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Abstract

Vector fields produced by experiments or simulations are
usually extremely dense, which makes their manipulation
and visualization cumbersome. Often, such fields can be
simplified without much loss of information.

A simplification method for 3D vector fields defined over
tetrahedral meshes is presented. The underlying tetrahedral
mesh is progressively simplified by successive half-edge col-
lapses. The order of collapses is determined by a compound
metric which takes into account the field and domain error
incurred as well as the quality of the resulting mesh. Special
attention is given to the preservation of the mesh boundary
and of critical points on the vector field.

A tool has been developed for the measurement of the dif-
ference between two vector fields over tetrahedral meshes,
and it is used to quantify the simplification error.

1 Introduction

Data visualization techniques deal commonly with three-
dimensional scalar and vector fields defined over tetrahedral
meshes. Field values are known only at the vertices of the
mesh; at any other point the corresponding field value is ob-
tained by linear interpolation of the values at the vertices of
the tetrahedron containing the point. Owing to advances in
computing and data acquisition techniques, these fields are
very dense and detailed, at the cost of requiring consider-
able resources for their processing.

To alleviate this, several methods that produce simplified
approximations of such fields have been developed. The
complexity of the field is reduced in a controlled manner,
with the aim to retain its important characteristics and to
minimize the approximation error of the resulting field.

In this paper we present a simplification method for vec-
tor fields over tetrahedral meshes which applies iterative
edge collapses to the mesh. To quantify the simplification
error of each candidate edge collapse we propose a com-
pound error metric that takes into account the change to the

vector field and its domain as well as the quality of the pro-
duced mesh. In order to preserve important features of the
vector field, we pay special attention to the boundary of the
tetrahedral mesh and to critical points of the field.

To assess the actual error between the original vector
field and the simplified one, we have developed a software
tool that measures the difference between two vector fields
in terms of various error metrics.

This work is the first application of a simplification
method based on iterative edge collapses to vector fields
over tetrahedral meshes. Such methods have been applied
successfully to triangular surface meshes, with or with-
out associated attributes, and more recently, to tetrahedral
meshes with associated scalar fields. Our algorithm con-
siders the special characteristics and requirements of vector
fields in order to guide the simplification process; it does
not merely produce a simplified visualization but it mean-
ingfully reduces the size of the vector field.

2 Related Work

2.1 Tetrahedral Mesh Simplification

The literature on tetrahedral mesh simplification is not
very extended. The benefits of edge collapse based simpli-
fication methods for triangular surface meshes [12, 9, 14]
has led to their adaptation for tetrahedral meshes and sev-
eral authors use them, directly or indirectly.

Staadt and Gross [15] presented the first complete sim-
plification algorithm based on edge collapses for tetrahe-
dral meshes. They order edge collapses using a compound
function that weighs the change in the scalar field, the
change in overall mesh volume and the change in tetrahe-
dra shape. They also present a robust technique to avoid
self-intersections of the boundary of the mesh during sim-
plification. Trottset al. [19] determine upper bounds for the
field and domain error caused by each edge collapse and
consider them separately. The most thorough treatment of
tetrahedral mesh simplification is provided by Cignoniet
al. [3]. They define formally the simplification error and



evaluate several methods for estimating it during the sim-
plification process, trading accuracy for efficiency. Finally,
Chopra and Meyer [2] simplify tetrahedral meshes by col-
lapsing tetrahedra; their method exhibits interesting proper-
ties regarding the mesh, but their treatment of the associated
field is elementary.

2.2 Vector Field Simplification

Simplification of vector fields has mostly treated, so far,
scattered data vector fields: isolated points with associ-
ated vector values but without any connectivity information.
Clustering approaches are very common in this case. Au-
thors are most often guided by the need to present a sim-
plified representation of the information contained in an in-
volved vector field.

Heckelet al. [10] measure the simplification error, and
guide the clustering process, by the difference in the stream-
lines of the initial and the simplified field. Telea and van
Wijk [16] compute a representative vector for each cluster
and use them to merge similar clusters. They also present
an advanced visualization technique with curved vectors for
the simplified fields. Tricocheet al. [18] are mostly con-
cerned with fields containing excessive numbers of critical
points; they create clusters based on the number of criti-
cal points contained in each of them and merge those con-
tained in each cluster in order to simplify the field. Garcke
et al. [8] are inspired by a physical clustering model, which
they adapt to guide a simplification process for vector fields;
they enhance it in order to control the shape of generated
clusters and apply it mainly to flow fields.

3 Simplification of Vector Fields over Tetra-
hedral Meshes

We will denote a vector field asΦ = (V, T ,F), where
V is a set of vertices,T = {T1, T2, . . . , Tm} is a tetrahe-
dralization ofV, andF = {F1,F2, . . . ,Fm} is a set of
functions such that eachFi is defined over tetrahedronTi

as the linear interpolant of the field values at the vertices of
Ti. We will denote byΩ thedomainof the vector field, the
region of space spanned byT .

3.1 Simplification Algorithm

Our algorithm follows the general scheme of most other
simplification algorithms based on iterative edge collapses:

• Each candidate collapse is assigned apriority, indica-
tive of its impact on the mesh, and inserted in a priority
queue.

• While legal collapses exist in the queue and the sim-
plification target has not been reached,
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Figure 1. Half-edge collapse (a, b) → b for a
triangular surface. The triangles affected by
the collapse are greyed out.

– The collapse with highest priority is removed
from the queue and applied to the mesh. Tetra-
hedra that contain the collapsed edge are deleted;
those that contain only the deleted vertexa have
this vertex replaced byb.

– All affected edges have their priorities (and posi-
tions in the queue) updated.

The edge collapse operation is fully reversible and the
original field can be recovered exactly.

In this work we allow edges to contract only to either
of their endpoints and we retain the original field value at
the target point. In this way, an edge{a, b} of the mesh
produces two candidatehalf-edge collapses, (a, b) → b and
(b, a) → a. The effect of a half-edge collapse is restricted to
the tetrahedra around its origin (Figure 1 shows a half-edge
collapse on a triangular mesh for simplicity). This simpli-
fication scheme was favored over general edge collapses,
where the resulting point is placed freely and the associated
field value must be computed so as to minimize the simpli-
fication error, for its simplicity and efficiency; also, since
the original field values are used throughout, the possibility
to distort the field topology is reduced.

Edge collapse validity Edge collapses may result in in-
consistencies, such as non-manifoldness [7], or artifacts on
the tetrahedral mesh. To avoid them, suitable tests are per-
formed before each candidate collapse is inserted in the
queue:

• The topology of the mesh is maintained using the link
condition of [6, 3].

• The volume of each tetrahedron affected by the col-
lapse must not change sign or become zero, in order to
prevent creation of inverted or degenerate tetrahedra.

Simplification error The simplification error incurred as
a result of an edge collapse can be analyzed into two com-
ponents [3]:



• The domain errorcharacterizes the change in the do-
main Ω of the vector field, which may be altered if
the collapsed edge has one or both endpoints on the
mesh boundary. The domain error can be measured by
the Hausdorff distance between the boundaries of the
original and the simplified mesh [4].

• Thefield errorquantifies the change in the vector field.
If Φ = (V, T ,F) andΦ′ = (V ′, T ′,F ′) are the origi-
nal and the simplified field respectively, then the field
error can be measured by the differencesF(x)−F′(x)
at pointsx in the domain, for example

εF =
1
|Ω|

∫

Ω

‖F(x)− F′(x)‖2dv.

As noted above, the domain of the field may change
after an edge collapse, and in this case the definitions
of the interpolantsF andF′ should be extended appro-
priately to coverΩ′ andΩ respectively.

Owing to the locality of the edge collapse operation, the
two fields only differ over the tetrahedra affected by the col-
lapse, and their boundaries only on the boundary faces of
these tetrahedra. However, computing the above measures
on even these restricted regions at each simplification step
is impractical; in the following section we present the error
estimation that we used.

3.2 Error estimation

The error assigned to each candidate edge collapse is a
weighted sum of several components:

E = wFAEFA + wFLEFL + wDED + wCEC + wV EV

These error components are analyzed below. In brief, the
first two components are estimates of the field error, the
third is an estimate of the domain error, and the last two
components control the quality of the simplified mesh in
terms of tetrahedra shape.

We should note that, since the error components are ex-
pressed in different scales, each of them is normalized in
the interval[0, 1] when the original edges are inserted in
the queue; the resulting normalization coefficients are used
thereafter.

In the following, we will refer to a half-edge collapse
(a, b) → b.

Field Error EFA
andEFL

quantify the field error of the
simplification. EFA measures the angle deviation between
the original and the simplified field, andEFL their (vector)
difference. The error estimate is based on the valueF′(a)
of the simplified field at the deleted vertexa (Figure 2); thus
we set:

a
a
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Figure 2. The field error is estimated in terms
of the field values at the deleted vertex a be-
fore and after the collapse.

EFA = 6 (F(a),F′(a))
EFL

= ‖F(a)− F′(a)‖

To calculateF′(a) we form the tetrahedra that would be
created by the collapse by substitutinga with b on the af-
fected tetrahedra; we find which new tetrahedron contains
the deleted vertexa, and compute the new field value ata
by interpolating the field values at the vertices of this tetra-
hedron. If the boundary of the mesh changes,a may not
be contained in any of the new tetrahedra. In this case, we
find the new tetrahedron whose center is closest toa and
extrapolate the field values at its vertices to obtainF′(a); if
more than one tetrahedra are at the same minimum distance
to a, their respective extrapolated field values are averaged
to giveF′(a).

In order to represent the original field better, the two
components of the field error areaccumulatedduring the
simplification process; thus each candidate edge collapse
carries on recursively the errors incurred by all edges col-
lapsed to itsa.

Domain Error For the domain errorED we initially used
the maximum distance of the deleted vertexa to the bound-
ary faces of the new tetrahedra, as an estimate of the Haus-
dorff distance of the boundaries. However, experimentation
revealed that this measure of the boundary error failed to
preserve the mesh boundary reliably (see also Section 3.3).

To overcome this, we estimate the boundary error in
terms of the dihedral angles between corresponding bound-
ary faces before and after the collapse (Figure 3). Specifi-
cally, if BF ′(b) is the set of affected boundary faces around
b after the collapse andθ(f) is the aforementioned angle for
a facef ∈ BF ′(b), we set

ED = max
f∈BF ′(b)

θ(f)
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Figure 3. The domain error is estimated in
terms of the dihedral angles θ(f) between
corresponding faces before and after the col-
lapse.

The domain error is also accumulated during the course
of the simplification algorithm, so that the change to the
boundary is estimated with respect to the boundary of the
original mesh.

Tetrahedra Compactness Error EC penalizes the cre-
ation of slivery tetrahedra, which are generally undesired
since they produce artifacts during rendering and interpola-
tions. As a measure ofcompactnessof a tetrahedronT we
use the value [13]

c(T ) =
6
√

2S(T )
L3

µ(T )

whereS(T ) is the volume ofT andLµ(T ) is its average
edge length. This formula yields 0 for a flat tetrahedron and
1 for a regular one.

We calculate the minimum compactnesscmin of the
tetrahedra around(a, b) before the collapse and the mini-
mum compactnessc′min of the tetrahedra aroundb after the
collapse, and take

EC =
cmin

c′min

as a measure of compactness deterioration due to the col-
lapse.

Valence Error EV penalizes the creation of vertices of
high valenceon the mesh, vertices shared by many tetrahe-
dra. For a half edge collapse,EV is simply the number of
tetrahedra aroundb after the collapse,

EV = Valence′(b).

3.3 Boundary preservation

Tetrahedral meshes used in data visualization commonly
have rectangular or curvilinear boundary, corresponding to
the space in which the experiment or simulation takes place;

in such cases it is desirable to preserve the shape of the
boundary as much as possible.

To this end, we seeked to simplify the tesselation of pla-
nar boundary regions while allowing only small deteriora-
tion of curvilinear parts. Thus we have adopted the follow-
ing strategy:

• An edge lying on the mesh boundary is only allowed
to collapse if the domain error incurred is below a
user-specified threshold; this threshold is 0 for fields
with planar boundaries and very small for curvilinear
boundaries. In this context, the domain error estima-
tion based on the deviation angle of boundary faces is
an intuitive measure of accepted boundary deteriora-
tion.

• An edge with one boundary vertex is only allowed to
collapse toward its boundary vertex. Thus ifb is a
boundary vertex buta is not, the half-edge collapse
(a, b) → b is permitted whereas the inverse collapse
is disallowed, since it would compromise (shrink) the
boundary. For greater simplification of the boundary,
the threshold mentioned in the previous case could be
considered here as well.

• An edge may have both its endpoints on the boundary,
but it may be on the interior of the mesh (for exam-
ple, an interior edge of a cube with endpoints on two
different sides); in this case its collapse is disallowed
completely.

Other authors [15] have described sophisticated and in-
volved techniques to avoid self-intersections during modifi-
cations of the field boundary. Our assumption for almost
regular boundaries and our provision for small modifica-
tions during simplification make such techniques unneces-
sary.

3.4 Critical points

Critical points, at which the value of a vector field be-
comes zero, are important for its visualization since they
correspond to distinctive features of the field [11]. The
topology of vector fields containing many and dense crit-
ical points can be analyzed as described in [17], and simpli-
fied properly with techniques such as those found in [18, 5].
Our simplification scheme using edge collapses can be aug-
mented with the method presented in [1] to preserve the
topology of the field. However, for vector fields containing
a moderate number of critical points we have successfully
applied the following strategy:

• An edge whose both endpoints are critical is only al-
lowed to collapse if its length is below some user-
specified threshold; this threshold is set rather small,



so that only very closely neighboring critical points are
merged and the field topology is not affected signifi-
cantly.

• An edge with one critical endpoint is only allowed to
collapse toward its critical endpoint. Thus ifb is a criti-
cal point buta is not, the half-edge collapse(a, b) → b
is permitted whereas the inverse collapse is disallowed,
since it would destroy a critical point.

It is assumed that all critical points lie on vertices of the
original mesh. Otherwise they can be detected, in a prepro-
cessing step, by examining the field, and the tetrahedra that
contain critical points should be split on them so that the
above strategy can be applied.

4 Error Measuring Tool

In order to measure the actual field error of our simpli-
fied meshes, we have developed a software tool that mea-
sures the difference between two vector fields defined over
tetrahedral meshes.

Our tool samples the two fieldsΦ andΦ′ at a common
set of sample pointsS and collects their respective values,
{F(x), x ∈ S} and{F′(x), x ∈ S}. In a similar manner
to Section 3.2 above, field values are computed by finding
the tetrahedron that contains the sample pointx and inter-
polating the field values at its vertices; if the sample point
is external to the domain of the field, its value is estimated
by extrapolation with respect to the nearest tetrahedra. A
regular grid covering the field domain is used throughout to
help locate the containing or nearest tetrahedra for a sample
point.

Having collected the field values at the sample points,
various error measures may be computed. In order to repre-
sent the simplification error, we implemented the following:

• Max and mean angle deviation:
If εA(x) = 6 (F(x),F′(x)), we take

εmax
A = max

x∈S
{εA(x)}

εmean
A =

1
|S|

∑

x∈S

εA(x)

• Max and mean vector deviation:
If εL(x) = ‖F(x)− F′(x)‖, we take

εmax
L = max

x∈S
{εL(x)}

εmean
L =

1
|S|

∑

x∈S

εL(x)

For our purposesΦ is the original andΦ′ is the simpli-
fied field, and the points ofS are sampled on a dense regular
grid covering the domain of the original model. In the tables
of Section 5 that follows, angle deviations are expressed in
degrees. Also, to be more meaningful, vector deviations are
expressed relatively as percentages of the ranger of mea-
sures in the fieldΦ,

r = maxx∈V {‖F(x)‖} −minx∈V {‖F(x)‖} .

5 Results

Our simplification algorithm was implemented as an
OpenDX module, but it may be easily adapted to other vi-
sualization frameworks. We tested the algorithm on several
different datasets.

The first field is a linear field created at the vertices of
a uniformly subdivided cube. Inside the cube its values are
given byF(x, y, z) = (x, 2x, 0). The initial field is com-
prised of 3645 tetrahedra. The simplified field (Figure 4)
consists of 10 tetrahedra and it represents the original field
exactly. The boundary threshold was set to 0 for this sim-
plification.

Figure 4. The linear field, original (3645 tetra-
hedra) and simplified (10 tetrahedra).

The second dataset (gravity ) represents the gravitational
field produced by three spheres. It has 121,945 tetrahedra,
rectangular boundary and three critical points at the loca-
tions of the spheres. For its simplification we imposed a
boundary threshold of 0 and a critical point merge thresh-
old of 0 as well. As expected, the boundary was preserved
exactly and the critical points were not merged. Figure 5
shows a cutting plane through the center of the field at var-
ious levels of detail. It is clear that the field was simplified
more at the areas where it is more uniform, away from the
three spheres.

The other two datasets are vector components of the
bluntfin dataset1 and of a fluid flow simulation (pipe)2,

1The bluntfin model was obtained from NASA
2The pipe model was obtained from the OpenDX BonusPak.



comprised of 187,318 and 10,872 tetrahedra respectively.
Both these datasets have curvilinear boundary and no criti-
cal points. For their simplification we imposed a low bound-
ary threshold ofπ/4, which led to very good preservation
of the boundary shape. Figures 6 and 7 show cutting planes
through these two fields in various resolutions. Again, the
fields were simplified more over their more uniform regions
while their important characteristics were preserved.

Table 1 provides simplification times and error measure-
ments for the last three test models. Each model was sim-
plified at 50%, 25% and 10% of its original tetrahedra. The
weights applied to the error components are the italicized
ones in table 2. Timings include the complete simplifica-
tion process, starting with the original field. Our tests were
performed on an AMD Athlon XP 2000+ PC with 512 MB
RAM running Linux; the code was compiled with gcc 3.2.

Table 1. Simplification results for various res-
olutions.

% time εmax
A εmean

A εmax
L εmean

L

gravity
50 165 s 19.7958 0.9320 0.9041 0.0221
25 227 s 21.9034 2.2026 1.1491 0.0682
10 269 s 36.2294 3.6761 5.6567 0.1977

bluntfin
50 316 s 8.8754 0.1342 8.3856 0.2438
25 431 s 12.8705 0.2554 11.1031 0.4550
10 502 s 20.6755 0.4560 15.7483 0.8389

pipe
50 13 s 6.4064 0.3291 6.7925 0.3617
25 18 s 22.6138 0.5481 27.8060 1.0679
10 21 s 67.2400 1.0346 81.3354 2.5356

Choosing suitable weights for the error components is
inherently difficult and data-dependent. Our results reveal
thatEFL

is the most effective error component, and can pro-
duce reasonable results even if used alone. The shape con-
trol error componentsEC andEV are always helpful, with
moderately lower weights. Finally, the effect ofEFA

and
ED depends on the model and their use requires some ex-
perimentation. Table 2 presents some of our results for the
gravity , bluntfin andpipe models.

6 Conclusions and Further Work

We presented a robust method, based on half-edge col-
lapses, for the simplification of vector fields defined over
tetrahedral meshes. We proposed efficient techniques for
estimating the various errors during simplification, and ef-
fective strategies for treating the field boundary and critical

points in order to obtain high quality results. Finally, we
constructed a simple measuring tool in order to quantify the
actual error incurred by our simplification algorithm. Our
results manifest that our algorithm can successfully sim-
plify complex vector fields.

Our current work can be extended toward several direc-
tions. Initially we would like to generalize the edge col-
lapses and select the resulting vertex position and field value
so as to minimize the distortion of the field. Several such al-
gorithms are already available for surface meshes, but they
have not been applied to tetrahedral meshes, either with
scalar or with vector fields associated.

Moreover, several fields used in scientific applications
have multiple quantities sampled at each vertex, both scalar
and vector. A simplification algorithm that would try to
minimize the simplification error with respect to all their
components simultaneously would be beneficial.

Finally, more robust treatment of the field topology
would be needed in order to apply our simplification algo-
rithm to more complex vector fields; techniques similar to
the ones referred to in Section 3.4 should be incorporated in
our algorithm.
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Figure 5. The gravity field, original and simplified at 50%, 25% and 10%.

Figure 6. The bluntfin model, original and simplified at 50%, 25% and 10%.

Figure 7. The pipe model, original and simplified at 50%, 25% and 10%.


