
A Protocol Processing Architecture Backing TCP/IP-
based Security Applications in High Speed Networks

Christos Georgopoulos1, George Konstantoulakis1, Theofanis Orphanoudakis1,
Nikos Nikolaou2, Jorge-A. Sanchez-P. 2, Nikos Mouratidis1, Kostas Pramataris2 and

Nick Zervos1

1 Ellemedia Technologies, Syggrou Av. 223, 17121 Athens, Greece
{cgeorg, gkonst, fanis, nmo, nzervos}@ellemedia.com

 2 Lucent Technologies, Forward Looking Work EMEA, Botterstraat 45, P.O.Box 18,

1270 AA Huizen, The Netherlands
{nikolaou, jsancheze, kpram}@lucent.com

Abstract. In this paper, the architecture, system modules and functional design
of a reconfigurable protocol processor, developed under the PRO3 project 1, are
presented. The protocol processor aims in accelerating execution of telecom
protocols by extending a high-performance RISC core with reconfigurable
pipelined hardware. CPU demanding and (hard) real-time protocol functions
will be handled by the programmable hardware, while the remaining functions
as well as higher layer protocols will be handled by the on-chip RISC in an in-
tegrated way. The paper focuses on a firewall application that exploits the PRO3

architecture and is under development in the project. A firewall guarantees the
security and privacy of data transactions of networking applications.

1 Introduction

The trend of data, voice, and video traffic convergence and the tremendous growth in
data traffic, particularly that which is associated with the Internet, has prompted many
discussions on the hardware and software needed for the future. Newer bandwidth-
eager end-user software applications and faster processors in desktop and server sys-
tems are placing enormous demands on the current networking architecture. As a
result, the network is evolving into a highly complex and sophisticated environment:
networking bandwidth continues to double every four months; guaranteed quality and
priority customization is anticipated to all data, voice and video applications; net-
works will be running packets; software will be the key in making networks work.

1 This paper describes work undertaken in the context of the IST-1999-11419 Protocol Proces-

sor Project (PRO3) [5], a 2 ½ years research and development project. The IST programme is
partially funded by the Commission of the European Union. The authors would like to ac-
knowledge the contributions of their colleagues from Lucent Technologies, Hyperstone elec-
tronics, IMEC, National Technical University of Athens and Ellemedia Technologies.

The rapid growth in the dimension of networks, along with the always increasing
users' demands for networking services, have imposed the development and deploy-
ment of high-capacity telecommunication systems (carrier and ISP backbones running
OC3, OC12, OC-48 and some OC-192 speeds). Such systems involve modules of
high throughput, which have their time critical functions realized in application spe-
cific standard products. The concept of improving the computation performance of
protocols by mapping the time-critical (wire speed) functionality onto hardware struc-
tures, originated during the evolution of ATM. Currently, the trend is to apply this
concept to routers, servers, multi-layer switches and VoIP gateways required to sup-
port efficiently multiple links at gigabit rates.

The power required for the processing of protocol functions at wire speed is usu-
ally obtained either by generic microprocessors that are designed with the flexibility
to perform a variety of functions, but at a slower speed or Application Specific Inte-
grated Circuits (ASIC's) that are designed to meet a specific functional requirement.
In the new demanding environment ASIC’s are extremely efficient within their spe-
cific set of tasks but very difficult, if not impossible, to change once they have been
designed, and cannot be modified with a simple software upgrade. With time-to-
market becoming the dominant force in the networking world (for an ASIC it can be
up to eighteen months), many companies have turned to Reduced Instruction Set
Computing (RISC) technology which embeds small sets of instructions within a proc-
essor to make the processor very flexible. RISC’s can execute their code very fast due
to instructions simplicity, and require fewer transistors, which in turn makes them
cheaper to design and produce, but since the decisions are made in software, the RISC
is much slower than the ASIC. Another option is a hybrid approach. This combines
both chip technologies, using a RISC processor as the central core, and ASIC’s to
perform the specific tasks. These components called Network Processors have exhib-
ited an enormous advance in the turn of the millennium [6, 7, 8, 9].

As it concerns higher layer protocol functions that are not performed at wire speed,
such as: routing protocols, statistical compiling and reporting, error processing, con-
nection admission control, and traffic and resource management, often today, more
than one high performance processing unit is employed. In such systems, the process-
ing units are inadequate in supporting the protocol processing requirements for the
entire set of active sessions. This constitutes a major system resource bottleneck,
because the complexity of the protocol algorithms requires higher computational
power than that offered by today's processor technology [1, 2, 3, 4]. An example illus-
trating this situation is the ATM network, where each switch is required to process an
active signalling stack (with two transport protocol stacks instances – SAR 5, CPCS,
SSCOP and one signalling protocol instance – Q.2391) per user connection. Hybrid
components will be required also in this case in the near future.

The PRO3 system architecture, presented in section 2, is a hybrid approach to the
demanding protocol processing puzzle. The PRO3 system is enhanced with hardwired
functionality devoted to speed up streaming and networking operations. The recon-
figurable stages benefit the use of a RISC processor when executing more than one
protocols concurrently. The RISC core accomplishes the task of maintaining the
higher protocol levels and operation of these modules in parallel. The Protocol Proc-
essor is considered as the next step in the evolution path of communication processor
technology and constitutes a new concept in specialized processing elements (such as

DSP). Section 3 analyses the functional architecture of the system and presents the
main modules of the system. Section 4 matches the firewall application to the PRO3
architecture and discusses implementation issues. Finally, Section 5 concludes the
paper and presents the implementation plan.

2 PRO3 System Architecture

PRO3 targets the tight coupling of software and hardware for the efficient execution
of telecommunication protocols in embedded, programmable architectures. The pro-
ject will design, develop and fabricate a versatile protocol processor to accelerate
execution of telecom and data transport protocols by extending a high-performance
RISC core with reconfigurable pipelined hardware. CPU demanding and (hard) real-
time protocol functions will be handled by the programmable hardware, while the
remaining functions as well as higher layer protocols will be handled by the on-chip
RISC in an integrated way. Applications that utilize the PRO3 processor will be de-
veloped to demonstrate the enhanced capabilities.

PRO3 introduces a new concept in processors: integrating high and low level pro-
tocol processing units optimized to perform in parallel. This integration involves an
innovative scheme with interconnection between a RISC and a Reconfigurable Pipe-
lined Module (RPM). The resulting processor architecture will be tailored to consid-
erably accelerate the performance of protocols and streaming processes. The RPM
which will be implemented either in function specific units or on an array of a bit-
sliced processor such as a Field Programmable Gate Array (FPGA), will be used for
the realization of the selected protocol functions. Additional modules will be inte-
grated around the enhanced core including the timer events generator, the packet level
memory management and the generic coder/decoder.

The component will efficiently realize the set of the protocol functions performed
most often as well as the low level operating system functions that support the execu-
tion of protocols including timers, inter-process communications and memory control.
Analysis of protocol performance within such systems shows that a small specific
subset of the protocol functions (i.e. less than 10%) is active during large periods of
time (i.e. more than 95% of the entire time span). The other protocol functionality is
active when errors occur or for set-up and tear down of a protocol session. PRO3
targets at realizing the aforementioned specific set of the 10% of the protocol func-
tions in the reconfigurable module and the remaining functions in the RISC core. The
key idea is not to perform the entire protocol on the fly (since it is very expensive) but
to accelerate it considerably. The following is a list of PRO3 innovative aspects:

• Integration of a state-of-the-art RISC with a reconfigurable module able to deliver

the needed processing power to support efficiently many thousands of (different)
protocol instances.

• Introduction of message recognition information coming from the input module in
order to reconfigure RPM. Inclusion of logic for fast lookup tables in hardware and
high-speed interfaces.

• Provision of a pool of timer resources for the realization of the (many) thousands
of active watch-dog timers. Since it must be able to support thousands of active in-
stances of protocol FSMs, special circuitry should be designed.

• Provision of generic coding-decoding functions for the bit or byte level handling of
protocol streams. Each protocol has unique and distinct coding-decoding rules at
its lower interface. A protocol receives a byte stream from its lower interface and
gives another byte stream at its upper interface. In order for a protocol execution
machine to extract the information fields, the received stream is usually parsed at
bit level.

• Memory management features for the real time context switching, memory alloca-
tion and stream buffering (for segmentation/reassembly).

• Realization of high performance and demanding applications that efficiently utilize
the PRO3 system.

In summary, the PRO3 architecture involves an independent pipelined data path

(protocol messages and data pass through) and a control interface (realized as a sim-
ple master/slave processor bus) to fetch software to the RISC/DSP and communicate
with the host system. Special attention in the proposed design is given to the efficient
support of multiple instances of the same protocol stack by the implemented logic, as
well as the ability to improve on the performance of a diversity of CPU demanding
network protocols.

3 PRO3 Functional Design and System Modules

The functional architecture of the PRO3 system is depicted in Fig.1. The compo-
nent consists of a central processing unit (the RISC core and the RPM) as well as a set
of on-chip peripherals, common to protocols and streaming tasks. Thus, the same
component with different configuration will be able to realize many different protocol
Finite State Machines (FSMs) that require high performance execution and handling
of messages with low propagation/processing delay. The feedback bus returns mes-
sages to the input of the component in case a multi-protocol stack is implemented.
Certain priority rules will be applied along with specific access to/from the system.

The component, depicted in Fig.1, has a pipelined data path where the high band-
width streaming messages are injected (and being processed) and a control interface
for software fetching. The following modules constitute peripherals of the protocol
processor:

• The input/output module of the system is a general-purpose parallel peripheral

interface. The actual load of this interface depends on the application.
• Message Recognition: The main function of this module is to recognize the incom-

ing message and to assign an internal handler for subsequent processing. The han-
dler is important not only for PRO3, but can also be sent to the application to aid
further processing/classification of higher layer messages. As presented in Figure
1, a direct communication path is foreseen from the Message Recognition block to
the mixed core. This signal will inform in advance the core on the message to be

processed so that, if needed, the RISC will be able to reconfigure the entire recon-
figurable module or part of it.

• Generic encoder/decoder: This module acts both at the receiver and the transmitter
side of PRO3. On the receiver, it decodes the incoming byte stream and extracts the
respective protocol information fields. The parsing rules depend on the realized
protocol and will be based on simple description commands. For simplicity the
module may apply only to the high speed and low propagation delay messages that
are processed by the RPM and not to those forwarded to the RISC core.

• Timers pool: Time-out timers and watch dog timers are an important part in im-
plementation since they generally run independently of the protocol FSM and mes-
sage reception flow. Having in mind that each protocol instance needs at least a
few timers (of different time scales), a high end system supporting thousands of
protocol instances, spends considerable part of its processing power only to keep
track of time for all of them. An efficient method based on a virtual clock queue
mechanism is being studied to maintain time tracking and produce time-out events.

• Memory management: The module assigns memory blocks of variable size to each
protocol in order to store either data structures, received messages or parts of pay-
loads in case of higher layer message re-assembly. Furthermore, efficient memory
management is needed for fast context switching of protocol FSMs, FIFOs crea-
tion, etc. The memory management and control module will realize some low-level
functions in hardware that are provided typically by operating systems. The mod-
ule buffer will be shared to minimize resources and costs. For cost and scalability
reasons the buffer will be external to the system using cost effective DRAM whilst
the logic for memory management will be internal.

Embedded
RISC

Re-configurable
Pipelined
Module

Generic
encoder
Generic
encoder

Generic
decoder
Generic
decoder

Message
recognition

Message
recognition

Timer
pool

Timer
pool

Memory
management

Memory
management

External
memory
External
memory

IN
I/F

OUT
I/F

Fig. 1. PRO3 functional architecture and data path

4 A Firewall Application implemented on the PRO3 Architecture

The PRO3 system can be utilized for the efficient implementation of various network-
ing applications like processing of lower layer protocols (synchronization, arbitrary
length field extraction, CRC calculation, scrambling/descrambling), processing of

higher layer protocols (PDU reassembly, queue management, arbitrary length field
extraction, CRC/checksum calculation, connection state handling, timer manage-
ment), packet routing, packet switching, QoS provision, security, etc.

Security in TCP/IP protocols is one of the applications that will be demonstrated in
the PRO3 project. Security might include functions like packet classification, flow
classification and connection state handling (state-full inspection), higher layer PDU
reassembly (application level firewalls, packet decryption), encryption/decryption.

IP Packet
re-assembly

Field extrraction
and Classification

HdrPayload

PDU1 of Pkt3

Pkt1

State lookup

Queue manager
Pkt1

Hdr Tag

Con_Id State params Times
State Information

Hdr

Tag
Information

Packet scheduler/
forwarding engine

Drop/Forward
Packet

To switch
fabric

Payload Hdr

Fig. 2. Mapping of the firewall application to the PRO3 architecture

A firewall system guarantees the security and privacy of data transactions of net-
working applications. It can be implemented either in a centralized architecture,
where a single router filters all packets, or in a distributed manner, consisting of a
combination of technologies in routers and hosts. A firewall system enforces a so-
called access control policy between two networks. All the incoming and outgoing
traffic is destined through the firewall and only authorized traffic, as defined by the
local security policy, is allowed to pass through.

Firewalls are widely used to give users access to the Internet in a secure fashion as
well as to separate a company's public servers (e.g. Web server) from its internal
network. They are also used to keep internal network segments secure. To reach con-
trol decisions for TCP/IP based services (e.g. whether to accept, reject, authenticate,
encrypt and/or log communication attempts) a firewall must obtain, store, and ma-
nipulate information derived from all communication layers.

However, isolation and examination of packets independently is not a sufficient
method to provide security. State information, derived either from the near past of a
communication session or from other applications run in the past, is an essential fac-
tor in making the control decision for new communication attempts. Depending upon
the communication attempt, both the communication state (derived from past com-
munications) and the application state (derived from other applications) may be criti-
cal in the control decision. Thus, to ensure the highest level of security, a firewall
must be capable of accessing, analyzing and utilizing the following:

• Communication information extracted from each one of the seven OSI layers.

• Communication-derived state representing the state derived from the past behavior
of the communication (e.g., the outgoing PORT command of an FTP session could
be saved so that an incoming FTP data connection can be verified against it).

• Application-derived state signifying the state information extracted from applica-
tions that have already been checked (e.g., a previously authenticated user would
be allowed access through the firewall for authorized services only).

• Information manipulation, which enables the evaluation of flexible expressions,
based on all the above factors.

To this respect, stateful inspection is able to meet all the security requirements de-

fined above, while traditional firewall technologies, such as packet filters and applica-
tion-layer gateways, fail in some areas. Stateful inspection mainly takes place at the
LAN level, where the firewall acts as the bridge/gateway between a LAN and the
Internet (or even between segments of the same Intranet).

The proposed application for the PRO3 system is a migration from the usual im-
plementation of firewalls, which are built around a commercial general-purpose proc-
essor (both for firewall appliances and software-based firewalls), with the purpose of
increasing both the effective bandwidth and the number of concurrently monitored
connections. In this approach, the firewall is positioned at the network boundaries on
an edge router line card and it is provided as a value-added service to ISPs or sub-
scribers. In this manner, the enterprise security zone extends beyond boundaries of the
enterprise itself, and is implemented within the premises of the service provider.

Internet

Enterprise Servers

Enterprise Backbone

Enterprise Security
Zone

PRO3 Firewall
Appliance

Provider Premises

Linecard

Fig. 3. Firewall physical configuration

The PRO3 system integrated on the line card, aims to accelerate the performance of
the firewall by implementing key functionality in hardware, as well as optimizing the
balance between hardware and software functions. It is expected that significant per-
formance enhancements can be achieved regarding:

• The rate of connection insertion/deletion, which measures the number of connec-

tions per second supported by the system, when applications create and destroy
connections continuously.

• The throughput, which measures the aggregate number of bytes per packet that the
system can process and forward to its output interface.

• The latency, which measures the aggregate delay encountered by network traffic
and which is introduced by the processing delay of the system.

• The number of concurrent connections, which measures the maximum number of
simultaneous connections supported by the system.

4.1 Monitoring of streams of packets on the network layer

The protocol processing capabilities of PRO3 extend from the network layer up to the
application layer. Integrated in a firewall system the PRO3 processor shall extract all
necessary protocol and state information from the IP layer and use it for higher layer
processing. The actual protocol processing required on the IP layer apart from the
packet forwarding functionality, which makes use of some header values in order to
classify and forward the packet, extends to functions regarding handling of frag-
mented packets and reassembly. Processing on the IP layer for security applications
require classification of packets into their corresponding flows, monitoring of the
packet stream per flow and handling of fragmented IP packets.

There are several security considerations regarding fragmented IP packets entering
a network. Packets that are bigger than the maximum size the underlying layer can
handle (the MTU) are fragmented into smaller packets, which are then reassembled
by the receiver. Fragmented packets with deliberately falsified application/protocol
information data length may cause buffer overflows on some systems, when the frag-
ments are reassembled at the other end into a complete packet (e.g. a ping application
attempting to transmit more than 65507 octets of data will create an ICMP packet
larger then the maximum IP data length of one packet, hence it will be transmitted
over multiple IP fragments and may cause an overflow of 16-bit internal variables on
reassembly, depending on the implementation of the receiver).

To cope with such illegal packets a firewall could provide the functionality either
to entirely block fragmented IP packets or forward them according to specific pro-
grammable rules. Forwarding based on programmable rules may include monitoring
of transport layer sessions and forwarding of fragmented IP packets when they carry
legal information according to the session's state. Complete or partial termination of
the IP layer is also required in some cases of packet processing on higher layers e.g.
TCP packet reassembly and/or application layer monitoring/termination.

4.2 Monitoring of transport layer sessions

The Transport Control Protocol (TCP) is a connection-oriented, reliable transport
protocol. For the communication of two hosts, a TCP connection must first be estab-
lished before data may be exchanged. Applications using the TCP protocol exchange
data through sockets. Sockets represent the TCP's connection endpoints and are de-
fined as a 4-tuple: the IP source/destination address and the TCP source/destination
port. Thus information from the IP header as well as from the TCP header is used for
the connection lookup. TCP uses a three-way handshake between the two hosts for
the connection establishment, assigns sequence numbers to every byte in every seg-
ment, within the advertised window sizes and acknowledges all data bytes received

from the other end. Malicious users usually attempt to obscure normal network opera-
tion and system break-down using packets with falsified protocol information so as to
cause a system to stop responding or crash (Denial of Service-DoS attacks).

Firewalls managing state information for TCP applications must maintain a state
table registering the transaction of information for each session and accepting packets
only when they are conforming to the TCP state transitions. For a session to be regis-
tered as established and packets from this connection being let through the Firewall
the three-way handshake must be monitored and complete. The flow of packets be-
longing to legitimate and established managed connections may also be monitored for
consistent state information e.g. sequence numbers that lie within the anticipated
range (compared to the sequence number of the previous packet, the announced win-
dow size from the receiver etc.). The protocol information required for managing a
connection's state and the complete set of connection's state parameters that may be
registered per connection are included in Table 1. Each entry in the state table should
be managed for a configurable time-interval. Configurable counters/timers should
indicate time-out events for idle connections i.e. connections for which no packet has
been logged within the configured time-interval.

Table 1. TCP connection state management parameters

Protocol Values Session managed parameters
<IP source> TCP State
<IP destination> Sender SN
<Protocol> Receiver SN
<TCP source port> Sender WIN
<TCP destination port> Receiver WIN
<TCP Flags>

A half-duplex implementation of a firewall could also provide a reduced capability

for management of session state information. In this case a flow of packets could be
monitored only in the one direction (originating from a network side considered inse-
cure towards a network segment to be secured). Rules for accepting packets could
then be based on traffic and overall network statistics information (e.g. number of
open connections, rate of increase of new connections etc.)

UDP is a connectionless protocol, thus there is no explicit definition of UDP flows.
Applications using the UDP protocol though use the same communication mechanism
through sockets though as TCP. Implicitly since each application data transaction
lasts for a certain time interval, there can be an approximation of UDP "connections"
for a configurable time interval, when packets between two specific UDP endpoints
are logged. Restrictions imposed according to statistics of such approximated UDP
connections may indicate illegal network traffic and usage.

Configurable thresholds and timeout events for both TCP and UDP connections
may be used in a Firewall to assure the secure operation of a network. Certain timers
may be used per connection as well as overall statistics for established connections,
half-open TCP connections and rate of increase of connections must be maintained.
Table 2 includes an indicative list of timers to be managed per session and Table 3
contains a list of statistics and threshold values to be maintained by a Firewall manag-
ing session state and overall network state information.

Table 2. Indicative list of timers to be managed per session

Timeout Value Range
Length of time the software waits for a TCP session to reach the estab-
lished state before dropping the session.

seconds-minutes

Length of time a TCP session will still be managed after the firewall
detects a FIN-exchange.

seconds

Length of time a TCP session will still be managed after no activity minutes-hours
Length of time a UDP session will still be managed after no activity seconds-minutes
Length of time a configured application session will still be managed
after no activity.

Seconds

Table 3. Indicative list of statistics and threshold values to be maintained

Threshold Value Range
Number of allowed existing half-open sessions. Thousands
Allowed rate of new un-established sessions. hundreds-thousands
Number of existing half-open TCP sessions per destination host ad-
dress.

Hundreds

4.3 Monitoring of application layer sessions

The TCP and UDP connections as described above are tied to the higher layer pro-
tocol/application using these transport layer protocols for data transmission. Monitor-
ing of connection state and packet information is related to higher layer application
message transactions and awareness of higher layer protocols structure is a required
feature in packet filtering applications that function on the application layer. Since the
TCP/IP suite commits specific port numbers for specific applications information of
the TCP and UDP header is used to directly indicate the application and the context of
the TCP or UDP data. Monitoring of TCP/UDP data and management of application
layer sessions could also be implemented in a firewall environment. The PRO3 proc-
essor in this case shall extract specific protocol information from the TCP/UDP data
executing specific code for each configured application.

A number of example applications that could be managed by a Firewall system us-
ing the PRO3 processor are TELNET [10], FTP [11], SNMP [12], HTTP [13, 14],
H.323. The list of potential applications could extend further since any existing or
future application could be processed with the appropriate code implementation and
reprogramming of the PRO3 processor.

4.4 Line card architecture

The boundaries of operation of a stateful inspection firewall have not been com-
pletely defined. Implementations are based upon the required level of security and
range from simple monitoring of TCP messages exchanged between two networks to
the more sophisticated applications state monitoring of the protected network. PRO3

provides the capability of achieving any level of security, either by operating in a
standalone mode, or through its co-operation with an external processor.

The demonstration system will be a bridge positioned between a corporate LAN
and the Internet. A board incorporating PRO3 will be developed providing two high
speed links (OC-48) one to the LAN and the other to the service provider. Further-
more, an amount of fast memory will be integrated, while an interface to an external
processor will also be provided. The described system is shown in Fig.4.

The board will demonstrate the capability of the PRO3 system to accelerate TCP/IP
functions utilized in firewalling applications. In this manner it will be shown that
efficient partitioning of traditionally software implemented functions between hard-
ware and software, which will be running on a customized RISC processor, will pro-
vide the capability to increase the performance of an advanced firewall.

External
Classifier

(CAM)

External
Classifier

(CAM)

M
E

M
O

R
Y

In

te
rfa

ce

M
ic

ro
pr

oc
es

so
r

In
te

rfa
ce

M
E

M
O

R
Y

In

te
rfa

ce

K
E

Y
/D

A
TA

C
on

tr
ol

POS-PHY
(LVDS)

S
ec

ur
e

LA
N

In
te

rn
etPHY

(OC-48)
PHY

(OC-48)

POS-PHY
(LVDS)

PRO3PRO3

MEMORYMEMORY

External
ProcessorExternal

Processor

PHY
(OC-48)
PHY

(OC-48)

Memory Types:

- Sate

- Queuing

Fig. 4. Architecture of stateful inspection firewall

8. Conclusions

The most important push behind the network and protocol processor industry is
bandwidth. Currently, due to fiber optics and other advances in the data transport
medium, it is possible to transmit more information than a CPU can process. Addi-
tionally, with Terabit technology on the horizon, the data transmission speed will
increase another 100 times faster than OC192. With this kind of bandwidth and speed

looming in the future, the network and protocol processor was developed and contin-
ues to be refined for optimized networking applications.

The PRO3 system will advance the state-of-the-art in and will introduce a new con-
cept in high-performance processor architectures by integrating a RISC and a RPM.
Furthermore, the processor will open a new roadmap in developing special processors
able to support a large number of networking applications. It is expected that the
processor will accelerate considerably the execution of protocols thus allowing the
realization of advanced and cost effective telecommunication applications.

References

1. D. Liu, U. Nordqvist, C. Svensson, “Configuration based architecture for high
speed and general purpose protocol processing,” IEEE Workshop on Signal Proc-
essing Systems, October 1999.

2. D. Niehaus, A. Battou, A. McFaralnd, B. Decina, H. Dardy, V. Sirkay, B. Ed-
wards, “Performance benchmarking of signalling in ATM networks,” IEEE Comm.
Mag., August 1997.

3. C. Maeda, B. Bershad “Protocol service decomposition for high performance net-
works,” Proceedings of he 14th ACM Symposium on Operating Systems Princi-
ples, December, 1993.

4. D. Feldmeier, A. McAuley, J. Smith, D. Bakin, W. Marcus, T. Raleigh, “Protocol
boosters,” IEEE Journal on Selected Areas in Comm., vol. 16, No. 3, April 1998.

5. PRO3, IST project 99-11449 presentation, http://www.cordis.lu/ist/projects/99-
11449.htm.

6. Intel, IXP1200 Network Processor, http://developer.intel.com/design/network/
IXP1200.htm

7. Motorola, C-Port, http://www.cportcorp.com/.
8. Solidum Systems Corp., PAX.port 1100, www.solidium.com.
9. Agere, NPFPP, NPRSP, NPASI, FPL, IDS, http://www.agere.com.
10.J. Postel, J. Reynolds, “Telnet Protocol Specification”, RFC 854, May 1983
11.J. Postel, J. Reynolds, “File Transfer Protocol (FTP)”, RFC 959, October 1985
12.J. Postel , “Simple Mail Transfer Protocol”, RFC 821, August 1982
13.T.Berners-Lee, R. Fielding, H. Frystyk, “Hypertext Transfer Protocol --

HTTP/1.0”, RFC 1945, May 1996
14.R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, “Hypertext Transfer

Protocol -- HTTP/1.1”, RFC 2068, January 1997
15.ITU-T Recommendation H.323 “Packet-Based Multimedia Communications Sys-

tems”.

