
The Visual Computer manuscript No.
(will be inserted by the editor)

Triangular mesh simplification on the GPU

Alexandros Papageorgiou · Nikos Platis

Abstract We present a simplification algorithm for

triangular meshes, implemented on the GPU. The al-

gorithm performs edge collapses on manifold triangular

meshes driven by a quadric error metric. It uses data

parallelism as provided by OpenCL and has no sequen-

tial segments in its main iterative structure in order

to fully exploit the processing power of the GPU. Our

implementation produces results faster than a corre-

sponding sequential implementation and the resulting

models are of comparable quality.

Keywords Mesh simplification · edge collapse · GPU ·
OpenCL

1 Introduction

Mesh simplification algorithms aim to create new, sim-

pler triangular models based on highly complex ones, at

a level of detail suitable for their use and for the avail-

able computational resources. Various methods have

been proposed for this task, with techniques like suc-

cessive vertex removals or edge collapses producing high

quality results in acceptable time. Nevertheless, the ever-

increasing size of triangular models being produced calls

for even more efficient simplification algorithms.

Most existing simplification algorithms are sequen-

tial, suitable for execution on the CPU. However, the

advent of modern programmable graphics processors

(GPUs), which possess far greater processing power than

that of current CPUs, offers the possibility of signifi-

cantly accelerating the simplification process. Unfortu-

A. Papageorgiou and N. Platis
Department of Informatics and Telecommunications
University of the Peloponnese
End of Karaiskaki Street, GR-22 100 Tripolis, Greece
E-mail: {alexp|nplatis}@uop.gr

nately, the architecture of GPUs is very different from

that of the CPUs and, therefore, porting existing al-

gorithms to the GPUs is, most often, not trivial. The

main hurdles to overcome concern: the massively par-

allel architecture of the GPUs, which has vastly dif-

ferent requirements from the serial one of the CPUs;

the limitations on memory management imposed by the

architecture and programming model of the GPUs, as

opposed to the freedom enjoyed on the CPU; and the

need to minimize the data transfers between the main

memory and the graphics card, since they slow down

the procedure remarkably.

In this paper we present a simplification algorithm

designed and implemented to fully exploit the capabil-

ities of modern graphics processors, using the OpenCL
framework. Our simplification algorithm is based on

edge collapses and driven by the quadric error metric.

In contrast to existing algorithms, it is fully adapted

to the data-parallel architecture of the GPU, containing

no sequential segments in its main iterative structure; it

utilizes only fixed-length data structures on the GPU;

and it employs the least possible data transfers between

the main memory and the graphics card.

Our results show that our algorithm is able to sim-

plify large models considerably faster than the corre-

sponding sequential implementation without significant

loss in simplification quality.

Our implementation is currently optimized for man-

ifold meshes. However, the data structures that we use

are generic enough to accomodate even non-manifold

meshes; therefore our implementation could easily be

expanded to handle such meshes as well.



2 Alexandros Papageorgiou, Nikos Platis

2 Background and related work

2.1 Quadrics based simplification

One of the most successful mesh simplification algo-

rithms is the one described in [4]. This algorithm sim-

plifies the mesh by successive edge collapses. For each

prospective edge collapse, the algorithm finds the opti-

mal position for the resulting vertex, the one that gives

the minimum simplification error (deviation from the

original mesh).

The potential error of an edge collapse is estimated

using an error metric based on the planes of the faces

around the edge. Conceptually, a set of planes is as-

signed to each vertex of the model; this set is initial-

ized with the faces incident to the vertex in the original

model. When an edge is collapsed into a single vertex,

the set assigned to this new vertex is the union of the

two sets associated with the endpoints of the collapsed

edge. The error for a vertex is defined to be the sum of

the squared distances of the vertex from all the planes

in the corresponding set. This error can be expressed as

a quadratic form (a quadric), which can be minimized

efficiently to determine the optimal position for the re-

sulting vertex. See Sections 3.2.2 and 3.2.4 below for

more details.

The algorithm orders potential edge collapses in a

priority queue, by increasing error, and performs them

in succession. After each collapse, the mesh is locally

altered in the vicinity of the edge, and therefore the er-

ror associated with collapsing neighboring edges needs

to be re-computed.

2.2 Related work

In the literature, there are two characteristic works in

which the GPU is used to simplify triangular models.

Hjelmervik and Léon [5] describe a simplification

algorithm whose major part is executed on the CPU

and only the part that performs the edge collapses is

executed on the GPU; the continuous data transfers

between the main memory and the GPU incur a high

performance cost.

On the other hand, DeCoro and Tatarchuk [2] de-

scribe a global simplification algorithm that is executed

on the GPU and partitions the 3D space with an octree

structure. The detail level of the resulting mesh depends

on the partitioning of the 3D space rather than on the

particular features of the original model.

2.3 Bitonic sorting network

A sorting network is an abstract mathematical model

consisting of wires and comparators that is used to sort

a sequence of elements. Each comparator connects two

wires and if the values do not satisfy the comparator’s

sorting order, the values of the wires are swapped. In

order to be considered a sorting network, a structure

of wires and comparators must be able to sort any se-

quence given as input.

The bitonic sorter [6] is a sorting network that can

be used for the creation of a parallel sorting algorithm.

It consists of O(n log2(n)) comparators and sorting is

done in O(log2(n)) steps, where n is the number of el-

ements to sort. This particular type of sorting network

uses the notion of the bitonic sequence, which is a se-

quence of numbers x0 ≤ · · · ≤ xk ≥ · · · ≥ xn−1 for some

k, 0 ≤ k < n, or a circular shift of such a sequence.

The function of the bitonic sorter is the following:

initially sequences of length 2 are sorted, the first as-

cending, the second descending, the third ascending,

etc. On the next step, sequences of length 4 are sorted

by merging the length 2 sequences, where half of them

are sorted in ascending and the others in descending or-

der. The execution continues in the same manner, each

time doubling the size of the bitonic sequence used, un-

til the last step where the complete sequence is sorted.

From this description, it should be obvious that the

basic bitonic sorter works on arrays whose length is

a power of 2; extensions that sort arrays of arbitrary

length are available, see Section 3.2.5 below.

3 Simplification algorithm for the GPU

The design of our simplification algorithm was signifi-

cantly influenced by the capabilities of OpenCL [7].

The architecture of modern GPUs, as it is avail-

able through OpenCL, can be specified as a shared-

memory multiprocessor system that performs calcula-

tions through data-parallelism. Thus our algorithm is

modelled as a series of parts that perform calculations

on the GPU through OpenCL kernels, and a series of

dependencies, implemented by OpenCL events, that de-

termine the sequence of execution of the parts of the

algorithm.

The way that parts and dependencies form the com-

plete algorithm is shown in Figure 1. The arrows denote

the flow of execution for the algorithm as well as the

data dependencies between the parts. The meaning of

these dependencies is that a part has to create or pro-

cess data before the next part can be executed.

All parts of the algorithm are executed on the GPU

using data parallelism as provided by OpenCL, except



Triangular mesh simplification on the GPU 3

Initialization of the data

Computation of triangle
indices for the vertices

Calculation of
triangle quadrics

Calculation of
vertex quadrics

Find independent areas Calculation of error

Sorting of
super-independent vertices

Edge collapses

Reached
simplification

target?

Retrieval of the
simplified model

Yes

No

Fig. 1 The structure of the simplification algorithm. All
parts are executed on the GPU except for those denoted by
dashed rectangles.

for some initialization of the data structures and the

retrieval of the resulting simplified model.

3.1 Data structures

The input data for the algorithm are the model to be

simplified and the simplification target as the number

of vertices that the final model will have.

The model is passed in as two arrays, one with the

vertices (each given simply as three floating point coor-

dinates) and one with the triangles (each specified by

three integers, indices to the vertex array).

For our algorithm we create some auxiliary arrays

in which, for each vertex of the model, we keep infor-

mation about the quadrics, the error and whether the

vertex has already been used in the current pass of the

simplification algorithm.

Furthermore we need to keep, for each vertex, in-

dices to the triangles incident on it. This structure is

composed of two arrays, a headers array and a data

array. For each vertex, the headers array contains a

structure with fields {position, size, continuesTo}. The

fields {position, size} describe the area in the data array

where the indices of the incident triangles reside. The

field {continuesTo} signifies whether we should con-

tinue to another area of the arrays and where this area

is (Figure 2).

Ultimately, we create a series of unrolled linked lists,

one for each vertex. This structure is necessary since

OpenCL does not support dynamic memory manage-

ment, because the number of triangles that each vertex

is incident on is variable and changes during the course

of the algorithm.

3.2 Parts of the algorithm

Apart from the initialization of the data structures and

the retrieval of the model that have serial sections, the

parts of the algorithm are executed using data paral-

lelism. The important parts of the algorithm are de-

scribed below.

3.2.1 Computation of incident triangles for each vertex

To find the indices of the triangles incident on each ver-

tex, we work in parallel on the triangles. For every ver-

tex of a triangle we increase, with an atomic operation,

its counter of triangle indices and register the triangle

index in the respective position in the data array of the

triangle indices structure. As soon as we have processed

all the triangles, the indices structure will represent the

model completely.

3.2.2 Computation of quadrics

Quadrics are computed as defined in [4]. Specifically,

consider the standard equation of a plane, nTp +d = 0

where p is a point on the plane, n is the unit normal of

the plane and d is a scalar constant. Then, the squared

distance of a vertex v (here, the vertex resulting from

an edge collapse) from the plane is given by the formula

D2(v) = (nTv + d)2 = vT (nnT )v + 2dnTv + d2

= vTAv + 2bTv + c,
(1)

where A = nnT is 3× 3 matrix, b = dnT is a 3-vector

and c = d2 is a scalar. The quadric Q of the plane is de-

fined as the triplet Q = (A,b, c) and then the distance



4 Alexandros Papageorgiou, Nikos Platis

vert. no.
0 :
1 :
2 :
3 :
4 :
- :
6 :

pos size cont
0 7 /

10 6 /
20 7 /
30 10 5
40 7 /
50 2 /
60 5 /

data
40346 40365 40383 40477 40525 40760 40762 / / /
33202 35503 35640 35918 34032 34408 / / / /
31021 31139 31583 30207 30292 30492 30664 / / /
39902 37706 35503 35918 36514 36722 38296 38556 38840 38859
39294 39333 39429 39593 39759 39920 39998 / / /
37018 39998 / / / / / / / /
29866 29937 29994 30207 30292 / / / / /

Fig. 2 The data structure used to hold the indices of triangles incident on each vertex. For each vertex, a headers array holds
index information necessary to access the (one-dimensional, depicted here as two-dimensional only for convenience) data array.
For example, vertex 1 has 6 incident triangles, whose indices are listed starting from position 10 of the data array; vertex 3 has
12 incident triangles, starting at position 30 and continuing, as indicated by row 5 of the headers array, to position 50 (vertex
5 was deleted as part of an earlier edge collapse). Notice that for each vertex a minimum number of positions for incident
triangles is reserved (in the figure, 10 positions) in order to minimize the need to use the {continuesTo} field and optimize
memory look-ups.

of the vertex v from the plane can be expressed using

the previous formula. It is interesting that the sum of

squared distances of the vertex from a set of planes can

be expressed by an aggregate quadric created by simply

adding (component-wise) the quadrics of these planes.

Accordingly, for the purpose of this computation, the

set of planes can be compactly represented by its cor-

responding aggregate quadric.

Using these formulas, in our implementation we first

compute the quadric of each triangle of the model (as

the quadric of its supporting plane), and store these in

a temporary array. Then, we compute a quadric repre-

senting the set of triangles incident on each vertex of

the model, by adding the quadrics of the triangles inci-

dent on it, and store these alongside the corresponding

vertices; for this computation we refer to the data struc-

ture holding the indices of incident triangles described

in Section 3.1. Both operations are executed with data

parallelism on the respective arrays.

3.2.3 Identification of independent areas

As mentioned in Section 2.1 above, the standard simpli-

fication algorithm that utilizes edge collapses performs

them in a sequence; after each collapse the model is

locally modified around the collapsed edge and thus

the error assigned to the neighboring edges must be

re-computed.

This algorithmic structure cannot be parallelized ef-

ficiently. To perform edge collapses in parallel we find

areas of the model that are independent, in the sense

that an edge collapse may be performed in one area

without affecting the data that are used for the sim-

plification in another area. Based on the connectivity

of the model, such an area is identified by one vertex

(that is the central vertex of the area) and its surround-

ing vertices. For the areas to be independent, it is re-

quired that their central vertices be super-independent

[3], meaning that their distance (on a graph represent-

ing the mesh, having the model’s vertices as nodes and

the model’s faces as edges) must be at least three.

We compute the super-independent vertices with a

parallel adaptation of the greedy serial algorithm that

finds a maximal independent set on the graph repre-

senting the mesh. We logically split the vertex array in

as many parts as the available processors and for ev-

ery part we execute the serial algorithm to find super-

independent vertices: if the current vertex or one of its

surrounding vertices is marked as being used, we ignore

it and proceed to the next one; if not, the current ver-

tex is considered super-independent and it and its sur-

rounding vertices are marked as being used. Vertices are

marked as being used in a single auxiliary array which

is shared between all the execution threads. When this

part is completed we check again, using parallelism on

the elements of the auxiliary array, all the vertices that

have been marked as super-independent for having dis-

tance at least three to each other. This final check is

performed in order to avoid the inclusion of a vertex

in the result due to race conditions between the execu-

tion threads. If a vertex also passes this final check, it

is added to the array of the super-independent vertices.

It should be noted that the aforementioned possi-

bility of race conditions between the threads that de-

termine independent areas, makes this part of the al-

gorithm non-deterministic: different results may be ob-

tained even when running it on the same system con-

figuration. However, the effect of this behavior to the

quality of the final simplified model is minimal, since, in

subsequent steps, the best candidate edge is selected in

each of the independent areas (see Section 3.2.4 below)

and these are sorted (see Section 3.2.5) so that collapses



Triangular mesh simplification on the GPU 5

are performed first in areas where the least error will

be introduced.

In terms of complexity, this step is dominated by

the greedy serial algorithm that finds a minimal inde-

pendent set of vertices, which is O(n) where n is the

number of vertices examined (by each processor).

3.2.4 Edge collapse error

The edge that will be collapsed in each of the indepen-

dent areas is one of those sharing the central vertex;

specifically, it is the one that will incur the smallest er-

ror on the model, provided that the manifold property

of the model surface is maintained.

For each candidate edge collapse, the position of

the resulting vertex and the corresponding error are

calculated by using the quadrics. In order to deter-

mine the position of the vertex that minimizes its total

squared distance to the corresponding set of planes it

suffices to zero the derivative of formula (1), which gives

v∗ = −A−1b for the optimal position of the vertex and

ε = bTv∗ + c for the error.

Having selected the edge collapse for an independent

area, we assign it to the representative super-independent

vertex.

3.2.5 Vertex sorting

To sort the super-independent vertices we use a varia-

tion of the bitonic sorter (see Section 2.3) whose par-

allel implementation supports arrays of size different
than a power of 2 while maintaining its complexity to

O(log2(n)) [8]. We add virtual padding at the end of the

array up to the next power of 2; we treat these padding

elements as max-values so that when a comparison-

exchange is underway, no values from the array are

moved past the actual end of the array.

The final sorting order is not affected by the sorting

order of the previous steps (i.e. whether the first se-

quence is in ascending or descending order), as long as

the sequences are bitonic. The bitonic sorting algorithm

is modified so that at each step, the elements of the last

sequence that lies on the actual array are sorted in as-

cending order, and with the virtual padding we avoid

moving array elements past the actual end of the array.

The sorting order of the other sequences is selected so

that the sequences for the next step are bitonic.

Although there is a small impact on the running

time due to the virtual padding, by using it we can

perform parallel in-place sorting of arbitrarily sized ar-

rays.

3.2.6 Edge collapses

This is the part that finally uses all the data that were

prepared in the previous steps of the algorithm and

performs edge collapses in parallel on the independent

areas. We mention early on that we do not perform all

available edge collapses in parallel, since in this way we

would even simplify areas where a large simplification

error would occur; see Sections 3.3 and 4.1 for a relevant

discussion.

For each edge that will be collapsed we locate the

triangles (at most two, based on the manifold property)

that will be deleted, by using the incident triangles in-

dices data structure.

Then we modify the connectivity of the triangles in

the affected area. We scan the indices of the triangles

that use the central vertex and change the triangles so

that the central vertex is replaced by the other vertex on

the collapsing edge. After that, the central vertex will

not be referenced by any triangle and thus, in the end,

we will mark it as deleted. After we modify the connec-

tivity of the triangles, we update the indices structure,

appending to the list of the second vertex the list of in-

dices of the central vertex (using the continuesTo field

of the respective header, and not moving any elements

at this point).

Further on, we modify the connectivity of the ver-

tices. We must remove the triangles that will be deleted

from the incidence lists of their three vertices; we scan

these lists and erase the appropriate indices.

While we erase the indices, we also compact the lists

so that they have no gaps; this optimizes the time re-

quired to traverse the lists of incident triangles in subse-

quent iterations of the algorithm, since less memory ac-

cesses will be needed (otherwise the positions of deleted

triangles would be accessed only to be ignored), and

also cache coherence will be able to automatically ac-

celerate the procedure.

The next step is to reposition the second vertex to

its final position and update appropriately the error

array, using the value computed by the quadrics.

Now the edge collapse has been essentially com-

pleted and the final remaining task for this part of the

algorithm is to mark the triangles and the vertex that

we no longer need as deleted.

Overall, the steps performed by this part of the al-

gorithm in the order they are executed are the following

(Figure 3):

– Find the best edge.

– Find the triangles to be deleted.

– Calculate the optimal position for the resulting ver-

tex.

– Modify the connectivity of the triangles.



6 Alexandros Papageorgiou, Nikos Platis

Fig. 3 Edge collapse steps

– Append the central vertex’s list to the list of the

2nd vertex.

– Remove the indices of the triangles to be deleted

and compact the lists.

– Reposition the 2nd vertex.

– Update the error array.

– Remove the triangles and the central vertex.

3.3 Parameters of the algorithm

There are some parameters of the algorithm which af-

fect the execution time and the quality of the resulting

model.

The first one is the percentage of the independent

regions to be used in each iteration of the algorithm

to perform simplifications. The serial algorithms per-

form only one edge collapse (the best one) each time,

but we need to perform multiple collapses in parallel.

In each iteration we scan the whole model to find the

independent areas and sort them based on their error,

as described in the previous sections. If we use all the

independent areas that we find, we are going to perform

collapses that will incur significant error on the model.

On the other hand, if we use too few of them, we will

get a better result but we will need more iterations

of the algorithm to reach the goal of the simplification,

with the corresponding cost in total execution time. We

present the effect of this parameter to the simplification

result in Section 4.1.

The second parameter is the number of execution

threads for the part that finds the super-independent

vertices. We want to have enough execution threads so

as to maximize the utilization of the available proces-

sors; but we do not want more than these, because we

increase the dependencies between regions of the model,

which may reduce the final number of selected areas. In

our implementation we handle this parameter automat-

ically; the number of threads is calculated based on the

number of execution units so that there are no more

than 64 threads for each one, but also so that each

thread processes at least 100 vertices.

The last parameter concerns the size of the array

for the super-independent vertices (which is allocated

in the first pass of the algorithm and reused in the rest).

Ideally the exact size that we will need should be calcu-

lated, but as the connectivity of the model is generally

irregular, the only thing we can do is use an approxi-

mate value. The value used in our implementation was

set to 5% of the initial number of vertices of the model.

4 Results

We measured the performance of our algorithm by sim-

plifying several models in various configurations of the

algorithm. All the measurements were performed on a

computer with a quad-core Intel Core i7 920 CPU at

2.67GHz, 6GB of DDR3 RAM and an Nvidia GeForce

GTX275 GPU with 896MB of GDDR3 RAM.

In the subsections that follow we present

– the effect of altering the percentage of independent

regions used in each iteration of the algorithm,

– performance results, in comparison with a serial im-

plementation of the original surface simplification

algorithm that uses the quadric error metric on the

CPU, and

– some results for the (parallel) execution of our algo-

rithm on the CPU.

We tested our algorithm on several well known mod-

els of varying complexity, ranging from the cow model

with 5,804 triangles and a rather smooth surface up to

a gargoyle model with 1,000,000 triangles and a finely

detailed surface. The behavior and the performance of

our algorithm were consistent along all these models,

therefore we only present the most representative and

interesting cases below.

We note here that we were unable to perform com-

parisons with the other GPU simplification methods

mentioned in Section 2.2 because their implementations

were not available.

4.1 Percentage of independent regions

Table 1 explores the effect of using different percentages

of independent regions in each iteration of the algo-

rithm. The data refer to the simplification of the horse

model, consisting of 45,485 vertices and 96,966 trian-

gles, down to 1,500 vertices and 2,996 triangles (approx-

imately 3% of the original). As already mentioned, by

simplifying more independent regions simultaneously in

each step, we need fewer steps to reach the simplifica-

tion target and therefore less time; unfortunately this

results in models of lower quality, as illustrated in Fig-

ure 4. It can be observed that when simplifying a high

percentage of independent regions simultaneously, the



Triangular mesh simplification on the GPU 7

% of indep. reg. Iterations Time

100 37 983
85 43 1155
50 72 1950
25 144 3635
10 357 8174
5 731 15257

Table 1 Effect of different percentage of independent regions
used in each step of the algorithm.

edge collapses tend to be more evenly distributed on

the surface of the model, occuring even on areas of fine

detail (such as the head or the legs); this happens be-

cause we force the algorithm to simplify many regions

at once, essentially disregarding the ordering of poten-

tial edge collapses by increasing error. On the contrary,

when few edge collapses must be performed in parallel,

these are, in each step, the ones with the least error

which naturally affect areas without fine details (such

as the horse body).

The default value that we used in our implemen-

tation was set to 85%, which gave quite good qual-

ity results in short time. Our tests showed that this

value could be lowered in order to increase the quality

of the simplified models while still retaining significant

speedups with respect to the serial simplification.

4.2 Performance results, comparison with serial

implementation

We compared the execution time as well as the qual-

ity of the simplified models of our algorithm with those

of a corresponding serial simplification algorithm. The

serial implementation that we used was the one from

the MeshLab system [1] (version 1.3.0 64bit) and specif-

ically the “Quadric Edge Collapse Decimation” filter

from the “Remeshing simplification and reconstruction”

category. The measurements of the quality characteris-

tics of the final simplified models were derived with the

use of the PolyMeCo software [9] (version 1.1).

In Table 2 and Figure 5 we show the behavior of our

algorithm for the simplification of the gargoyle model,

a model with a fairly high level of detail, composed of

500,002 vertices and 1,000,000 triangles. The initial cost

of our algorithm is quite small and the total simplifi-

cation time is almost linearly dependent on the degree

of simplification, up to the point where the number of

independent areas on the model is drastically reduced.

After that point, the possibility of parallelization is re-

duced and as a result the required time for further sim-

plification increases almost exponentially. Nevertheless,

the running time of the algorithm is still less than that

of the serial algorithm (whose execution time also in-

Initial model of the horse

Using 100% and 85% of independent regions in each step

Using 50% and 25% of independent regions in each step

Using 10% and 5% of independent regions in each step

Fig. 4 Effect of different percentage of independent regions
used in each step of the algorithm. Top row: model of the
horse at full detail (45485 vertices); next three rows: model
of the horse at 1500 vertices, using different percentages of
independent regions.

creases almost linearly with the degree of simplification,

albeit with a steeper slope than the parallel algorithm).

Overall, the speedup of our parallel implementation was

in the range 1.5–4.2 for this model.

Similar behavior was observed on smaller models,

for example the horse model. The curves depicting the

execution time vs. the simplification target had similar

shapes as those of Figure 5. The speedup was some-

what lower, 1.1–3.5, which is to be expected since larger

models benefit more from the paralellization of the al-

gorithm.

Exemplar qualitative results are shown compara-

tively in Figure 6 for the simplification of the gargoyle

model at 10% of its original vertices. The two algo-

rithms produce models that are not visually very differ-



8 Alexandros Papageorgiou, Nikos Platis

Target Vertices
Parallel simpl. Serial simpl.
Iter. Time Time

90% 450001 4 858 3596
75% 375001 6 1450 4588
50% 250001 10 2510 7106
25% 125000 18 3900 9498
10% 50002 29 5101 11204
5% 25002 37 5694 11766
1% 5006 54 6662 11798

0.5% 2503 63 7160 11946
0.1% 507 81 8206 12015

Table 2 Simplification of the gargoyle model (500002 ver-
tices).

ent and both preserve the details of the original model

adequately. As expected, the serial algorithm preserves

the details better, since it always performs the best

edge collapse at each step, whereas the parallel algo-

rithm performs several collapses in each iteration, some

of which are not the best choices.

The last two rows of Figure 6 present, over the sur-

face of the model, the geometric deviation as well as

the magnitude of the normal vector deviation of the

simplified models from the original one. Again, the se-

rial implementation exhibits expectedly better results,

since it can avoid simplifying highly detailed areas of

the surface. The comparison is quantified in Table 3,

showing the mean values of the geometric deviation,

the normal vector deviation and the smoothness of the

model’s surface (computed as the distance of each ver-

tex from the centroid of its immediate neighbors). Al-

though the serial simplification produces better results,

the values are of the same magnitude, indicating results

of comparable quality.

Qualitative results were similar for the horse model

as well. Since this model is very much smoother than

the gargoyle model, the geometric deviation and surface

smoothness were three orders of magnitude smaller in

all cases and the normal deviation was almost half in

all cases; the relation between the respective character-

istics of the parallel and the serial simplification was

almost identical to the one of the gargoyle model.

4.3 Parallel execution on the CPU

Since OpenCL is a cross-platform standard, programs

using it should be able to run on other parallel architec-

tures apart from GPUs, such as the multi-core current

CPUs; they should even be able to run in heterogeneous

CPU-GPU environments, making use of all available re-

sources of a computer.

Unfortunately, in practice the situation is, at the

time of writing this paper, far from ideal. Of the three

OpenCL implementations currently available, the one

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60 70 80 90

T
im

e
 (

m
s)

Simplification target (%)

Serial simplification
Parallel simplification

Fig. 5 Execution time for the simplification of the gargoyle
model by the two implementations.

Simplification
Geometric Normal vec. Surface
deviation deviation smoothness

Initial model - - 0.08035
Parallel 25% 0.01524 0.10102 0.24674
Serial 25% 0.00673 0.07043 0.17030
Parallel 10% 0.03357 0.15738 0.40793
Serial 10% 0.01499 0.10919 0.28482
Parallel 5% 0.05961 0.20834 0.58382
Serial 5% 0.02499 0.14802 0.41982
Parallel 1% 0.22100 0.34857 1.34098
Serial 1% 0.07813 0.27320 1.08336

Table 3 Mean values of quality characteristics for various
simplifications of the gargoyle model.

from Nvidia targets only GPUs with an Nvidia proces-

sor, the one from AMD targets GPUs with an AMD

processor as well as CPUs, and the one from Intel tar-

gets only Intel CPUs. Therefore in a system with an

Nvidia GPU one can run OpenCL programs either on

the GPU (with the Nvidia implementation) or on the

CPU (with the AMD or the Intel implementation) but

not on both.

Even more so, the OpenCL drivers seem still im-

mature and not stable enough. While testing our im-

plementation on the CPU we experienced random in-

stabilities and crashes not whitnessed on the GPU –

differing between the AMD and Intel implementations

and even between versions of these implementations.

Figure 7 shows the results of preliminary testing of

our algorithm on the CPU, using the Intel OpenCL im-

plementation. It is interesting that running times on the

CPU are comparable or even lower (at high simplifica-

tion targets) than those on the GPU, even though the

former has vastly fewer execution units than the lat-

ter. This can be attributed to the rather complex algo-

rithmic structures that our implementation comprises,

which run more efficiently on the CPU (eg. branching)

than on the GPU.



Triangular mesh simplification on the GPU 9

Initial model of the gargoyle

Serial simplification Parallel simplification
at 10% of the original vertices

Geometric deviation

Normal vector deviation

Fig. 6 Comparison of the results for the simplification of the
gargoyle model

5 Conclusion

Taking into account the characteristics of the modern

graphic processors and with the use of the OpenCL

technology that allows us to exploit their capabilities,

we designed and implemented a parallel simplification

algorithm for manifold triangular meshes that is based

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

T
im

e
 (

m
s)

Simplification target (%)

NVidia GeForce GTX 275
Intel Core i7-920

Fig. 7 Execution times for the simplification of the horse
model on the GPU and on the CPU.

on edge collapses and the quadric error metric. Our

algorithm achieves significant speedup compared to a

serial implementation of the simplification algorithm,

while the final models are of comparable quality.

Our work could be extended towards applications

in which multiresolution models are useful. A first step

would be to record the simplification steps in order to

create a progressive mesh structure for the model; this

procedure would need to take into account synchro-

nization issues between the threads that perform edge

collapses in parallel. Further on, the progressive mesh

structure could be exploited in applications that bene-

fit from the selective refinement of the model; for such

applications, the independent regions identified during

our simplification algorithm could be used in order to

streamline the required processing.

References

1. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M.,
Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source
mesh processing tool. In: Sixth Eurographics Italian Chap-
ter Conference, pp. 129–136 (2008)

2. DeCoro, C., Tatarchuk, N.: Real-time mesh simplification
using the GPU. In: Proceedings of the 2007 Symposium on
Interactive 3D Graphics, SI3D, pp. 161–166. ACM (2007).
URL http://doi.acm.org/10.1145/1230100.1230128

3. Franc, M., Skala, V.: Parallel triangular mesh decimation
without sorting. In: Proceedings of International Confer-
ence SCCG, pp. 164–171 (2001)

4. Garland, M.: Quadric-based polygonal surface simplifica-
tion. Ph.D. thesis, School of Computer Science, Carnegie
Mellon University (1999)

5. Hjelmervik, J.M., Léon, J.C.: GPU-accelerated shape sim-
plification for mechanical-based applications. In: Shape
Modeling International, pp. 91–102. IEEE Computer So-
ciety (2007)

6. Knuth, D.: The art of computer programming, Vol. 3.
Addison-Wesley, Reading, MA (1973)

7. Munshi, A.: The OpenCL specification version 1.0.
Khronos OpenCL Working Group (2009)



10 Alexandros Papageorgiou, Nikos Platis

8. Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.: Fast
in-place sorting with CUDA based on bitonic sort. In: Pro-
ceedings of the 8th International Conference on Parallel
Processing and Applied Mathematics: Part I, PPAM’09,
pp. 403–410. Springer-Verlag (2010)

9. Silva, S., Madeira, J., Santos, B.S.: PolyMeCo–An inte-
grated environment for polygonal mesh analysis and com-
parison. Computers & Graphics 33(2), 181–191 (2009)


