier work of J. Burgess [Bur69],
although the latter work has been written in the late sixties and uses algebraic techniques
for examining a logic that adjoins a `probably true' operator to the well-known S5 modal
logic. The idea of `large' subsets has been independently introduced in [Sch97].

We should note at this point that the `in many cases true' modality studied here, is
readily suited for modelling weak notions of belief or notions of (qualitative) probability
in the setting of Epistemic Logic; recent work is reported in [KMZ14, AKZ12]. For ap-
plications in default reasoning however, it has been argued that a `normality ' modality
does not su�ce and the focus should be (and really is) on `normality ' conditionals . The
archetypical example in Non-Monotonic Reasoning is to infer that Tweety, a penguin,
does not y, although it is a bird. Assuming 2' is a normality modality, represent-
ing the assertion `birds typically y ' as 2(bird ⊃ fly) or (bird ⊃ 2fly) is subject to
criticism; the former falls prey to the `paradoxes of strict implications ' [HC96] and the
latter has been criticised within the KR community for carrying the same limitations as
circumscriptive or autoepistemic defaults [Bou94]. Still, it remains interesting to study
the `in many cases ' modality, as it remains useful for epistemic applications, typicality
logics and provides a foundation for proceeding to `normality by majority ' conditionals
for defeasible reasoning [Jau08, Chapter 4].

As for future work, the most interesting question is to �nd more accurate (and
probably more complex) de�nitions of `largeness ', investigate the emerging logics and
compare the results to �, both in terms of expressiveness and their computational
properties. It would be desirable to pin down the logic of `clear majority ' in �nite sets
of possible worlds but this seems elusive; something at least as complex as the graded
modal logic [vdH92] should be needed there.

Acknowledgments. The paper is a fully revised and expanded version of the ex-
tended abstract [KMNZ14]. We wish to thank the anonymous SETN referees for many
constructive comments.
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in Arti�cial Intelligence - 13th European Conference, JELIA 2012, Toulouse,
France, September 26-28, 2012. Proceedings, volume 7519 of Lecture Notes
in Computer Science. Springer, 2012.

[DWW04] D. Dubois, Chr. A. Welty, and M.-A. Williams, editors. Principles of
Knowledge Representation and Reasoning: Proceedings of the Ninth Inter-
national Conference (KR2004), Whistler, Canada, June 2-5, 2004. AAAI
Press, 2004.

[Fit83] M. C. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel
PublishingCo., Dordrecht, 1983.

[FL14] Eduardo Ferm�e and Jo~ao Leite, editors. Logics in Arti�cial Intelligence
- 14th European Conference, JELIA 2014, Funchal, Madeira, Portugal,
September 24-26, 2014. Proceedings, volume 8761 of Lecture Notes in Com-
puter Science. Springer, 2014.

[FM98] M. Fitting and R. L. Mendelsohn. First-Order Modal Logic, volume 277 of
Synth�ese Library. Kluwer Academic Publishers, 1998.

[Gol92] R. Goldblatt. Logics of Time and Computation. Number 7 in CSLI Lec-
ture Notes. Center for the Study of Language and Information, Stanford
University, 2nd edition, 1992.

[HC96] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic.
Routledge, 1996.

[Her03] A. Herzig. Modal probability, belief, and actions. Fundamenta Informaticae,
57(2-4):323{344, 2003.

[Jau07] V. Jauregui. The `Majority' and `by Default' Modalities. In Orgun and
Thornton [OT07], pages 263{272.

[Jau08] V. Jauregui. Modalities, Conditionals and Nonmonotonic Reasoning. PhD
thesis, Department of Computer Science and Engineering, University of New
South Wales, 2008.

21



[KMNZ14] C. D. Koutras, Ch. Moyzes, Ch. Nomikos, and Y. Zikos. On the 'in many
cases ' modality: Tableaux, decidability, complexity, variants. In Likas et al.
[LBK14], pages 207{220.

[KMNZ15] C. D. Koutras, Ch. Moyzes, Ch. Nomikos, and Y. Zikos. On the set-theoretic
properties of weak ultra�lters. Technical report, December 2015.

[KMZ14] C. D. Koutras, Ch. Moyzes, and Y. Zikos. A modal logic of knowledge,
belief, and estimation. In Ferm�e and Leite [FL14], pages 637{646.

[LBK14] A. Likas, K. Blekas, and D. Kalles, editors. Arti�cial Intelligence: Meth-
ods and Applications - 8th Hellenic Conference on AI, SETN 2014, Ioan-
nina, Greece, May 15-17, 2014. Proceedings, volume 8445 of Lecture Notes
in Computer Science. Springer, 2014.

[OT07] M. A. Orgun and J. Thornton, editors. AI 2007: Advances in Arti�cial In-
telligence, 20th Australian Joint Conference on Arti�cial Intelligence, Gold
Coast, Australia, December 2-6, 2007, Proceedings, volume 4830 of Lecture
Notes in Computer Science. Springer, 2007.

[Pac07] E. Pacuit. Neighborhood semantics for modal logic: an introduction. Course
Notes for ESSLLI 2007, 2007.

[PS04] E. Pacuit and S. Salame. Majority logic. In Dubois et al. [DWW04], pages
598{605.

[Sal06] S. Salame. Majority Logic and Majority Spaces in contrast with Ultra�lters.
PhD thesis, Graduate Center, City University of New York, 2006.

[Sch95] K. Schlechta. Defaults as generalized quanti�ers. Journal of Logic and
Computation, 5(4):473{494, 1995.

[Sch97] K. Schlechta. Filters and partial orders. Logic Journal of the IGPL, 5(5):753{
772, 1997.

[Sch04] Karl Schlechta. Coherent Systems. Elsevier Science, 2004.

[Seg71] K. Segerberg. An essay in Clasical Modal Logic. Filoso�ska Studies, Uppsala,
1971.

[Var89] Moshe Y. Vardi. On the complexity of epistemic reasoning. In Proceedings
of the Fourth Annual Symposium on Logic in Computer Science (LICS '89),
Paci�c Grove, California, USA, June 5-8, 1989 [DBL89], pages 243{252.

[vdH92] Wiebe van der Hoek. On the semantics of graded modalities. Journal of
Applied Non-Classical Logics, 2(1), 1992.

22



[Zik12] Y. Zikos. Modal Epistemic Logics without Negative Introspection: epistemic
structures and extensions with estimation and information. PhD thesis,
Graduate Programme in Logic, Algorithms & Computation (MPLA), Dept.
of Mathematics, University of Athens, 2012. In Greek.

23


