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Abstract 
   

Ethernet technology is lo longer used only in Lo-
cal Area Networks (LANs);  it is continuously gain-
ing momentum in the Metropolitan Area Net-
works(MANs) and Wide Area Networks(WANs). This 
paper presents a multi-service access concentrator 
core that has been designed specifically for multi-
service, purely Ethernet, access nodes. In particular 
the presented system is optimised for Ethernet traffic 
aggregation over MPLS-based optical backbone 
networks. Moreover, we also demonstrate  the bot-
tlenecks that have been identified when such net-
working applications are executed in a general-
purpose network processing device, and the tech-
niques we used in order to bypass them. Our experi-
ments results, executed in a state-of-the-art FPGA-
based platform, strongly support that the combina-
tion of general purpose processing units with power-
ful specialized hardware modules, is the most cost-
effective approach for designing systems that (i) can 
support today’s and future network speeds and ap-
plications, in purely Ethernet networks, (ii) provide 
the end-user with the required programmability. 
 
Keywords: Network processor, FPGA,  multi-service 
access concentrator, switching, Ethernet, Multi-
processor.  

1 INTRODUCTION 
 

The growth in the number of network nodes, 
data traffic and link rates, continuing at a steady pace 
during the last decade, has imposed the development 
of high-capacity telecommunication systems. More-
over, in the network access and edge domains of such 
telecommunication frameworks, even though the 
bandwidth is very high,  the equipment is shared by a 
small number of users and therefore low investment 
and operational costs are critical factors. Further-
more, a very important current trend in the network-
ing world is to migrate functions from their current 

position, in the middle of a network, to the edge of it 
and thus closer to the subscriber.  

The  device which can provide the requested 
processing power while being close to the network 
edge is the access concentrator. Such a system is lo-
cated at a MAN or LAN and provides access to a 
high-speed backbone WAN. Since Ethernet technol-
ogy is gaining momentum in the MAN/WAN area, 
while transparent LAN bridging is becoming a very 
successful service [1], a very important networking 
application is the Ethernet traffic aggregation over an 
optical WAN backbone; in such a framework, the 
Multi-Protocol Label Switching (MPLS) scheme is 
most commonly used. 

In this paper we present a programmable Net-
work Processing Unit (NPU), prototyped in a high-
end FPGA platform, which is tailored to the newly 
introduced, purely Ethernet, high-end network-access 
environment. This specialised device is much less 
expensive, in terms of hardware, than the existing, 
general-purpose solutions, while it provides  the 
same level of performance. In this work, we also dis-
cuss the use of this NPU as the basic component for 
building high-performance multi-service access con-
centrators and the performance it achieves when a 
real-world networking application is executed on it. 
Furthermore, we present, in detail, the specific char-
acteristics of a certain class of networking applica-
tions, highlighting their bottlenecks, when executed 
by general-purpose CPU cores; this analysis can be 
used as a guideline for anyone wishing to design 
network concentrating systems. 

2 RELATED WORK 
 

A long list of companies have developed high-
end NPUs, based on several proprietary architectures 
with different programming models. The majority of 
the commercial, high-end NPUs fall mainly into two 
categories: the ones that use a large number of simple 
RISC CPUs, and those that use a small number of 
high-end, special purpose CPUs optimized for 
processing network streams. The first category 



involves solutions from big semiconductor players, 
such as Intel’s IXP family that has from 9 to 17 very 
simple microprocessors [3], Motorola’s C-5 [7] with 
16 simple, general-purpose CPUs and 5 very simple 
special-purpose co-processors, and CISCO’s Toaster 
family [7] with 16 simple microcontrollers. The 
aforementioned NPUs claim to handle data rates 
from 2.5 to 10Gb/sec, but as it is shown in [7] the 
actual bandwidth they can service depends heavily on 
the application. Thus, for complex applications the 
performance degrades dramatically. Moreover, their 
performance is limited by the intercommunication 
overhead, and the limited off-chip memory 
bandwidth. The second category includes 
Broadcom/Sibyte’s Mercurian [9] with four 2-way, 
superscalar, ultra high-speed CPUs that incorporate 
also special-purpose processing units, Clearwater’s 
CNP810SP [10], with an 8 thread, 10-issue CPU that 
can simultaneously process 8 packets and includes 
special-purpose processing units as well as  EZChip’s 
NP1 [7] with a number of processors, specialized for 
ultra-high speed memory lookups. 
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Figure 1 : An Ethernet MAN/WAN 

Although, these NPUs, provide higher processing 
power for some complex network protocols, they 
lack the parallelism of the first category. Therefore, 
their performance, in terms of bandwidth serviced, is 
lower than the one of the first category, for process-
ing large numbers of independent flows.   

Moreover, a number of NPUs  implemented in 
reconfigurable technologies have recently been 
proposed. Those include : (i) a special platform that 
use hardware plug-ins in order to accelerate the 
performance of a programmable router and in which 
the specialised hardware is placed in different chips 
than the general purpose processing units [11], (ii) a 
fully reconfigurable processor that is adapted 
according to the application needs [12], and (iii) a 
highly complicated 7-layer processing engine [8]. 

Although all the above devices can execute all 
the existing networking applications, the presented 
system is the only one, to the best of our knowledge, 
that is fine-tuned especially for the networking con-
centrator, purely-Ethernet, environment. The device 

has actually been implemented in a state-of-the-art 
FPGA which provides both the general purpose 
processing power by two built-in high performance 
CPUs and a number of soft-core simple CPUs and 
the significant power of the specialized programma-
ble hardware blocks. As the performance section 
clearly demonstrates, the presented system can meet 
the performance of the state-of-the-art devices, while 
being about an order of magnitude less expensive 
than them, in terms of hardware-cost.  

3 REQUIREMENTS OF MULTI-
SERVICE ACCESS NODES 

 
The reference access concentrator, in which the 

presented system will be placed, is located at a 
LAN/MAN edge and provides access to a high-speed 
backbone WAN, using the Ethernet Technology; in 
such an environment the service providers can offer 
both Virtual Private Networking (VPN) services and 
Internet access from a single packet switched infra-
structure. One of the most interesting VPN services 
is a multipoint Ethernet VPN, commonly referred to 
as virtual private LAN service (VPLS). VPLS is a 
VPN class that allows the connection of multiple 
sites in a single bridged domain over an IP/MPLS 
network (Figure 1). All customer sites in a VPLS in-
stance appear to be on the same LAN, regardless of 
their location. VPLS uses an Ethernet interface as the 
customer handoff, simplifying the LAN/WAN 
boundary and allowing for rapid and flexible service 
provisioning. 

The VPLS architecture specifies the use of a 
Provider Edge (PE) router that is capable of learning, 
bridging and switching on a per-VPLS basis. The PE 
routers are connected together by a full mesh of 
MPLS Label Switched Path (LSP) tunnels. Multiple 
VPLS services can be offered over the same set of 
LSP tunnels. Signaling is used to negotiate a set of 
ingress and egress Virtual Connection (VC) labels on 
a per-service basis. The VC labels are used by the PE 
routers for de-multiplexing traffic arriving from dif-
ferent VPLS services over the same set of LSP tun-
nels. PE routers learn the source MAC addresses of 
the traffic arriving on their network ports. Each PE 
router maintains a Forwarding Information Base 
(FIB) for each VPLS service instance and learned 
MAC addresses are placed in the corresponding FIB 
table. All traffic is switched based on MAC ad-
dresses and forwarded between all participating PE 
routers using the LSP tunnels. Unknown packets (i.e., 
the destination MAC address has not been learned) 
are forwarded to all corresponding PE routers until 
the target station responds and the MAC address is 
learned by the PE routers associated with that ser-
vice. 



PE routers must comply with highly demanding 
requirements in order to support the VPLS service at 

a network rate of several Gigabits per second. 
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Figure 2  GigaFlow block diagram 

The required functionality of a PE includes: 
� Port Aggregation 
� MAC frame forwarding, multicast-

ing/broadcasting, address learning/aging 
� Traffic Management (policing, scheduling, 

buffer management) 
� Protocol encapsulation and Ethernet/Metro 

bridging  
� Control Protocol and Management Support 

3.1 Analysis of the Application 
 
A very important issue when designing, our 

NPU called GigaFlow, was the identification of the 
performance bottlenecks when the specified class of 
applications is executed on the general purpose 
NPUs of Section 2. As this section clearly demon-
strates all the dedicated hardware modules of the Gi-
gaFlow, as well as its overall architecture, have been 
designed so as to bypass the bottlenecks faced by the 
existing devices.  In general, Transparent Ethernet 
bridging over an MPLS-based backbone includes in-
tensive protocol processing as well as high-speed 
packet switching. More specifically, the complete 
packet processing flow includes the following func-
tions: 
� Packet header extraction and protocol identifi-

cation 
� Source MAC learning (based on input port, 

source MAC address and VLAN-VID) 
� Destination port lookup (based on destination 

MAC address and VLAN) 
� Aging of forwarding table 
� Flooding of packets towards all configured ports 

of a customer’s Ethernet VLAN (broadcasting) 
� Protocol encapsulation 
� Traffic metering, shaping and scheduling. 

A first observation is the need for efficient 
search functions that are performed either on short 
fields or, in the worst-case, combination of long 
fields (e.g. MAC and VID). Those searches result is 

significant bottlenecks when they are executed in 
General-Purpose processors. Therefore, in the Gi-
gaFlow a special scheme has been utilized based on 
the Connection Memory partitioning which is shown 
in Figure 3. Long searches, including MAC-address 
based ones, are performed by a specialized hardware 
module which returns the memory base-address 
where configuration/context information resides for 
each VLAN of the system. The additional require-
ment for learning leads to double memory accesses 
whereas aging of those entries is a task performed 
off-line by control plane software executed in the 
main CPU. After packet classification and forward-
ing table updates have been performed, the main 
processing intensive task is that of header modifica-
tions and packet encapsulation. Header construction 
is performed by simple CPUs whereas the very costly 
data copying task is executed by a specialized Data 
Memory Manager(DMM) module; the DMM per-
forms such operations extremely faster than any of 
the general purpose CPUs utilized in the devices de-
scribed in the Related Work Section. An additional 
requirement in Ethernet WAN access is also that of 
packet flooding within each VLANs broadcast do-
main. This is a HW assisted procedure only for 
physically copying data to output ports. In case dif-
ferent header encapsulations/addresses are required 
for each port (e.g. different labels) this can only be 
accomplished by SW “loops”. Another very expen-
sive, in terms of CPU power, task is the Fair Band-
width Allocation one. In the Gigaflow this task is 
also handled by the dedicated hardware units and 
does not consume any processing resources. More-
over, a complicated Traffic policing is also supported 
by specialized hardware as the next section demon-
strates, whereas packet dropping, in case of excessive 
load, can be implemented in the management plane. 
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Figure 3 : Connection Memory partitioning 



 

4 NPU ARCHITECTURE 
 

The GigaFlow, demonstrated in Figure 2, im-
plements a hierarchical architecture, allowing several 
levels of programmable data processing. It can be 
connected directly to a number of different networks 
through its high-speed parallel interfaces and perform 
bridging, protocol processing and packet forwarding 
between them. Packet Processing Units (PPUs), 
which are based on simple embedded, low-cost RISC 
processors, process the network data in the data (fast) 
path, while the complicated general-purpose CPUs 
are responsible for the complex control-plane tasks. 
Moreover, the network packets or cells  can be 
switched between the different network ports without 
the intervention of any processing unit as long as the 
hardware queuing and scheduling engines are appro-
priate configured. GigaFlow features a number of 
innovations not found in other NPUs in its category. 
For example, network cells or packets are directly 
handled by a specialized memory management hard-
ware module supporting a powerful set of commands 
performing various manipulations on its data struc-
tures. 

Efficient internal communication is achieved 
through an optimized mix of high-speed communica-
tion buses and shared memory schemes under the 
control of a specialized task scheduler allowing for 
prioritised and weighted internal task scheduling and 
load balancing. Finally a security acceleration engine 
is available so as to further reduce the required soft-
ware processing power in security applications. 

4.1  Network Interfaces 
 

GigaFlow supports 3 types of network inter-
faces: Fast Ethernet MAC (MII), Gigabit Ethernet 
MAC (GMII) and AAL5/UTOPIA Level 2 network 
interfaces; all of them are directly connected to the 
DMM. 

4.2  Data Memory Management (DMM) engine 
 
The DMM module implements per-flow queuing 

for up to 32K independent flows enabling efficient 
queue handling, variable-length packet storage and 
access to specific packet segments by the processing 
engines. The main functions of the DMM are (i) to 
store the incoming traffic in certain individual 
queues, (ii) to retrieve parts of the stored packets and 
forward them to the CPUs for protocol processing. 
The DMM can also modify the stored packets in cer-
tain ways and can forward the stored traffic to the 
output. The DMM allows stored packets to receive 
different levels of processing without keeping multi-

ple copies of them in data memory. This significantly 
minimizes the external-memory throughput require-
ments and simplifies the software processing in the 
PPUs.  The DMM operates both at fixed and variable 
length data items. It uses DRAM for data storage and 
SRAM for the internal data structures. Thus, all the 
manipulations of those data structures occur in paral-
lel with data transfers, keeping DRAM accesses and 
overall latency to a minimum. The DMM provides a 
large instruction set in order to support the diverse 
protocol processing requirements of any Ethernet de-
vice handling queues. Beyond the primitive com-
mands of “enqueue” and “dequeue”, the DMM fea-
tures a large set of 12 commands to perform various 
manipulations on its data structures; all those com-
mands are very frequently utilized when the Gi-
gaFlow executes the class of applications described 
in the last section.   

4.3 Connection Memory Management (CMM) 
Module  

 
This module controls the accesses to an external 

SRAM memory, in which the different connection 
parameters and a number of dynamically-managed 
lookup tables are stored. A classification engine is 
employed at Ethernet’s MAC Layer, which uses an 
innovative hashing scheme and internal replacement 
of MAC Vendor IDs; the Hash Based Classification 
Engine (HBCE) compacts the MAC address tables 
and supports extremely high-speed decisions, while 
its memory needs are significantly lower than the ex-
isting solutions[7]. HBCE is designed to support 
tens-of-thousands of MAC-address rules and a cou-
ple of thousands of VLAN-based and port-based 
ones. The support of MAC-based classification is 
another factor that differentiates the GigaFlow from 
all the devices presented in Section 2, and it signifi-
cantly increases its performance when it is employed 
in  a purely Ethernet environment.   

4.4 Traffic Management Support 
 
The Traffic Shaper (TSH) module regulates the 

outgoing traffic in order to comply to certain band-
width limitations and it is implementing a Leaky 
Bucket algorithm[10]. An Output Scheduler (OSC) 
block forwards outgoing packets to the correspond-
ing network interface depending on flow priorities 
and assigned flow rates. Its purpose is to regulate the 
network traffic so as to share the link bandwidth ac-
cording to the pre-defined weights of the different 
network flows. The packet selection policy used is 
based on a work-conserving algorithm which is very 
similar to Worst-case-Fair Queueing (WF2Q) [6] and 
which uses a priority queue mechanism based on vir-
tual times. 



4.5 Internal Scheduling and Communication. 
 
The Task Scheduler (TSC) is responsible for  

scheduling the processing requests coming from all 
the active input flows, taking into account their pri-
orities and the availability of the PPUs. After the 
DMM receives a complete packet and enqueues it to 
the corresponding input flow, it informs the TSC for 
the packet arrival. This signals the start of packet 
processing. As soon as a pending request for process-
ing is eligible for service, the TSC asks the DMM to 
retrieve and forward the corresponding packet header 
to a specified PPU.  

The DMM communicates with all the processing 
units through both the IBM Coreconnect OPB bus 
[7] and the built-in dual port RAMs (DP-RAMs) of 
the FPGA. The reason for using the latter approach is 
that the OPB bus does not support burst transfers, 
therefore its effective data transfer is limited; how-
ever it has the advantage of extremely simple inter-
connection interfaces. In order to efficiently transfer 
the data between the DMM and the processing units 
several built-in DP-RAMs are used (i.e. one per 
processing unit). The DMM is connected to one port 
of these DP-RAMs, while each processing unit is 
connected to the second port. The processing units 
(and the TSC) use the OPB bus to send commands to 
the DMM, while they use the DP-RAMs for data 
transfer. A custom communication protocol based on 
the exchange of memory buffers through this DP-
RAM parallelizes the I/O operations with the actual 
packet processing, completely hiding the latency of 
the I/O operations. As it has been shown in [8], this 
latency is a significant part of the total packet proc-
essing time, in all the existing architectures, and 
therefore by completely hiding it, we achieve a sub-
stantial acceleration of the overall network process-
ing task.  

When the packet-processing phase has been 
completed, the PPU informs the DMM which in turn 
it  enqueues it at a certain output flow depending on 
the specified output network interface, the output 
flow rate and its priority. It is very important that an 
actual packet payload is stored to the external 
DRAM and read out of it only once, no matter in 
how many queues this packet is placed in while being 
processed. 

5 PERFORMANCE EVALUATION 
AND PROFILING RESULTS  
 
The GigaFlow architecture has been imple-

mented in a Xilinx Virtex II Pro Platform FPGA [8] 
and tested on a development board equipped with a 
Virtex II Pro 2vp-70 chip, the required DRAM and 
SRAM memories and a quad optical Gigabit Ethernet 
transceiver. The current version with four PPUs and 

without the IPSec acceleration unit occupies 88.9% 
of the FPGA area, or in other words 66,184 Logic 
Cells, and achieves a clock speed of 100MHz. The 
development environment provided by Xilinx pro-
vides all the required tools for compiling the source 
code for the processors we used, booting the 
PowerPC CPU, initializing, configuring and simulat-
ing the design. We developed the application mostly 
in C-language (very few time-critical parts have been 
coded in Assembly) and simulated the design as well 
as experimented in a real laboratory environment. By 
not only experimenting but also simulating the placed 
& routed model of the Gigaflow we had visibility 
both on the output throughput as well as the process-
ing latency in all the internal blocks and could iden-
tify the real bottlenecks of the design.  

We measured and simulated different scenarios 
with a limited number of VLANs and MAC ad-
dresses (since the simulation time of the complete 
model of the chip is prohibitively long) and for a 
worst-case arrival pattern of 64-Byte Ethernet pack-
ets with 8 Bytes inter-frame gap. Due to the limited 
number of addresses all of them could be accommo-
dated on the CMM cache. We have covered all pos-
sible packet flows (Ethernet-to-MPLS, MPLS-to-
Ethernet, Ethernet-to-Ethernet) using either a single 
PPU or all four of them.  

Table 1 indicates the processing delay per packet 
for all possible packet flows; it illustrates how the 
processing delay is analyzed based on the various 
processing subtasks (header extraction (HX), header 
modification (HM), forwarding (FW) and MAC 
learning).  As shown in Figure 2 the current FPGA 
prototype, with 4 PPUs, operating at 100MHz can 
sustain a throughput of 300-450 Kilo-packets-per-
second or in other words 155-255 Mega-bits-per-
second (Mbps) even in the worst case of minimum-
size 64-byte packets (and 8-byte inter frame gap). 
Those numbers, wherever possible, have also been 
verified by the experiments performed in the real de-
vice. Scaling the design and assuming a mid-size 
ASIC and a mature 0.18µm CMOS technology, clock 
speeds higher than 200MHz were achieved whereas 
up to 8 PPUs were easily integrated keeping the 
overall chip size within acceptable limits (less than 
5mm x 5mm). Hence the total forwarding capacity 
was scaled by 4 times (i.e. having twice the clock 
speed and twice the number of PPUs) to rates up to 1 
Gbps. The total complexity in that case was 3.43 mil-
lion transistors, as reported by the ASIC placement & 
routing tools, when processing this design.    

On the other hand, one of the most efficient 
NPUs proposed Intel’s IXP2400 [3] supports a net-
working speed of up to 2.5 Gb/sec when executing 
such a network application, and it is an ASIC imple-
mented in a 0.13nm CMOS technology utilizing 60 
million transistors. 



Therefore, we claim that the GigaFlow device is 
the ideal processing  heart of a future, purely 
Ethernet, MAN or WAN since a very successful 
state-of-the-art Network Processor needs 16 times 
more silicon that GigaFlow while its performance is 
only 2.5 times higher than that of our system, 
eventhough GigaFlow is targeted to a much older 
0.18µm CMOS technology; this is due to the fact that 
GigaFlow has been designed specifically for such an 
environment, whereas Intel’s NPU, as well as all the 
others presented in the related work section, are more 
general purpose devices efficiently supporting a large 
range of different networking applications.  

6 CONCLUSIONS 
 

Multi-service, purely Ethernet, Access Concen-
trators are very demanding systems in terms of pro-
tocol processing and data forwarding capacity. Spe-
cial Purpose systems are required in order to imple-
ment such nodes and Network Processors are becom-
ing very popular in such environments due to the fact 
that they provide both high performance and software 
programmability. The GigaFlow system presented in 
this paper is a very cost-efficient alternative that can 
support both the state-of-the-art networking speeds 
and today’s complicated networking applications. 
One of the most important such applications is the 
Ethernet/MPLS traffic aggregation which has been 
analyzed in detail and its bottlenecks, when executed 
in standard processing units, highlighted. The per-
formance measurements of the GigaFlow prototype 
show that the presented design can support up to  gi-
gabit/sec rates, at an extremely lower cost (in terms 
of silicon area) than the existing network processing 
high-end solutions, since the whole design is tailored 
to a multi-service, purely Ethernet, environment . 

 
Table 1.   Processing delay per packet 

 Average Processing delay (µs/packet) 
 1PPU 4PPU HX HM FW Learn 
Eth-Eth 4.2 1.5 48% 0 12% 24% 
Eth-
MPLS 

5.8 2 36% 40% 10% 18% 

MPLS-
Eth 

6.00 1.7 40% 17% 10% 20% 
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Figure 4 : System data forwarding rate for 1 and 4 
PPUs 
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