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Algorithm 901: LMEF – A Program for the
Construction of Linear Multistep Methods
with Exponential Fitting for the Numerical
Solution of Ordinary Differential Equations

D. S. VLACHOS and T. E. SIMOS

University of Peloponnese

LMEF is a program written in MATLAB, to calculate the coefficients of a linear multi-step method

(explicit, implicit or backward differentiation formulas) with algebraic and/or exponential fitting,

for the numerical solution of first order ordinary differential equations. Moreover, LMEF calcu-

lates the local truncation error and in the case of exponential fitting, the Taylor expansions of the

coefficients that are necessary for the implementation of the method.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential Equa-

tions—Multistep and multivalued methods

General Terms: Algorithms, Documentation

Additional Key Words and Phrases: Linear multistep methods, backward differentiation formulas,

exponential fitting

ACM Reference Format:
Vlachos, D. S. and Simos, T. E. 2010. Algorithm 901: LMEF – A program for the construction of

linear multistep methods with exponential fitting for the numerical solution of ordinary differential

equations. ACM Trans. Math. Softw. 37, 1, Article 12 (January 2010), 10 pages.

DOI = 10.1145/1644001.1644013 http://doi.acm.org/10.1145/1644001.1644013

1. INTRODUCTION

Linear multi-step methods are widely used for the numerical solution of ordi-
nary differential equations. They are implemented either explicitly or implic-
itly. Explicit methods calculate the unknown function at the next time step
as a linear combination of already calculated values of the function and its
derivative at previous time steps. Implicit methods need to solve an equa-
tion (usually nonlinear) that contains both the value of the unknown function
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and its derivative at the next time step. Both implementations need only one
evaluation of the function derivative in every step and they can easily attain
high orders, although large stability regions can be obtained only in implicit
ones.

A refinement of linear multi-step methods is the exponential fitting, by which
the method is forced to integrate exactly functions of the form xmeqx where m
is an integer called the level of tuning and q is either real or purely imaginary
and it is called the frequency of the method. Traditionally, exponential fitting
is used for the numerical solution of oscillatory problems. Many physical phe-
nomena exhibit a pronounced oscillatory character: behavior of pendulum-like
systems, vibrations, resonances and wave propagation are all phenomena of
this type in classical mechanics, while the same is true for the typical behav-
ior of quantum particles. Many exponential fitting methods (multi-step and
hybrid methods) have been constructed and most were developed for second-
order differential equations where the first derivative is absent. They have
been successfully applied to the solution of the Schrödinger equation (a review
of numerical methods can be found in Solin [2002]). On the other hand, Ixaru
et al. [2001, 2002, 2003] have shown that the applicability of exponential fit-
ting algorithms is much broader than thought. They have developed exponen-
tial fitting BDF algorithms combined with a frequency evaluation procedure
for the solution of first-order equations. Some well-known stiff problems (like
the Robertson [1996] and HIRES [Hairer and Wanner 1996] problems) which
have no connection with oscillatory problems have been solved with this type of
algorithm. Moreover, partitioned linear multi-step algorithms have been found
to give stable solutions to Hamiltonian problems [Vlachos and Simos 2004].

Exponential fitting has found many applications in both orbital and stiff
problems [Solin and Vigo-Aguiar 2001; Solin 2003]. These methods are forced
to solve functions of the form eλt exactly, where λ can be imaginary in order
to account for trigonometric functions. Depending on how the parameter λ is
selected, there are methods that use a stable λ through the whole integration
and methods that modify it by adjusting the coefficients at every step (e.g., to
minimize the local truncation error [Ixaru et al. 2002]).

In general, the construction of an exponentially fitted multi-step method has
to do with the calculation of the coefficients of the method. As with every linear
multi-step method, an exponentially fitted one should at least meet stability and
consistency criteria. This means that the method, when applied to the problem
y ′(x) = 0, y(x0) = 0, produces bounded solutions; in addition, it solves the
problem y ′(x) = 1, y(x0) = 0 exactly. These are necessary conditions for a
convergent method and every convergent method is consistent [Butcher 2003].
The rest of the conditions for the calculation of the coefficients can be obtained
by forcing the method to integrate a number of selected functions exactly.

In this work, a MATLAB program called LMEF, has been developed for the
calculation of the coefficients of an exponential fitted linear multi-step method.
The input to the program contains the number of steps of the method and the
number of frequencies to fit. The program builds the conditions that must hold
and calculates the unknown coefficients. The local truncation error is calcu-
lated by comparing the Taylor expansion of the estimated and exact solution.
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Extensive examples are presented as well as a numerical test with methods
constructed with the software.

2. THEORETICAL BACKGROUND

Consider the first order differential equation of the form

y ′(x) = f (x, y(x)) , y(x0) = y0 (1)

and a linear multi-step method for the numerical integration of (1)

k∑
j=0

aj yn− j − h
k∑

j=0

bj y ′
n− j = 0, (2)

where

yn = ŷ(x0 + nh)

y ′
n = f (x0 + nh, yn)

where ŷ(x) is the numerical estimation of y(x) and h is the integration step.
The quantity

L( y , x, h) =
k∑

j=0

aj y(x − j h) − h
k∑

j=0

bj y ′(x − j h) (3)

is the residual of the method associated with the differentiable function y at
point x with stepsize h. The method (2) is said to integrate exactly the differ-
entiable function y if L( y , x, h) = 0 for every x in the integration interval.
The linearity of (2) implies that if the method integrates exactly the functions
g1, g2, . . . , gm then it integrates exactly any linear combination of them. The
method (2) is said to have order p (or is algebraic fitted up to order p) if it
integrates any linear combination of the functions {1, x, x2, . . . , x p} exactly.
Usually, the conditions that the coefficients a’s and b’s must satisfy in order
to obtain a method of order p are calculated by taking the Taylor expansions of
y(x − j h) and y ′(x − j h) in (3). In this work, a different approach is adopted.
Let a = (a0, a1, . . . , ak)T and b = (b0, b1, . . . , bk)T . Suppose now that a set of
conditions of the form

C ·
(

a
b

)
= 0 (4)

holds for (2) to integrate some given function g exactly, that is, L(g , x, h) = 0.
We now consider the set of conditions that must hold if (2) integrates the product
x · g of x with the function g exactly. It can easily be shown that

L(x · g , x, h) =x · L(g , x, h) −

h ·
(

k∑
j=0

( j a j + bj )g (x − jh) − h ·
k∑

j=0

j bj g ′(x − jh)

)
(5)

and since L(g , x, h) = 0, we find that the same conditions that hold for
(a, b) must hold for (a′, b′) where a′

j = j a j + bj and b′
j = j bj . Let Nk+1 =
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diag(0, 1, 2, . . . , k) and the matrix � of order (2k + 2) as

� =
(

Nk+1 Ik+1

0 Nk+1

)
(6)

It can be easily shown that

Nn
k+1 = diag(0, 1, 2n, . . . , kn) (7)

�n =
(

Nn
k+1 nNn−1

k+1

0 Nn
k+1

)
(8)

We can now prove the following theorem

THEOREM 2.1. If the conditions

C ·
(

a
b

)
= 0

imply that (2) integrates the function g exactly then the conditions⎛
⎜⎜⎜⎜⎜⎜⎝

C

C�

C�2

. . .

C�p

⎞
⎟⎟⎟⎟⎟⎟⎠ ·

(
a

b

)
= 0

imply that (2) integrates any linear combination of the functions (g , xg, . . . , x p g )
exactly.

PROOF. Obviously, the theorem holds for p = 0, since we have assumed
that the method integrates the function g exactly. Let us now assume that the
theorem holds for p = k. This means that the set of conditions⎛

⎜⎜⎜⎜⎜⎜⎝

C

C�

C�2

. . .

C�k

⎞
⎟⎟⎟⎟⎟⎟⎠ ·

(
a

b

)
= 0

imply that (2) exactly integrates the function ĝ = xk g . But we have shown
in (5), that if a set of linear conditions C · (a, b)T = 0 implies that (2) exactly
integrates a function ĝ , then the method exactly integrates the function x ĝ ,
if C · (a′, b′)T = 0, where (a′, b′)T = � · (a, b)T . Thus, the method (2) exactly
integrates the function x ĝ = xk+1 g if⎛

⎜⎜⎜⎜⎜⎜⎝

C

C�

C�2

. . .

C�k

⎞
⎟⎟⎟⎟⎟⎟⎠ ·

(
a′

b′

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

C

C�

C�2

. . .

C�k

⎞
⎟⎟⎟⎟⎟⎟⎠ · � ·

(
a

b

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

C�

C�2

C�3

. . .

C�k+1

⎞
⎟⎟⎟⎟⎟⎟⎠ ·

(
a

b

)
= 0
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Since C · (a, b)T = 0, C� · (a, b)T = 0, C�2 · (a, b)T = 0, . . . , C�k · (a, b)T = 0 hold
from the induction assumption, the new condition C�k+1 · (a, b)T = 0 must also
hold. Thus the set of conditions

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

C�

C�2

. . .

C�k

C�k+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·
(

a

b

)
= 0 (9)

implies that the method exactly integrates the function xk+1 g and this com-
pletes the proof.

The starting condition assumed here is

C1

(
a

b

)
= 0 , C1 = (1, 1, . . . , 1︸ ︷︷ ︸

k+1

, 0, 0, . . . , 0︸ ︷︷ ︸
k+1

) (10)

which implies that (2) exactly integrates the function g (x) = 1. Algebraic order
p can be achieved now if

⎛
⎜⎜⎜⎜⎜⎜⎝

C1

C1�

C1�
2

. . .

C1�
p

⎞
⎟⎟⎟⎟⎟⎟⎠ ·

(
a

b

)
= 0 (11)

If (2) is to be explicit, we need to add the extra condition

C0

(
a

b

)
= 0 , C0 = (0, 0, . . . , 0︸ ︷︷ ︸

k+1

, 1, 0, . . . , 0︸ ︷︷ ︸
k

.) (12)

Consider now the function g (x) = eqx , q ∈ R. The conditions that must hold
for (2) to integrate the function g exactly are

Cq
e

(
a

b

)
= 0 , Cq

e = (1, e−qh, . . . , e−kqh, −qh, −qhe−qh, . . . , −qhe−kqh) (13)

Finally, consider the functions g1(x) = eqx and g2(x) = e−qx , q ∈ iR. This
case is known as trigonometric fitting. The conditions that must hold for (2) to
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integrate both g1 and g2 exactly are

Cq
t

(
a

b

)
= 0

Cq
t =

(
1 cosh(qh) . . . cosh(kqh) 0 qh · sinh(qh) . . . qh · sinh(kqh)

0 sinh(qh) . . . sinh(kqh) qh qh · cosh(qh) . . . qh · cosh(kqh)

)
(14)

Consider now the general case where we have Me different real exponents and
Mt different imaginary exponents. The following theorem can now be easily
proved.

THEOREM 2.2. For the method (2) to integrate exactly any linear combination
of the functions

{1, x, x2, . . . x p, eqj x , xeqj x , . . . , xr j eqj x , e±q̂l x , xe±q̂l x . . . , xtl e±q̂l x}
for q j ∈ R, j = 1, 2, . . . , Me and q̂l ∈ iR, l = 1, 2, . . . , Mt the following condi-
tions must apply ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1

C1�

. . .

C1�
p

Cqj
e

. . .

Cqj
e �r j

Cq̂l
t

. . .

Cq̂l
t �tl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
a

b

)
= 0.

If the method (2) is explicit, the extra condition

C0

(
a

b

)
= 0

must also hold.

In practice, the a’s are given and the construction of the method reduces to
the calculation of the b’s. Although there is no systematic way to define the a’s
for a new method, the following conditions must apply

(1) We assume that

C1

(
a

b

)
=

k∑
j=0

aj = 0.

(2) Consider the differential equation

y ′(x) = 0
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Method (2), when applied to the above equation reduces to the finite differ-
ence equation

k∑
j=0

aj yn− j = 0,

which gives bounded solutions if the roots of the characteristic polynomial

p(z) =
k∑

j=0

aj zk− j

lie inside the unit disc R = {z| |z| ≤ 1}, and those roots that lie on the unit
circle ∂ R = {z| |z| = 1} must have multiplicity one.

On the other hand, in the case of Backward Differentiation Formulas, the
method reduces to

k∑
j=0

aj yn− j = h · y ′
n (15)

which means that the b’s are known and we have to calculate the a’s. In this
case, maximum algebraic order defines the values of the a’a.

3. IMPLEMENTATION DETAILS AND TEST EXAMPLE

LMEF is a MATLAB program that uses the result of Theorem (2.2) to calcu-
late the coefficients of a linear multi-step method with exponential fitting. The
program calculates the vector c of coefficients, their Taylor expansion up to a
predefined order and the residual of the method.

Both the Taylor expansions of the c’s and the calculation of the residual of the
method require either MATLAB build-in functions or external functions from
MAPLE like (for example, mtaylor) which may fail to compute the expansion
especially in multiple frequency fitting although the limit of the expression un-
der expansion always exists (as frequencies or step size tends to zero). To solve
this problem, a function called my mtaylor has been developed which separates
the numerator and denominator of the expression under expansion, calculates
the Taylor expansions of those two new expressions and finally calculates the
Taylor expansion of their quotient. It can be easily proved that the expansion
calculated in this way is exact up to the minimum order of expansion of the
nominator and denominator.

LMEF requires as input the a’s of the method, so it can calculate the b’s. In
the case of backward differentiation formulas, the values of the given a’s are
neglected and only the dimension of the a-vector is used (the number of steps).

LMEF performs some basic tests on the input parameters in the case of
explicit or implicit methods. Using the coefficients a, it calculates the roots of
the characteristic polynomial of the method and checks the following:

—Unity must be a root of the characteristic polynomial.

—The roots must lie in the unit disc, and those that lie on the unit circle must
have multiplicity one, otherwise an error message is displayed and the cal-
culations stop.
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As a test example, we calculate the motion of two bodies in a reference system
that is fixed in one of them. Moreover, the motion is planar, thus, we only have to
calculate the x and y coordinates of the second body. The differential equations
are

ẍ = − x√
x2 + y2

3

ÿ = − y√
x2 + y2

3

and the initial conditions are

x(0) = 1 − ε ẋ(0) = 0

y(0) = 0 ẏ(0) = √
(1 + ε)/(1 − ε),

where ε is the eccentricity. By setting y1 = x, y2 = y , y3 − y ′
1 and y4 = y ′

2, we
get the first order system ⎛

⎜⎜⎜⎝
y1

y2

y3

y4

⎞
⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎜⎜⎝

y3

y4

− y1√
y2

1+ y2
2

3

− y2√
y2

1+ y2
2

3

⎞
⎟⎟⎟⎟⎟⎠ . (16)

In the first case (low eccentricity = 0.2) we consider the explicit method
EM − 4:

[c,ct,e]=lmef(’e’,[1,-1,1,-1]’);

and the method EM − 4TF with trigonometric fitting:

[c_o,ct_o,e_o]=lmef(’e’,[1,-1,1,-1]’,[2]);

Figure 1 presents the calculated position of the second body using the methods
EM − 4 and EM − 4TF and step size h = 0.075 for 112.5 periods. The posi-
tive effect of trigonometric fitting is obvious from this figure since it keeps the
second body on the correct orbit. Moreover, the relative error in energy and
angular momentum is almost one order of magnitude smaller in the case of
trigonometric fitting.

In the second case (high eccentricity = 0.75) we consider the explicit method
EM − 7

[c,ct,e]=lmef(’e’,[1,-1,1,0,-1,1,-1]’);

the method EM − 7TF with trigonometric fitting

[c_o,ct_o,e_o]=lmef(’e’,[1,-1,1,0,-1,1,-1]’,[2]);

and the BDF method BDF − 5

[c_b,ct_b,e_b]=lmef(’b’,[1,1,1,1,1]’);

Figure 2 presents the calculated position of the second body using methods
EM − 7, EM − 7TF and BDF − 5 with step size h = 0.01 for 7.5 periods. Simple
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Fig. 1. Integration of the 2-body problem for eccentricity ε = 0.2, step size h = 0.075 for 112.5

periods. (a) The calculated position of the second body using methods EM − 4 (dotted line) and

EM − 4TF (solid line), (b) the relative error in energy for the method EM − 4 (dotted line) and

EM − 4TF (solid line), (c) the relative error in momentum for the method EM − 4 (dotted line)

and EM − 4TF (solid line) and (d) the relative error in angular momentum for the method EM − 4

(dotted line) and EM − 4TF (solid line).
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TF
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Fig. 2. The calculated position of the second body using methods EM − 7 (dotted line), EM − 7TF
(dashed line) and BM − 5 (solid line) with step size h = 0.01 for 7.5periods. Both explicit method

EM−7 and trigonometric fitted method EM−7TF deviate from the correct orbit, while the backward

differentiation formula BDF−5 manages to handle the stiffness introduced by the high eccentricity

by keeping the second body on the correct orbit.
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trigonometric fitting cannot stabilize the solution, although the implicit BDF
method keeps the second body on the expected orbit.
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