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In this paper an exponential fitted partitioned linear multistep method is developed for the long term integration
of the N-body problem. The new method integrates exactly any linear combination of the functions 1, x, x2, x3

,..., x2k−1, exp(±wx) for the coordinates and any linear combination of the functions 1, x, x2, x3,..., x2k−3,
exp(±wx) for the velocities. Numerical results are produced and compared with a set of well known symplectic
and single step methods.
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1 Introduction

A lot of effort has been given during the last years for the construction of numerical methods that improve the
classical integration. Of special interest is the long-term integration of Hamiltonian systems (such as the propa-
gation of planetary orbits), since it is essential that the discrete methods employed reproduce both qualitatively
and quantitatively the underlying dynamics of the continuous system they are supposed to approximate. More
precisely, these discrete methods must show the same asymptotic behavior and the same invariants as the exact
solution of the problem. Symplectic integrators do conserve the symplectic form dp∧dq but in general energy
conservation is lost[1].

On the other hand, non symplectic methods, but with properties of symmetry, have been found very adequate
for long term propagation of planetary orbits. Quinlan and Tremaine [2] developed high order symmetric multi-
step methods which although exhibit simplicity and accuracy, they suffer from resonances and instabilities, the
origins of which are explained in a great detail by Quinlan [3].

Simos and Vigo-Aguiar [4] showed that exponential fitting, when it is used in symmetric multistep meth-
ods, improve the accuracy of the method, especially in long-term integration. Exponential fitting removes the
problems that are related to phase-lag observed in methods with constant coefficients, but require an efficient
estimation of the frequency of the problem. Simos [4] showed that if we have a general initial value problem of
the form

y′′
i = −fiyi + ... (1)

where fi, i=1(1)M are the coefficients of yi and M is the number of equations defined, the selection of ωi =
√|fi|,

where ωi are the frequencies of the problem, produce very accurate solutions.
In the case of propagation of planetary orbits, one can extract a partitioned system of differential equations

(one for the coordinates and one for the momenta). In such cases, it has been found that the use of two different
methods (partitioned) can overcome instabilities observed when a single method is applied to both equations [5].
A sufficient condition to obtain this in case of linear multistep methods, is that the characteristic polynomials of
both applied methods have distinct single roots, except for 1, as we shall see in the later.

In this work, the systematic construction of a partitioned multistep method with exponential fitting is presented.
The order of the method can be increased arbitrary. In section 2, we give all the details of the construction as well
as the calculation of the local truncation error of the new method. In section 3, we study the stability of the new

∗ Corresponding author: e-mail: dvlachos@ncmr.gr, Phone: +30 22910 76410, Fax: +30 22910 76323

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Appl. Num. Anal. Comp. Math. 1, No. 2 (2004) / www.anacm.org 541

method, when it is applied in the integration of the outer solar system. Numerical results are presented in section
3. The results are compared with a set of well known methods (both symplectic and non symplectic).

2 Construction of the new method

Consider the following partitioned multistep method:

2k+1∑
j=0

(−1)j+1qn+j = h

2k∑
j=0

bjq
′
n+j (2)

for the coordinates and:
2k−1∑
j=0

(−1)j+1pn+j = h

2k−2∑
j=0

cjp
′
n+j (3)

for the momenta. In the above equations, qn+j and pn+j are the estimations of the exact solutions q(t) and p(t)
at the time t = (n + j)h, where h is the step of the method and q′n+j and p′n+j their corresponding derivatives.
The characteristic polynomials of the above methods are:

�(z) =
∑2k+1

j=0 (−1)j+1zj = (−z)2k+2−1
z+1

�̂(z) =
∑2k−1

j=0 (−1)j+1zj = (−z)2k−1
z+1

(4)

and their corresponding roots are:

z = ei n
k+1 π, n = 0..2k + 1, n �= k + 1

ẑ = ei n
k π, n = 0..2k − 1, n �= k

(5)

Both groups of unknown coefficients (i.e. bj , j = 0(1)2k + 1 and cj , j = 1(1)2k − 1) are calculated in the same
way. Below we shall present the calculation of bj’ s. The coefficients cj’ s are calculated by simply replacing k
with k − 1. Consider now the function L(q(t), h) given by:

L(q(t), h) =
2k+1∑
j=0

(−1)j+1q(t + jh) − h

2k∑
j=0

bjq
′(t + jh) (6)

Substituting q(t + jh) and q′(t + jh) with their Taylor expansions, we get the following power series for
L(q(t), h):

L(q(t), h) =
∞∑

s=0

Csq
(s)(t)hs (7)

where

C0 =
j=2k+1∑

j=0

(−1)j = 0 (8)

and

Cs =
1
s!

2k+1∑
j=1

(−1)j+1js − 1
(s − 1)!

2k∑
j=0

bjj
s−1 (9)

In order that the method in (2) integrates exactly the function tm, then C0, C1, ..., Cm must vanish. In this way,
2k− 1 equations for bj’s can be extracted. The rest two equations for fully determine bj’s can be extracted by the
demand that the method (2) integrates exactly the functions exp(±iwx). This gives:

2k∑
j=0

iueijubj =
2k+1∑
j=0

(−1)j+1eiju (10)
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and

2k∑
j=0

iue−ijubj =
2k+1∑
j=0

(−1)je−iju (11)

where u = wh. Substituting the calculated values for bj’s in equation (4), the local truncation error of the method
is given by:

LTE = Ak(q(2k+2) + w2q(2k))h2k+2 + 0(h2k+3) (12)

where the coefficient Ak can be calculated from the Taylor expansion of bj’s considered as functions of h. These
two methods will be used in numerical tests. Notice here that, the determinant of the system of equations that
give the coefficients, vanishes when u = 0. This may lead to heavy cancellations when the frequency w of the
problem (in fact the quantity u = wh) is too small. In order to avoid this, we have to use the Taylor expansions
of the coefficients, considered as functions of u.

3 Stability analysis

It is clear that both methods for coordinates and momenta are stable. In fact, all roots of the characteristic
polynomial are simple and are located on the unit circle. In order to account for the stability of the partitioned
method, we present the following theorem:

Theorem 3.1 The partitioned method (2)-(3) is stable if the corresponding characteristic polynomials have
no common roots except for 1.

P r o o f. In order to account for the stability of the partitioned method, we derive some basic results from the
theory of general linear multistep methods. For details we refer to chapter 4 of [6] and chapter III of [7]. Consider
a differential equation of the form

ẏ = f(y) (13)

A general explicit linear multistep method for solving (13) can be written as:

Yn+1 = DYn + hFf(Ŷn+1)
Ȳn+1 = GYn + hAf(Ŷn+1)

(14)

where Yn := (yn+k−1, ..., yn)T , Ŷn+1 = (yn+k, ..., yn)T and yn is the approximate value of y(x + nh). The
matrices D and F are given by:

D =

⎛
⎜⎜⎝

−ak−1 −ak−2 ... −a0

1 0 ... 0
: :

1 0

⎞
⎟⎟⎠ , F =

⎛
⎜⎜⎝

0 βk−1 ... β0

0 0 ... 0
: : :
0 0 0 0

⎞
⎟⎟⎠ (15)

and the matrices G and A:

G =
(

D
0 0 ... 0 1

)
, A =

(
B
0

)
(16)

The eigenvalues of the matrix D are exactly the roots of the characteristic polynomial of the linear method. Since
we are concerned for weakly stable methods, Dk = I . Consider now the composition of k consequtive steps
(with step size h/k) as a new method. This is again a linear method

Yn+1 = Yn + hBf(Ŷn+1)
Ŷn+1 = CYn + hEf(Ŷn+1)

(17)
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where

B =
1
k

(Dk−1F,Dk−2F, ..., DF, F )

C =

⎛
⎜⎜⎝

G
GD

:
GDk−1

⎞
⎟⎟⎠

E =
1
k

⎛
⎜⎜⎝

A
GF A
:

GDk−2F GDk−3 ... A

⎞
⎟⎟⎠

Notice that the method (17) is a single step method, so if we replace the second equation of (17) for Ŷ in the first
and taking the limit h → 0, it follows that the method is consistent with the ”augmented differential equation”

Ẏ = Bf(CY ) (18)

Consider now again the method (2). The results are the same for the method (3) if we replace k with k-1. We
have

Dj =

⎛
⎝ 0j−1 Ij−1

1 −1 ... −1 1
I2k−j 02k−j

⎞
⎠ (19)

where Ip is the identity matrix with p rows and 0p is the zero matrix with p rows. Then

DjF =

⎛
⎜⎜⎝

0j−1

0 β2k ... β1 β0

0 β2k ... β1 β0

02k−j

⎞
⎟⎟⎠ (20)

Consider now the vector e = (1, 1, ...1)T . Then

De = e, Ce = e (21)

and

Be =
1

2k + 2

⎛
⎝2

j=2k∑
j=0

βj

⎞
⎠ e = e (22)

from the consistency of the method. Then, if y(t) is a solution of (13), the vector Y = ey(t) is a solution of (18)
since

Bf(CY ) = Bf(Cey(t)) = Bef(y(t)) = ef(y(t)) = eẏ(t) = Ẏ

Consider now the outer solar system. The Hamiltonian of the system is

H(q, p) =
1
2

5∑
i=0

1
mi

pi
T pi − 1

2
G

5∑
i=0

5∑
j=0,j �=i

mimj

‖qi − qj‖ (23)

and the partitioned system of differential equations is

ṗr = gr(q), q̇r = fr(p) (24)
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where

gr(q) = −Gmr

5∑
i=0,i �=r

mi
qr − qi

‖qr − qi‖3
, fr(p) = pr

mr
(25)

We can extend now the above result to a general explicit partitioned method of the type

Qn+1 = DQn + hFf(Vn+1)
Pn+1 = D̂Pn + hF̂ g(Un+1)

(26)

which is consistent with the ”partitioned augmented differential equation”

Q̇ = Bf(ĈP ), Ṗ = B̂g(CQ) (27)

Notice here that there is an integer m such that Dm = I and D̂m = I . We linearize the above system of equations
around Q(t) = eq(t) and P (t) = êp(t), and consider the variational equation

dQ̇ = BĈfp(q, p)dP

dṖ = B̂Cgq(q, p)dQ
(28)

Let now λj , wj , w
∗
j be the eigenvalues and (right and left) eigenvectors of D and λ̂j , ŵj , ŵ

∗
j the eigenvalues and

(right and left) eigenvectors of D̂. All λ’s and λ̂’s are distinct and λj �= λ̂i except for λ1 = λ̂1 = 1. Observe that
from the definition of B and B̂ it follows that

w∗
j BĈŵi =

1
m

w∗
j Fŵiλ

−1
j

m−1∑
l=0

(
λ̂i

λj

)l

= νδj1δi1 (29)

and

ŵ∗
j B̂Cwi =

1
m

ŵ∗
j F̂wiλ̂

−1
j

m−1∑
l=0

(
λi

λ̂j

)l

= κδj1δi1 (30)

since λm = λ̂m = 1 and thus the sum in the above equations vanishes except for the case i = j = 1. The general
solution of (28) can be written

(dQ)(t) =
2k+1∑
j=1

ηj(t)wj , (dP )(t) =
2k−1∑
j=1

ζj(t)ŵj (31)

If we take now the derivatives of the above relations and multiply (28) from left with wj (ŵj) we find

η̇1 = νfp(q, p)ζ1

ζ̇1 = κgq(q, p)η1

η̇j = 0, j �= 1
ζ̇j = 0, j �= 1

(32)

which are stable equations (the first two of them constitutes the variational equations of the outer solar system,
which is supposed to be stable, while the other two are trivially stable). Summarizing, we have found that
the augmented partitioned differential equations (which are consistent with our method) are stable and thus the
stability of our method is guaranteed.
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4 Numerical results

The method is tested in the integration of the outer soloar system. Initial values obtained from [7]. Masses
are relative to the sun, so that the sun has mass 1. We have taken msun = 1.00000597682 to take account
for the inner planets. Distances are in astronomical units (1A.U.=149597 870 km), times in earth days and the
gravitational constant G = 2.95912208286 · 10−4. Initial values correspond to September 5, 1994 at 0h00 [5].
The new method was tested in two versions (PEFM2 with k=2 and PEFM3 with k=3) with four other methods i.e.
the symplectic Euler, the implicit midpoint, the Bulirsch-Stoer [8] and the fourth order symplectic Neri-Candy-
Rozmus [9]. Since there is no reference exact solution, the comparison was based on the error produced by each
method to the energy and the angular momentum of the outer solar system as a function of computational time
needed for each method. The integration time was 200,000 earth days.

Figure 1 shows the maximum error in total energy (|E − E0|/|E0| where E is the total energy and E0 is
the total initial energy). The method PEFM3 is about three times faster from the Bulirsch-Stoer one and more
than one order of magnitude faster from the other methods. Notice here that one of the major advantages of our
method is that the computational cost produced by increasing k is very small, since in every step of our method,
only one derivative is calculated. The additional computational time produced by increasing k is limited to shift
operations and the computation of the coefficients of the method (from complicated trigonometric functions).
This can be handled efficiently by calculating only two of the coefficients by the trigonometric relations (ie b2k

and b2k−1), while the other coefficients can be calculated by simple algebraic expression (as functions of b2k and
b2k−1).

Fig. 1 Maximum error in total energy for integration of the outer solar system for 200,000 days. empty square-PEFM2,
empty circle-PEFM3, solid circle-Symplectic Euler, solid square-Implicit Midpoint, empty triangle-Bulirish-Stower, solid
triangle-Nery-Candy-Rozmus.

5 Conclusions

In this paper, a partitioned multistep method with exponential fitting was developed for the long-term integration
of the outer solar system. We have given explicitly the way for the construction of the new method, the order
of which can be increased arbitrarily. Stability analysis is also presented. Numerical examples indicate that the
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new method is more efficient as far as the energy conservation of the outer solar system is concerned, than well
known methods used for long-term integration of orbital problems, both symplectic and non symplectic.

All computations were carried out on a IBM PC-AT compatible 80486 using double precision arithmetic with
16 significant digits accuracy (IEEE standard).
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