
An Embedded Networking SoC for purely Ethernet MANs/WANs

Th. Orphanoudakis1, G. Kornaros2, I. Mavroidis2 , A. Nikologiannis2,
I. Papaefstathiou2

1. University of Peloponnese,

Karaiskaki str., 22100,
Tripoli, Greece,
fanis@uop.gr

2. Technical University of Crete,
Electronics & Computer Engineering,
Kounoupidiana, Chania, Crete, Greece

 {kornaros,maurog,anikol,
ygp}@mhl.tuc.gr

Abstract

Ethernet technology is lo longer used only in Lo-
cal Area Networks (LANs); it is continuously gain-
ing momentum in the Metropolitan Area Net-
works(MANs) and Wide Area Networks(WANs). This
paper presents a multi-service access concentrator
core that has been designed specifically for multi-
service, purely Ethernet, access nodes. In particular
the presented system is optimised for Ethernet traffic
aggregation over MPLS-based optical backbone
networks. Moreover, we also demonstrate the bot-
tlenecks that have been identified when such net-
working applications are executed in a general-
purpose network processing device, and the tech-
niques we used in order to bypass them. Our experi-
ments results, executed in a state-of-the-art FPGA-
based platform, strongly support that the combina-
tion of general purpose processing units with power-
ful specialized hardware modules, is the most cost-
effective approach for designing systems that (i) can
support today’s and future network speeds and ap-
plications, in purely Ethernet networks, (ii) provide
the end-user with the required programmability.

Keywords: Network processor, FPGA, multi-service
access concentrator, switching, Ethernet, Multi-
processor.

1 INTRODUCTION

The growth in the number of network nodes,
data traffic and link rates, continuing at a steady pace
during the last decade, has imposed the development
of high-capacity telecommunication systems. More-
over, in the network access and edge domains of such
telecommunication frameworks, even though the
bandwidth is very high, the equipment is shared by a
small number of users and therefore low investment
and operational costs are critical factors. Further-
more, a very important current trend in the network-
ing world is to migrate functions from their current

position, in the middle of a network, to the edge of it
and thus closer to the subscriber.

The device which can provide the requested
processing power while being close to the network
edge is the access concentrator. Such a system is lo-
cated at a MAN or LAN and provides access to a
high-speed backbone WAN. Since Ethernet technol-
ogy is gaining momentum in the MAN/WAN area,
while transparent LAN bridging is becoming a very
successful service [1], a very important networking
application is the Ethernet traffic aggregation over an
optical WAN backbone; in such a framework, the
Multi-Protocol Label Switching (MPLS) scheme is
most commonly used.

In this paper we present a programmable Net-
work Processing Unit (NPU), prototyped in a high-
end FPGA platform, which is tailored to the newly
introduced, purely Ethernet, high-end network-access
environment. This specialised device is much less
expensive, in terms of hardware, than the existing,
general-purpose solutions, while it provides the
same level of performance. In this work, we also dis-
cuss the use of this NPU as the basic component for
building high-performance multi-service access con-
centrators and the performance it achieves when a
real-world networking application is executed on it.
Furthermore, we present, in detail, the specific char-
acteristics of a certain class of networking applica-
tions, highlighting their bottlenecks, when executed
by general-purpose CPU cores; this analysis can be
used as a guideline for anyone wishing to design
network concentrating systems.

2 RELATED WORK

A long list of companies have developed high-
end NPUs, based on several proprietary architectures
with different programming models. The majority of
the commercial, high-end NPUs fall mainly into two
categories: the ones that use a large number of simple
RISC CPUs, and those that use a small number of
high-end, special purpose CPUs optimized for
processing network streams. The first category

involves solutions from big semiconductor players,
such as Intel’s IXP family that has from 9 to 17 very
simple microprocessors [3], Motorola’s C-5 [7] with
16 simple, general-purpose CPUs and 5 very simple
special-purpose co-processors, and CISCO’s Toaster
family [7] with 16 simple microcontrollers. The
aforementioned NPUs claim to handle data rates
from 2.5 to 10Gb/sec, but as it is shown in [7] the
actual bandwidth they can service depends heavily on
the application. Thus, for complex applications the
performance degrades dramatically. Moreover, their
performance is limited by the intercommunication
overhead, and the limited off-chip memory
bandwidth. The second category includes
Broadcom/Sibyte’s Mercurian [9] with four 2-way,
superscalar, ultra high-speed CPUs that incorporate
also special-purpose processing units, Clearwater’s
CNP810SP [10], with an 8 thread, 10-issue CPU that
can simultaneously process 8 packets and includes
special-purpose processing units as well as EZChip’s
NP1 [7] with a number of processors, specialized for
ultra-high speed memory lookups.

Access
Concentrator

Access
Concentrator

C2.B1
C2.B2

p1

p3
p2
p1

p3
p2p4

MAC.C1.B1.A
MAC.C1.B2.A

MAC.C1.B3.A

V
L

A
N

.C
1

p1

p3
p2
p1

p3
p2
p1

p3
p2

MAC.C2.B2.A

EVC (C2)

ELAN (C1)

label_c2

label_c1

P9

P1

P2

P3
P4

P5

P6

P7

P8

P9

P1

P2

P3
P4

P5

P6

P7

P8

P9

P1

P2

P3
P4

P5

P6

P7
P8

P9

P1

P2

P3
P4

P5

P6

P7
P8

V
L

A
N

.C
2

Ethernet
Access

Ethernet
Access

MPLS
Backbone

MAC.C2.B2.A

p1

p3
p2
p1

p3
p2
p1

p3
p2
p1

p3
p2

p1

p3
p2
p1

p3
p2
p1

p3
p2
p1

p3
p2

p1

p3
p2
p1

p3
p2
p1

p3
p2
p1

p3
p2

C1.B2

C1.B1

C1.B3

Figure 1 : An Ethernet MAN/WAN

Although, these NPUs, provide higher processing
power for some complex network protocols, they
lack the parallelism of the first category. Therefore,
their performance, in terms of bandwidth serviced, is
lower than the one of the first category, for process-
ing large numbers of independent flows.

Moreover, a number of NPUs implemented in
reconfigurable technologies have recently been
proposed. Those include : (i) a special platform that
use hardware plug-ins in order to accelerate the
performance of a programmable router and in which
the specialised hardware is placed in different chips
than the general purpose processing units [11], (ii) a
fully reconfigurable processor that is adapted
according to the application needs [12], and (iii) a
highly complicated 7-layer processing engine [8].

Although all the above devices can execute all
the existing networking applications, the presented
system is the only one, to the best of our knowledge,
that is fine-tuned especially for the networking con-
centrator, purely-Ethernet, environment. The device

has actually been implemented in a state-of-the-art
FPGA which provides both the general purpose
processing power by two built-in high performance
CPUs and a number of soft-core simple CPUs and
the significant power of the specialized programma-
ble hardware blocks. As the performance section
clearly demonstrates, the presented system can meet
the performance of the state-of-the-art devices, while
being about an order of magnitude less expensive
than them, in terms of hardware-cost.

3 REQUIREMENTS OF MULTI-
SERVICE ACCESS NODES

The reference access concentrator, in which the

presented system will be placed, is located at a
LAN/MAN edge and provides access to a high-speed
backbone WAN, using the Ethernet Technology; in
such an environment the service providers can offer
both Virtual Private Networking (VPN) services and
Internet access from a single packet switched infra-
structure. One of the most interesting VPN services
is a multipoint Ethernet VPN, commonly referred to
as virtual private LAN service (VPLS). VPLS is a
VPN class that allows the connection of multiple
sites in a single bridged domain over an IP/MPLS
network (Figure 1). All customer sites in a VPLS in-
stance appear to be on the same LAN, regardless of
their location. VPLS uses an Ethernet interface as the
customer handoff, simplifying the LAN/WAN
boundary and allowing for rapid and flexible service
provisioning.

The VPLS architecture specifies the use of a
Provider Edge (PE) router that is capable of learning,
bridging and switching on a per-VPLS basis. The PE
routers are connected together by a full mesh of
MPLS Label Switched Path (LSP) tunnels. Multiple
VPLS services can be offered over the same set of
LSP tunnels. Signaling is used to negotiate a set of
ingress and egress Virtual Connection (VC) labels on
a per-service basis. The VC labels are used by the PE
routers for de-multiplexing traffic arriving from dif-
ferent VPLS services over the same set of LSP tun-
nels. PE routers learn the source MAC addresses of
the traffic arriving on their network ports. Each PE
router maintains a Forwarding Information Base
(FIB) for each VPLS service instance and learned
MAC addresses are placed in the corresponding FIB
table. All traffic is switched based on MAC ad-
dresses and forwarded between all participating PE
routers using the LSP tunnels. Unknown packets (i.e.,
the destination MAC address has not been learned)
are forwarded to all corresponding PE routers until
the target station responds and the MAC address is
learned by the PE routers associated with that ser-
vice.

PE routers must comply with highly demanding
requirements in order to support the VPLS service at

a network rate of several Gigabits per second.

Network
Processor

Control
RISC
CPU

Connection
Memory
Manager

Bridge

SRAM

DRAM

SRAM

IPSec
R

A
M

GMII
UII/POS

MII GMII
ATM/AAL

GMII
UII/POS

MII GMII
ATM/AAL

DMM

RISC

Cache

PPU 1

C
ac

he
ct

rl
C

ac
he

ct
rl

Mem. Ctrl.

SDRAM

PPU 2
PPU3

Traffic
Scheduler

oSCH1
oSCH2

oSCHn

TSH

TSC

m
em

_c
tl

RISC
C

ac
he

ct
rl RISC

C
ac

he
ct

rl
C

ac
he

ct
rl

PPU 4

Figure 2 GigaFlow block diagram

The required functionality of a PE includes:
� Port Aggregation
� MAC frame forwarding, multicast-

ing/broadcasting, address learning/aging
� Traffic Management (policing, scheduling,

buffer management)
� Protocol encapsulation and Ethernet/Metro

bridging
� Control Protocol and Management Support

3.1 Analysis of the Application

A very important issue when designing, our

NPU called GigaFlow, was the identification of the
performance bottlenecks when the specified class of
applications is executed on the general purpose
NPUs of Section 2. As this section clearly demon-
strates all the dedicated hardware modules of the Gi-
gaFlow, as well as its overall architecture, have been
designed so as to bypass the bottlenecks faced by the
existing devices. In general, Transparent Ethernet
bridging over an MPLS-based backbone includes in-
tensive protocol processing as well as high-speed
packet switching. More specifically, the complete
packet processing flow includes the following func-
tions:
� Packet header extraction and protocol identifi-

cation
� Source MAC learning (based on input port,

source MAC address and VLAN-VID)
� Destination port lookup (based on destination

MAC address and VLAN)
� Aging of forwarding table
� Flooding of packets towards all configured ports

of a customer’s Ethernet VLAN (broadcasting)
� Protocol encapsulation
� Traffic metering, shaping and scheduling.

A first observation is the need for efficient
search functions that are performed either on short
fields or, in the worst-case, combination of long
fields (e.g. MAC and VID). Those searches result is

significant bottlenecks when they are executed in
General-Purpose processors. Therefore, in the Gi-
gaFlow a special scheme has been utilized based on
the Connection Memory partitioning which is shown
in Figure 3. Long searches, including MAC-address
based ones, are performed by a specialized hardware
module which returns the memory base-address
where configuration/context information resides for
each VLAN of the system. The additional require-
ment for learning leads to double memory accesses
whereas aging of those entries is a task performed
off-line by control plane software executed in the
main CPU. After packet classification and forward-
ing table updates have been performed, the main
processing intensive task is that of header modifica-
tions and packet encapsulation. Header construction
is performed by simple CPUs whereas the very costly
data copying task is executed by a specialized Data
Memory Manager(DMM) module; the DMM per-
forms such operations extremely faster than any of
the general purpose CPUs utilized in the devices de-
scribed in the Related Work Section. An additional
requirement in Ethernet WAN access is also that of
packet flooding within each VLANs broadcast do-
main. This is a HW assisted procedure only for
physically copying data to output ports. In case dif-
ferent header encapsulations/addresses are required
for each port (e.g. different labels) this can only be
accomplished by SW “loops”. Another very expen-
sive, in terms of CPU power, task is the Fair Band-
width Allocation one. In the Gigaflow this task is
also handled by the dedicated hardware units and
does not consume any processing resources. More-
over, a complicated Traffic policing is also supported
by specialized hardware as the next section demon-
strates, whereas packet dropping, in case of excessive
load, can be implemented in the management plane.

SearchKey
[MAC|VID]

Result
[portID]

0
1
.
.
.

4K
(16K)

[VPLSidx][VID]

FIB

proto[0:3] out_queue[0:15]out_queue[0:15]
L2_tunnel_hdr[11Bytes]

proto[0:3] out_queue[0:15]out_queue[0:15]
L2_tunnel_hdr[11Bytes]

PROTO Fields

NULL (0x0)

MPLS (0x1) VCout
[0..11]

L2 DST
[0.47]

L2 VID
[0..11]

L2 TOS
[0..2]

PROTO Fields

NULL (0x0)

MPLS (0x1) VCout
[0..11]

L2 DST
[0.47]

L2 VID
[0..11]

L2 TOS
[0..2]

PROTOPROTOPROTO FieldsFieldsFields

NULL (0x0)NULL (0x0)

MPLS (0x1)MPLS (0x1) VCout
[0..11]
VCout
[0..11]
VCout
[0..11]

L2 DST
[0.47]

L2 DST
[0.47]

L2 DST
[0.47]

L2 VID
[0..11]
L2 VID
[0..11]
L2 VID
[0..11]

L2 TOS
[0..2]

L2 TOS
[0..2]

L2 TOS
[0..2]

VLAN config mem

V
L

A
N

 in
de

x
m

em
V

L
A

N
 c

on
te

xt
 m

em

Figure 3 : Connection Memory partitioning

4 NPU ARCHITECTURE

The GigaFlow, demonstrated in Figure 2, im-
plements a hierarchical architecture, allowing several
levels of programmable data processing. It can be
connected directly to a number of different networks
through its high-speed parallel interfaces and perform
bridging, protocol processing and packet forwarding
between them. Packet Processing Units (PPUs),
which are based on simple embedded, low-cost RISC
processors, process the network data in the data (fast)
path, while the complicated general-purpose CPUs
are responsible for the complex control-plane tasks.
Moreover, the network packets or cells can be
switched between the different network ports without
the intervention of any processing unit as long as the
hardware queuing and scheduling engines are appro-
priate configured. GigaFlow features a number of
innovations not found in other NPUs in its category.
For example, network cells or packets are directly
handled by a specialized memory management hard-
ware module supporting a powerful set of commands
performing various manipulations on its data struc-
tures.

Efficient internal communication is achieved
through an optimized mix of high-speed communica-
tion buses and shared memory schemes under the
control of a specialized task scheduler allowing for
prioritised and weighted internal task scheduling and
load balancing. Finally a security acceleration engine
is available so as to further reduce the required soft-
ware processing power in security applications.

4.1 Network Interfaces

GigaFlow supports 3 types of network inter-
faces: Fast Ethernet MAC (MII), Gigabit Ethernet
MAC (GMII) and AAL5/UTOPIA Level 2 network
interfaces; all of them are directly connected to the
DMM.

4.2 Data Memory Management (DMM) engine

The DMM module implements per-flow queuing

for up to 32K independent flows enabling efficient
queue handling, variable-length packet storage and
access to specific packet segments by the processing
engines. The main functions of the DMM are (i) to
store the incoming traffic in certain individual
queues, (ii) to retrieve parts of the stored packets and
forward them to the CPUs for protocol processing.
The DMM can also modify the stored packets in cer-
tain ways and can forward the stored traffic to the
output. The DMM allows stored packets to receive
different levels of processing without keeping multi-

ple copies of them in data memory. This significantly
minimizes the external-memory throughput require-
ments and simplifies the software processing in the
PPUs. The DMM operates both at fixed and variable
length data items. It uses DRAM for data storage and
SRAM for the internal data structures. Thus, all the
manipulations of those data structures occur in paral-
lel with data transfers, keeping DRAM accesses and
overall latency to a minimum. The DMM provides a
large instruction set in order to support the diverse
protocol processing requirements of any Ethernet de-
vice handling queues. Beyond the primitive com-
mands of “enqueue” and “dequeue”, the DMM fea-
tures a large set of 12 commands to perform various
manipulations on its data structures; all those com-
mands are very frequently utilized when the Gi-
gaFlow executes the class of applications described
in the last section.

4.3 Connection Memory Management (CMM)
Module

This module controls the accesses to an external

SRAM memory, in which the different connection
parameters and a number of dynamically-managed
lookup tables are stored. A classification engine is
employed at Ethernet’s MAC Layer, which uses an
innovative hashing scheme and internal replacement
of MAC Vendor IDs; the Hash Based Classification
Engine (HBCE) compacts the MAC address tables
and supports extremely high-speed decisions, while
its memory needs are significantly lower than the ex-
isting solutions[7]. HBCE is designed to support
tens-of-thousands of MAC-address rules and a cou-
ple of thousands of VLAN-based and port-based
ones. The support of MAC-based classification is
another factor that differentiates the GigaFlow from
all the devices presented in Section 2, and it signifi-
cantly increases its performance when it is employed
in a purely Ethernet environment.

4.4 Traffic Management Support

The Traffic Shaper (TSH) module regulates the

outgoing traffic in order to comply to certain band-
width limitations and it is implementing a Leaky
Bucket algorithm[10]. An Output Scheduler (OSC)
block forwards outgoing packets to the correspond-
ing network interface depending on flow priorities
and assigned flow rates. Its purpose is to regulate the
network traffic so as to share the link bandwidth ac-
cording to the pre-defined weights of the different
network flows. The packet selection policy used is
based on a work-conserving algorithm which is very
similar to Worst-case-Fair Queueing (WF2Q) [6] and
which uses a priority queue mechanism based on vir-
tual times.

4.5 Internal Scheduling and Communication.

The Task Scheduler (TSC) is responsible for

scheduling the processing requests coming from all
the active input flows, taking into account their pri-
orities and the availability of the PPUs. After the
DMM receives a complete packet and enqueues it to
the corresponding input flow, it informs the TSC for
the packet arrival. This signals the start of packet
processing. As soon as a pending request for process-
ing is eligible for service, the TSC asks the DMM to
retrieve and forward the corresponding packet header
to a specified PPU.

The DMM communicates with all the processing
units through both the IBM Coreconnect OPB bus
[7] and the built-in dual port RAMs (DP-RAMs) of
the FPGA. The reason for using the latter approach is
that the OPB bus does not support burst transfers,
therefore its effective data transfer is limited; how-
ever it has the advantage of extremely simple inter-
connection interfaces. In order to efficiently transfer
the data between the DMM and the processing units
several built-in DP-RAMs are used (i.e. one per
processing unit). The DMM is connected to one port
of these DP-RAMs, while each processing unit is
connected to the second port. The processing units
(and the TSC) use the OPB bus to send commands to
the DMM, while they use the DP-RAMs for data
transfer. A custom communication protocol based on
the exchange of memory buffers through this DP-
RAM parallelizes the I/O operations with the actual
packet processing, completely hiding the latency of
the I/O operations. As it has been shown in [8], this
latency is a significant part of the total packet proc-
essing time, in all the existing architectures, and
therefore by completely hiding it, we achieve a sub-
stantial acceleration of the overall network process-
ing task.

When the packet-processing phase has been
completed, the PPU informs the DMM which in turn
it enqueues it at a certain output flow depending on
the specified output network interface, the output
flow rate and its priority. It is very important that an
actual packet payload is stored to the external
DRAM and read out of it only once, no matter in
how many queues this packet is placed in while being
processed.

5 PERFORMANCE EVALUATION
AND PROFILING RESULTS

The GigaFlow architecture has been imple-

mented in a Xilinx Virtex II Pro Platform FPGA [8]
and tested on a development board equipped with a
Virtex II Pro 2vp-70 chip, the required DRAM and
SRAM memories and a quad optical Gigabit Ethernet
transceiver. The current version with four PPUs and

without the IPSec acceleration unit occupies 88.9%
of the FPGA area, or in other words 66,184 Logic
Cells, and achieves a clock speed of 100MHz. The
development environment provided by Xilinx pro-
vides all the required tools for compiling the source
code for the processors we used, booting the
PowerPC CPU, initializing, configuring and simulat-
ing the design. We developed the application mostly
in C-language (very few time-critical parts have been
coded in Assembly) and simulated the design as well
as experimented in a real laboratory environment. By
not only experimenting but also simulating the placed
& routed model of the Gigaflow we had visibility
both on the output throughput as well as the process-
ing latency in all the internal blocks and could iden-
tify the real bottlenecks of the design.

We measured and simulated different scenarios
with a limited number of VLANs and MAC ad-
dresses (since the simulation time of the complete
model of the chip is prohibitively long) and for a
worst-case arrival pattern of 64-Byte Ethernet pack-
ets with 8 Bytes inter-frame gap. Due to the limited
number of addresses all of them could be accommo-
dated on the CMM cache. We have covered all pos-
sible packet flows (Ethernet-to-MPLS, MPLS-to-
Ethernet, Ethernet-to-Ethernet) using either a single
PPU or all four of them.

Table 1 indicates the processing delay per packet
for all possible packet flows; it illustrates how the
processing delay is analyzed based on the various
processing subtasks (header extraction (HX), header
modification (HM), forwarding (FW) and MAC
learning). As shown in Figure 2 the current FPGA
prototype, with 4 PPUs, operating at 100MHz can
sustain a throughput of 300-450 Kilo-packets-per-
second or in other words 155-255 Mega-bits-per-
second (Mbps) even in the worst case of minimum-
size 64-byte packets (and 8-byte inter frame gap).
Those numbers, wherever possible, have also been
verified by the experiments performed in the real de-
vice. Scaling the design and assuming a mid-size
ASIC and a mature 0.18µm CMOS technology, clock
speeds higher than 200MHz were achieved whereas
up to 8 PPUs were easily integrated keeping the
overall chip size within acceptable limits (less than
5mm x 5mm). Hence the total forwarding capacity
was scaled by 4 times (i.e. having twice the clock
speed and twice the number of PPUs) to rates up to 1
Gbps. The total complexity in that case was 3.43 mil-
lion transistors, as reported by the ASIC placement &
routing tools, when processing this design.

On the other hand, one of the most efficient
NPUs proposed Intel’s IXP2400 [3] supports a net-
working speed of up to 2.5 Gb/sec when executing
such a network application, and it is an ASIC imple-
mented in a 0.13nm CMOS technology utilizing 60
million transistors.

Therefore, we claim that the GigaFlow device is
the ideal processing heart of a future, purely
Ethernet, MAN or WAN since a very successful
state-of-the-art Network Processor needs 16 times
more silicon that GigaFlow while its performance is
only 2.5 times higher than that of our system,
eventhough GigaFlow is targeted to a much older
0.18µm CMOS technology; this is due to the fact that
GigaFlow has been designed specifically for such an
environment, whereas Intel’s NPU, as well as all the
others presented in the related work section, are more
general purpose devices efficiently supporting a large
range of different networking applications.

6 CONCLUSIONS

Multi-service, purely Ethernet, Access Concen-
trators are very demanding systems in terms of pro-
tocol processing and data forwarding capacity. Spe-
cial Purpose systems are required in order to imple-
ment such nodes and Network Processors are becom-
ing very popular in such environments due to the fact
that they provide both high performance and software
programmability. The GigaFlow system presented in
this paper is a very cost-efficient alternative that can
support both the state-of-the-art networking speeds
and today’s complicated networking applications.
One of the most important such applications is the
Ethernet/MPLS traffic aggregation which has been
analyzed in detail and its bottlenecks, when executed
in standard processing units, highlighted. The per-
formance measurements of the GigaFlow prototype
show that the presented design can support up to gi-
gabit/sec rates, at an extremely lower cost (in terms
of silicon area) than the existing network processing
high-end solutions, since the whole design is tailored
to a multi-service, purely Ethernet, environment .

Table 1. Processing delay per packet

 Average Processing delay (µs/packet)
 1PPU 4PPU HX HM FW Learn
Eth-Eth 4.2 1.5 48% 0 12% 24%
Eth-
MPLS

5.8 2 36% 40% 10% 18%

MPLS-
Eth

6.00 1.7 40% 17% 10% 20%

0
50

100
150
200
250
300
350
400
450
500

Eth-Eth Eth-MPLS MPLS-Eth

K
p

p
s

1PPU

4PPUs

Figure 4 : System data forwarding rate for 1 and 4
PPUs

REFERENCES

[1] IEEE 802.1q Standard, “Virtual Bridged Local

Area Networks”.
[2] J. Allen at al. “PowerNP Network Processor

Hardware, Software and Applications”, IBM Systems
Journal, Dec 2001.

[3] Sridhar Lakshmanamurthy, Kin-Yip Liu, Yim Pun,
Larry Huston, Uday Naik, “Network Processor Per-
formance Analysis Methodology”, Intel Technology
Journal, Aug 2002.

[4] J. Rexford, F. Bonomi, A. Greenberg, and A.
Wong, “Scalable architectures for integrated traffic
shaping and link scheduling in high-speed ATM
switches”, IEEE J. Sel. Areas Commun., 15 (3),
(1997) 938-950.

[5] G. Kornaros, et. Al., “A Fully-Programmable
Memory Management System Supporting Queue
Handling at Multi Gigabit rates”, in Proc. of the
IEEE, ACM, 40th Design Automation Conference
(DAC), California, U.S.A., June 2-6, 2003

[6] Virtex II-Pro, Data Sheet, Xilinx Sep. 2002.
[7] Douglas E. Comer, “Network Systems Design us-

ing Network Processors”, Prentice Hall, Jan 2003
[8] G. Memik, S. Memik and W. H. Mangione-Smith,

“Design and Analysis of a Layer Seven Network
Processor Accelerator Using Reconfigurable Logic”,
10th IEEE FCCM 2002, Napa, CA, April 23-24
2002.

[9] Broadcom's SiByte NP,
http://sibyte.broadcom.com/public/

[10] Clearwater Networks CNP810SP Simultaneous
Multithreading (SMT) Core

[11] D. Taylor, J. Turner, J. Lockwood, “Dynamic
Hardware Plugins (DHP): Exploiting Reconfigurable
Hardware for High-Performance Programmable
Routers”, Computer Networks, vol. 38, no. 3, pp.
295- 310, Feb. 2002

[12] C. Cachris, S. Vassiliadis, “Analysis of a Recon-
figurable Network Processor”, RAW 2006

