
Fast Ray–Tetrahedron Intersection

using Plücker Coordinates

Nikos Platis and Theoharis Theoharis
Department of Informatics & Telecommunications

University of Athens
Panepistemiopolis, GR–157 84 Ilissia, Greece

{nplatis|theotheo}@di.uoa.gr

Abstract

We present an algorithm for ray–tetrahedron intersection. The algo-
rithm uses Plücker coordinates to represent the ray and the edges of the
tetrahedron and employs a robust and efficient test to determine the in-
tersection. The algorithm is highly optimized and provides a significant
performance increase over related algorithms.

1 Introduction

Tests for intersection of directed lines with graphics primitives are at the heart
of many rendering and processing algorithms. The current litterature does not
treat explicitly the ray–tetrahedron intersection problem, even though tetrahe-
dral meshes are used increasingly for the representation of volumetric models
[GCMS01]. In this paper we investigate efficient solutions to this problem.

Notation and Conventions In the ray–tetrahedron algorithms that follow,
the ray will be assumed an infinite directed line, determined by a point P and
a direction L. The vertices of the tetrahedron will be marked V0, V1, V2, V3, and
its faces by the index of the opposite vertex:

F3 (V0V1V2), F2 (V1V0V3), F1 (V2V3V0), F0 (V3V2V1).

We will use the notation V i
0 , V i

1 , V i
2 to refer to the vertices of face Fi; for

example, the vertices of face F2 above are V 2
0 = V1, V 2

1 = V0 and V 2
2 = V3.

Similarly, the edges of face Fi will be subscripted by the index of the opposite
vertex: ei

0(V
i
1 V i

2), ei
1(V

i
2 V i

0), ei
2(V

i
0 V i

1). We will assume that the tetrahedron is
oriented so that the outward-pointing normal of face Fi is directed away from
vertex Vi.

If the ray intersects the tetrahedron, in general there will be two intersection
points, Penter and Pleave. Special cases with one or infinite intersection points
arise if the ray intersects one or more edges; these cases can be handled uniformly
by the general case as shown in Figure 1, but in some applications it may be
beneficial to mark them explicitly.

For the two intersection points, we require that the algorithms compute:

1

0V

2V

1V

3V

enter
P

enter
P

enter
P

leave
P

leave
P

leave
P

enter
P

leave
P

enter
P

leave
P

(a) (b) (c)

Figure 1: Ray–tetrahedron intersection: (a) two, (b) one, (c) infinite intersection
points.

• Their Cartesian coordinates Penter and Pleave.

• Their barycentric coordinates uenter
1 , uenter

2 and uleave
1 , uleave

2 with respect
to the faces that they intersect, Fenter and Fleave, such that

Pk = (1− uk
1 − uk

2)V k
0 + uk

1V k
1 + uk

2V k
2 for k = enter, leave.

• Their parametric distance tenter and tleave from the ray origin, such that

Pk = P + tkL for k = enter, leave.

2 Related Work

2.1 Approaches for ray–tetrahedron intersection

A ray–tetrahedron intersection test can be solved by a general ray–convex poly-
hedron intersection algorithm. Haines [Hai91] handles this general case with an
algorithm that works similarly to the familiar Liang-Barsky [FvDFH96] line clip-
ping algorithm. This algorithm is fairly efficient also for tetrahedra and is used
as a base for our comparisons. It works with the parametric equation of the ray
and computes the intersection points using their parametric distance from the
ray origin; thus it has the advantage that restrictions concerning this distance
(for example, a bound on the maximum valid distance along the ray, useful in
ray tracing) can be applied early. On the other hand, it does not use barycentric
coordinates, which concequently must be computed as a post-processing for the
intersection points; moreover, it can recognize the special cases of intersection
mentioned above only through these barycentric coordinates.

Alternatively, the ray–tetrahedron intersection problem can be solved by
testing each face of the tetrahedron for intersection with the ray and combin-
ing the results; several efficient ray–triangle intersection algorithms exist, and
it is important to use one that can better adapt to this specific problem. For
instance, Möller and Trumbore [MT97] provide a very efficient such algorithm,
which also uses the parametric equation of the ray and at the same time opti-
mizes the computation of barycentric coordinates; however, the ray–tetrahedron
intersection algorithm that we constructed using this algorithm did not perform
well. In the next section we present the ray–triangle intersection algorithm that
forms the basis of our ray–tetrahedron intersection algorithm.

2

(a) (b) (c)
r

s
r

s
r

s

Figure 2: Relative orientation of two lines: Looking towards the direction of
r, (a) s goes counterclockwise around r, (b) s goes clockwise around r; (c) s
intersects r.

2.2 Ray–Triangle Intersection using Plücker Coordinates

Plücker coordinates [Eri97, Sho98, Sto91, TH99] are a way of specifying directed
lines in three-dimensional space using six-dimensional vectors. Given a ray r
determined by point P and direction L, its Plücker coordinates are given by the
six-vector

πr = {L : L× P} = {Ur : Vr} (1)

In our context, their important property is that, given two rays r and s, the
permuted inner product

πr ¯ πs = Ur · Vs + Us · Vr (2)

indicates their relative orientation (Figure 2):

πr ¯ πs > 0 ⇔ s goes counterclockwise around r
πr ¯ πs < 0 ⇔ s goes clockwise around r
πr ¯ πs = 0 ⇔ s intersects or is parallel to r

This property is the basis of a ray–triangle intersection test. Suppose we
are given a ray r and a triangle ∆(V0, V1, V2) with edges e0(V1V2), e1(V2V0),
e2(V0V1). Then r intersects ∆ iff it has the same orientation (cw or ccw) relative
to all its edges or it intersects at most two of its edges (Figure 3). Thus the
following hold:

r intersects (enters) ∆ ⇔ πr ¯ πei ≥ 0 ∀ i and ∃ j : πr ¯ πej 6= 0
r intersects (leaves) ∆ ⇔ πr ¯ πei ≤ 0 ∀ i and ∃ j : πr ¯ πej 6= 0
r is coplanar with ∆ ⇔ πr ¯ πei = 0 ∀ i

(3)

This test is used successfully in [AC97] (and in [SF01] as the equivalent
4 × 4 determinant method) to speed up ray tracing of triangular meshes. It is
robust and efficient since it requires few floating point operations, no division,
and relies only on sign comparisons; moreover, calculations for an edge can be
shared among neighboring triangles. Additionally, it is important that if the
ray and the triangle are not coplanar, the permuted inner products πr ¯ πei

provide directly the (unscaled) barycentric coordinates of the intersection point
Pk with respect to the vertices Vi [Jon00]. Thus setting

wk
i = πr ¯ πei and uk

i = wk
i /

3∑

i=0

wk
i , (4)

3

(a) (b) (c)

Figure 3: (a) The ray enters the triangle; (b) The ray leaves the triangle; (c) The
ray and the triangle do not intersect.

the Cartesian coordinates of the intersection points can be computed as

Pk = uk
0V0 + uk

1V1 + uk
2V2.

Subsequently, their parametric distance from the ray origin can be trivially
computed by solving for tk a coordinate of the equation Pk = P + tkL for which
L is non-zero.

3 Ray–Tetrahedron Intersection using Plücker
Coordinates

3.1 Basic Algorithm

The above ray–triangle intersection test leads to a simple ray–tetrahedron in-
tersection algorithm. In the following, referring to face Fi of the tetrahedron,
we will denote by πi

j the Plücker coordinates of edge ei
j and by σi

j the sign of
the permuted inner product πr ¯ πi

j for the given ray r:

σi
j = sign(πr ¯ πi

j) =





1, if πr ¯ πi
j > 0

0, if πr ¯ πi
j = 0

−1, if πr ¯ πi
j < 0

The algorithm tests each face of the tetrahedron in turn and determines if it
is Fenter or Fleave according to equation (3); if either of them has been found,
the relevant sign tests need not be performed for the remaining faces.

Fenter = nil
Fleave = nil
for i = 3, 2, 1, 0 do

Compute σi
0, σi

1 and σi
2

if ((σi
0 6= 0) or (σi

1 6= 0) or (σi
2 6= 0))

if ((Fenter == nil) and (σi
0 ≥ 0) and (σi

1 ≥ 0) and (σi
2 ≥ 0))

Fenter = Fi

else if ((Fleave == nil) and (σi
0 ≤ 0) and (σi

1 ≤ 0) and (σi
2 ≤ 0))

Fleave = Fi

end if
end if

end for

This algorithm has the advantage that it can compute the barycentric coor-
dinates of the intersection points with little additional work, using equation (4).

4

It can also readily discern, if required, the special cases of boundary intersec-
tions (Figure 1(b,c)), which correspond to some of the σi

j being zero. Compared
to Haines’ algorithm, it has the drawback that it can accomodate restrictions
concerning the parametric distance along the ray only as a post-processing step.

As we will show, this basic algorithm can be greatly optimized and adapted
to the problem being solved. Some simple enhancements are possible by un-
rolling the for loop and changing the successive tests as follows:

• As soon as Fenter and Fleave are determined, the algorithm may terminate.

• The inner test needs to be performed for at most three of the four faces of
the tetrahedron. If none of the three faces is intersected, the fourth will
not be intersected either; otherwise it will be Fenter or Fleave depending
on which face is not already found.

• Computations of the permuted inner products can be reused for the faces
that share each edge. Care should be taken to adjust the sign of the prod-
uct according to the edge orientation within each face; for example, edge
V0V1 is used for face F3 (V0V1V2) whereas V1V0 is used for F2 (V1V0V3),
and πr ¯ πV0V1 = −(πr ¯ πV1V0), see equations (1),(2). This is important
when the permuted inner products are not calculated in advance, since
only one must be computed for each pair of opposite directed edges; it
is even more important when ray-tracing tetrahedral meshes, where each
edge is shared by multiple tetrahedra.

3.2 Optimizations

While the enhancements mentioned in the previous paragraph require few modi-
fications of the basic algorithm, further optimizations are possible at the expense
of increased code complexity. Our aim is to use as little information as possible
in order to decide whether a face is intersected by the ray.

• We notice that the inner test examines all σi
j at once; however, if two

of them do not agree, the third one need not be examined at all and
the computation of the relevant Plücker coordinates and permuted inner
product can be avoided. Care must be taken since any two (but not all
three) σi

j may be zero. Thus the inner test for face Fi becomes:

Compute σi
0 and σi

1

{Check if σi
0 and σi

1 agree, or they are zero}
if ((σi

0 == σi
1) or (σi

0 == 0) or (σi
1 == 0))

Compute σi
2

{Find the sign (orientation) σi of the face}
σi = σi

0

if (σi == 0)
σi = σi

1

if (σi == 0)
σi = σi

2

end if
end if
{At this point, σi will be equal to σi

0 or σi
1, whichever is non-zero;}

{in that case it must agree with σi
2, or σi

2 can be zero.}

5

{If both σi
0 and σi

1 are zero, σi will be equal to σi
2}

{and it must be non-zero.}
if ((σi 6= 0) and ((σi

2 == σi) or (σi
2 == 0)))

if (σi > 0)
Fenter = Fi

else
Fleave = Fi

end if
end if

end if

• When one face intersected by the ray has been found, the above test can
be simplified for the remaining faces: edges shared with the intersected
face will have conforming sign and need not be tested again; furthermore,
the σi

j for the remaining edges should satisfy σi
j ≤ 0 if Fleave is not found

or σi
j ≥ 0 if Fenter is not found.

• When one face intersected by the ray has been found and only two faces
remain untested, it is possible to determine the other one by performing
only a subset of the sign tests normally required. The choice depends on
the sign of their common edge: suppose that Fleave must be determined
between F1 (V2V3V0) and F0 (V3V2V1); if πr¯πV2V3 < 0, then Fleave = F1,
otherwise Fleave = F0 (unless all three σ0

j are zero, in which case also
Fleave = F1).

The last two optimizations will be especially useful when ray-tracing tetra-
hedral meshes. In this setting, having found a tetrahedron intersected by the
ray, connectivity information of the mesh provides the tetrahedron intersected
next and Fenter is already known for it (this holds unless the ray leaves the
last tetrahedron through an edge, in which case the next tetrahedron cannot be
determined directly).

3.3 Revisiting Geometry

The ray–tetrahedron intersection problem presents a geometric property which
appears as a potentially useful mechanism to guide the intersection algorithm.
Unfortunately, in practice it does not accelerate the fully optimized algorithm
of the previous section. We describe this property here for completeness and for
its geometric interest.

Suppose that the first face examined is F3 (V0V1V2). If it is intersected by
the ray, the algorithm continues as described in the previous section. If not, the
ray hits its supporting plane inside one of the six regions formed by the lines
along the edges of F3 (Figure 4); these regions correspond to different ranges of
barycentric coordinates on this plane with respect to V0, V1 and V2. Depending
on the region and the ray direction, the ray may enter or leave the tetrahedron
only through a specific face; if it does not, there is no intersection at all. For
example, if it “enters” the plane in region (E), it may enter the tetrahedron
only through F1 (V2V3V0); if it “enters” the plane in region (A), it may leave
the tetrahedron only through F0 (V3V2V1). We note that the ray “enters” the
plane if

∑2
j=0 (πr ¯ π3

j) > 0 (it is easy to show that this is equivalent to the test
L ·N < 0, where N is the face normal).

6

0V 1V

2V

3V

3

0 0u <3

0 0u >

3

2 0u >

3

2 0u <

3

1 0u >3

1 0u <

(A) (B)

(C)

(D)
(E)

(F)

Figure 4: If a ray does not intersect F3 (V0V1V2), it intersects its supporting
plane in one of the six regions shown (A–F).

Using this test is slower than testing the remaining faces as per section 3.2,
for two reasons: first, all three products πr¯π3

j , j = 0, 1, 2, must be computed in
order to apply this property, whereas one of them could potentially be avoided
as mentioned earlier; second, a rather involved examination of the barycentric
coordinates is required in order to determine the region of intersection on the
plane.

4 Results

We tested our algorithms on random pairs of rays and tetrahedra. Multiple
sets of 10,000 random ray–tetrahedron pairs were generated, with increasing
percentage of intersecting pairs from 0% to 100%; in this way the efficiency of
each algorithm when different proportions of the tests succeed was assessed. Five
algorithms were compared: the three variations of our algorithm corresponding
to Sections 3.1, 3.2 and 3.3, Haines’ algorithm adapted for tetrahedra, and
an algorithm similar to the one of Section 3.2 but using the Möller/Trumbore
ray–triangle test. All algorithms produce, when the test is successful, the two
intersection points Penter and Pleave, the intersected faces Fenter and Fleave,
the corresponding barycentric coordinates uenter

1 , uenter
2 and uleave

1 , uleave
2 , and

the parametric distances tenter and tleave. Barycentric coordinates for Haines’
algorithm were computed as described in [BA88]. Tests were performed on an
Intel Celeron PC at 900MHz running Linux.

Figure 5 attests that our algorithms using Plücker coordinates outperform
the other algorithms in all cases. The optimizations of Section 3.2 provide
an important performance gain, whereas the modifications of Section 3.3 have
negative impact, as already noted. It is also interesting that Haines’ algorithm
performs comparatively better when few pairs intersect; this is due to the fact
that, in some cases, it is able to decide that there is no intersection without
examining all four faces of the tetrahedron, but it must process them all to find
the intersection points.

7

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
pe

r
in

te
rs

ec
tio

n
te

st
 (µs

)

Percentage of intersected tetrahedra

Plücker 1
Plücker 2
Plücker 3

Haines
Möller/Trumbore

Figure 5: Results for ray–tetrahedron intersection tests.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
pe

r
in

te
rs

ec
tio

n
te

st
 (µs

)

Percentage of intersected tetrahedra

Plücker 1
Plücker 2
Plücker 3

Haines

Figure 6: Results for intersection tests with precomputed quantities.

In a practical situation, a spatial data structure can be used to identify the
tetrahedra along the path of the ray; for these tetrahedra several computations
can be performed once for each ray. We modified the algorithms so as not to
include such computations in the timings (πr¯πi

j and σi
j for all i, j in the case of

our algorithms, similar relevant quantities for Haines’ algorithm; the algorithm
using the Möller/Trumbore test was not included in this test since it would
require storing a large number of precomputed quantities). The results, shown
in Figure 6, are remarkably consistent with the previous ones and affirm the
potential of our algorithms. In any case, our fully optimized algorithm is the
fastest.

8

References

[AC97] John Amanatides and Kin Choi. Ray Tracing Triangular Meshes. In
Proceedings of the Eighth Western Computer Graphics Symposium,
pages 43–52, April 1997.

[BA88] Rod Bogart and Jeff Arenberg. Ray/Triangle Intersection with
Barycentric Coordinates. Ray Tracing News, 1(11), Novem-
ber 1988. http://www.acm.org/tog/resources/RTNews/html/
rtnews5b.html#art3.

[Eri97] Jeff Erickson. Plücker Coordinates. Ray Tracing News, 10(3),
December 1997. http://www.acm.org/tog/resources/RTNews/
html/rtnv10n3.html#art11.

[FvDFH96] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics, Principles and Practice. Addison-
Wesley, second edition, 1996.

[GCMS01] Fabio Ganovelli, Paolo Cignoni, Claudio Montani, and Roberto
Scopigno. Enabling cuts on multiresolution representation. The
Visual Computer, 17:274–286, 2001.

[Hai91] Eric Haines. Fast Ray–Convex Polyhedron Intersection. In James
Arvo, editor, Graphics Gems II, pages 247–250. Academic Press,
1991.

[Jon00] Ray Jones. Plücker Coordinate Tutorial. Ray Tracing News, 13(1),
July 2000. http://www.acm.org/tog/resources/RTNews/html/
rtnv13n1.html#art8.

[MT97] Tomas Möller and Ben Trumbore. Fast, Minimum Storage
Ray/Triangle Intersection. journal of graphics tools, 2(1):21–28,
1997.

[SF01] Rafael J. Segura and Francisco R. Feito. Algorithms to Test Ray-
Triangle Intersection. Comparative Study. In Vaclav Skala, editor,
WSCG 2001 Conference Proceedings, February 2001.

[Sho98] Ken Shoemake. Plücker Coordinate Tutorial. Ray Tracing News,
11(1), July 1998. http://www.acm.org/tog/resources/RTNews/
html/rtnv11n1.html#art3.

[Sto91] Jorge Stolfi. Oriented Projective Geometry. Academic Press, 1991.

[TH99] Seth Teller and Michael Hohmeyer. Determining the Lines Through
Four Lines. journal of graphics tools, 4(3):11–22, 1999.

Web Information

Sample C++ code implementing the ray–tetrahedron intersection algorithm of
section 3.2 is availabe online at

http://www.acm.org/jgt/papers/PlatisTheoharis03

9

