
Volume xx(200y), Number z, pp. 1–9

Progressive Hulls for Intersection Applications

Nikos Platis and Theoharis Theoharis

Department of Informatics & Telecommunications, University of Athens,
Panepistemiopolis, 157 84 Ilissia, Greece
{nplatis|theotheo}@di.uoa.gr

Abstract
Progressive meshes are an established tool for triangle mesh simplification. By suitably adapting the simplifi-
cation process, progressive hulls can be generated which enclose the original mesh in gradually simpler, nested
meshes. We couple progressive hulls with a selective refinement framework and use them in applications involving
intersection queries on the mesh. We demonstrate that selectively refinable progressive hulls considerably speed
up intersection queries by efficiently locating intersection points on the mesh. Concerning the progressive hull
construction, we propose a new formula for assigning edge collapse priorities that significantly accelerates the
simplification process, and enhance the existing algorithmwith several conditions aimed at producing higher
quality hulls. Using progressive hulls has the added advantage that they can be used instead of the enclosed object
when a lower resolution of display can be tolerated, thus speeding up the rendering process.

Keywords: surface simplification, progressive mesh, bounding volume, hull, intersection test, ray tracing, colli-
sion detection.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation,
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling, I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism.

1. Introduction

Hulls or bounding volumes of 3D models are used frequently
in Computer Graphics, especially in applications involving
intersection queries such as ray tracing and collision detec-
tion. Hierarchical bounding volumes, in particular, are es-
sential tools for accelerating such queries by successively
restricting the areas of potential intersection on the model.

Progressive hulls are hierarchical hulls of triangle meshes,
constructed by suitable adaptation of progressive meshes,a
mesh simplification technique based on edge collapses.

In this work, we couple progressive hulls with a selective
refinement framework and present an algorithm that exploits
this structure to considerably accelerate intersection queries
on a given mesh. Regarding the generation of progressive
hulls, we propose a new, efficient formula for assigning pri-
orities to edge collapses, which significantly speeds up the
simplification process; moreover, we enhance the original
construction with several conditions, in order to produce
higher quality hulls that enclose the original mesh tightly.

Owing to their good fit, the selectively refinable progressive
hulls can be reused, without additional overhead, in place
of the original models when the display resolution is suffi-
ciently small, thus further accelerating a graphics applica-
tion.

2. Related Work

Progressive meshesHoppe1 introduced a generic frame-
work for the simplification of manifold triangle meshes by
iterative edge collapses. The edge collapse operation con-
tracts an edge to a single vertex (Figure 1). Given an initial
detailed meshM̂, successive edge collapses produce a se-
quence of meshes with decreasing numbers of triangles, up
to a coarsebasemeshM0:

(M̂ = Mn)
ecoln−1
−→ . . .

ecol1−→ M1 ecol0−→ M0.

The inverse of the edge collapse operation is termed a
vertex split. Performing vertex splits on the base mesh, in

submitted to COMPUTER GRAPHICSForum(12/2002).

2 Platis, Theoharis / Progressive Hulls for Intersection Applications

edge
collapse

vertex
split

vd

frflvl vl

v
1

v
1

v
2

v
2

v
3

v
3

v
4

v
4

v
5 v

5

vr vr

vo

vs

Figure 1: Edge collapse / vertex split operations

reverse order to the corresponding edge collapses, recovers
the original mesh exactly:

M0 vsplit0−→ M1 vsplit1−→ . . .
vsplitn−1
−→ (Mn = M̂).

A progressive meshis a representation of̂M consisting of
the base meshM0 and the sequence{vspliti , i = 0,1, . . . ,n−
1} of vertex splits that produce the original mesh.

The progressive mesh construction can be adapted for
many purposes. The two issues that affect the resulting
progressive mesh are the order in which the edges are
collapsed and, for each collapse, the position of the new
vertex1, 2, 3, 4, 5, 6, 7.

Progressive meshes can also be extended to supportse-
lective refinement8, 9, 10, the ability to perform an arbitrary
vertex split without first performing all the splits preceding
it in the progressive mesh representation. In this way, detail
may be added only on specific parts of the mesh, as required
by the application.

Progressive hulls Recently Sander et al.11 presented an ap-
plication of progressive meshes for the generation of hullsof
closed manifold meshes.

Their reasoning is straightforward: the edge collapse op-
eration affects the mesh only locally, on the triangles at the
neighborhood of the collapsed edge; thus if, for each edge
collapse, the generated vertex is placed on the “outside” of
all these triangles, then the resulting mesh will completely
enclose the original mesh, forming an outer hull for it. The
hulls produced from the original mesh by this constrained
simplification are appropriately calledprogressive hulls.

Hierarchical bounding volumes The first hierarchical
structure used in the context of interference detection is
probably the Dobkin-Kirkpatrick hierarchy12. It concerns
only convex polyhedra, and determines the intersection of
two polyhedra by updating theirseparation distancewhile
traversing the hierarchy. This work is primarily of theoreti-
cal interest, as no practical results are presented.

Techniques utilizing hierarchical bounding volumes en-
close the original model in nested sets of “boxes” of various

shapes; their choice is a compromise between void space and
simplicity of the bounding volume with the aim of maximiz-
ing the speed of intersection tests. Spheres and AABBs have
been used for their simplicity, but hierarchies ofk-DOPs13

(polyhedra whose faces may only have predefined orienta-
tions) and OBBs14 (arbitrarily oriented rectangular boxes)
have proven most successful. These two methods are fo-
cused on collision detection between two (possibly moving)
objects and are able to process arbitrarypolygon soups. Both
construct binary trees of nested volumes with a top-down
approach: they start from the outer bounding volume that
comprises all triangles of the object, and subdivide it in finer
volumes enclosing fewer triangles, up to individual elements
of the original object. During queries, the tree structure helps
to quickly restrict the areas of potential intersection.

3. Progressive Hulls for Intersection Applications

3.1. Progressive hull construction

Terminology and basic formulae Given a vertexv, its star
is the set of triangles that share this vertex. The number of
triangles in the star of a vertex is called itsvalence. Thelink
of a vertexv is a polygonal line made up from the boundary
of its star, if all edges incident onv are removed. Similarly,
the star (resp. the link) of an edge is the union of the stars
(resp. the links) of its two endpoints. In Figure 1, the polyg-
onal line[vl ,v1, . . . ,vr , . . . ,v5] is the link of the edgevovd (on
the left) and of the vertexvs (on the right).

Also let Ti be a face on a triangle mesh, with vertices
Pi0(xi0,yi0,zi0), Pi1(xi1,yi1,zi1) andPi2(xi2,yi2,zi2) ordered
counter-clockwise. The equation of its supporting plane is

Πi(x,y,z) =

∣

∣

∣

∣

∣

∣

∣

∣

x y z 1
xi0 yi0 zi0 1
xi1 yi1 zi1 1
xi2 yi2 zi2 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0

which can be written more concisely as

Πi(x,y,z) = aix+biy+ciz+di = 0. (1)

An arbitrary pointP̄(x̄, ȳ, z̄) is on the “outside” of faceTi
iff Πi(x̄, ȳ, z̄) > 0. Additionally, the tetrahedron formed bȳP
and the three pointsPi0, Pi1, Pi2 has volume1

6Πi(x̄, ȳ, z̄).

3.1.1. Algorithm outline

Our algorithm for constructing progressive hulls follows the
greedy scheme of most other mesh simplification algorithms
based on iterative edge collapses:

1. For each edge of the mesh calculate a collapsepriority,
and sort the edges according to their priorities in a priority
queue. The priority of each edge collapse is a measure of
its impact on the mesh.

2. While there are more legal collapses in the queue and the
simplification target (in our case, a specific number of
faces) has not been reached,

submitted to COMPUTER GRAPHICSForum(12/2002).

Platis, Theoharis / Progressive Hulls for Intersection Applications 3

Figure 2: The volume enclosed between the star of an edge
and the star of the vertex resulting from its collapse.

a. Remove the edge collapse with highest priority from
the queue and apply it to the mesh.

b. Recalculate the priorities of all edge collapses affected
by the changes on the mesh and update their position
in the priority queue.

In contrast to k-DOPs and OBBTrees, our hierarchy is
constructed bottom-up, starting from the original model and
successively simplifying it to the base hull. Moreover, it does
not use bounding volumes of some predetermined shape, but
instead it is a hierarchy of hulls of decreasing complexity,
each enclosing the original mesh completely.

3.1.2. Computation of new vertex position

We begin by showing how the position of the vertex resulting
from an edge collapse is determined. Sander et al.11 outlined
this procedure in their paper.

Suppose that the star of an edge being collapsed contains
trianglesTi , i = 0,1, . . . ,n. We require that the resulting ver-
tex Ps(xs,ys,zs) be on the outside of all facesTi ; thus, using
the above notation, it must satisfy

Πi(xs,ys,zs) > 0 for all i = 0,1, . . . ,n. (2)

All these relations are linear onxs, ys andzs and so they nat-
urally form the constraints of a linear programming problem
by which the three unknowns (the position of the new vertex)
may be determined.

Seeking an appropriate objective function, we observe
that the sum

n

∑
i=0

Πi(xs,ys,zs) (3)

is (six times) the total volume enclosed between the star of
the collapsed edge and the star of the new vertex (Figure 2).
Thus, by positioning the vertex so as to minimize this vol-
ume, the resulting mesh will intuitively be fairly close to the
original one.

3.1.3. Calculation of edge collapse priorities

Candidate edge collapses are assigned a priority that de-
termines the order in which they are applied to the mesh.
We have investigated two different strategies for calculating
these priorities.

vd

vo

vs

Figure 3: After collapsing the edge vovd, the priorities of all
edges appearing on the right must be recomputed since they
depend on the affected faces of the star of vs.

• The first strategy is the one used in11. The position of the
vertex that would result from this collapse is calculated as
described above; the enclosed volume given by equation
(3) is used as the priority of the collapse, so that collapses
with lower enclosed volumes are performed first.
Unfortunately, owing to step (2.b.) of the simplification al-
gorithm of §3.1.1, several computed priorities are thrown
away in the course of the algorithm, being updated as a re-
sult of nearby collapses (see Figure 3). Given that the cal-
culations performed are rather expensive, as they involve
solving a linear programming problem for each candidate
edge collapse, a large amount of computation is wasted
with adverse effects on performance.

• The second strategy is our suggestion for a simpler for-
mula to determine a priority for each edge collapse. We
average the points on the link of the edge to get a “center”
Pc(xc,yc,zc) of its star, and sum the unsigned volumes of
the tetrahedra formed byPi0, Pi1, Pi2 andPc for all faces
Ti of the star. The resulting total volume is used as the
priority of the edge collapse.
This formula for assigning edge collapse priorities gave
good results in practice, while dramatically reducing sim-
plification times (see Section 4.1). Its success can be justi-
fied by noticing that the volume used as the priority of the
edge collapse is the total volume spanned by the star of
the edge, withPc to “close” it. This volume will be small
if the star is relatively planar or if its faces are relatively
small; collapsing such edges will likely have little impact
on the mesh and thus they should be given high priority.
It should be evident that, using this strategy for assign-
ing edge collapse priorities, the costly calculation of the
resulting vertex position is performed only when the col-
lapse is about to be applied to the mesh.

3.1.4. Enhancements to the simplification algorithm

Conditions on candidate edge collapsesWhen an edge is
considered for collapse, we must ensure that the mesh will
remain manifold after performing it. The link condition of15

is checked and violating edges are rejected immediately.

Candidate edges are also rejected if their valence is over

submitted to COMPUTER GRAPHICSForum(12/2002).

4 Platis, Theoharis / Progressive Hulls for Intersection Applications

some user-specified valuenmax. Vertices of high valence are
not desired in triangular meshes since they render poorly;
additionally in our algorithm they would complicate subse-
quent calculations by leading to linear programming prob-
lems with many constraints, which are inefficient to solve.

Conditions on the resulting vertex The position of the ver-
tex generated from an edge collapse is determined by the
optimization procedure of §3.1.2. Unfortunately, this pro-
cedure does not incorporate any measure of the quality of
the simplified mesh; thus the position of the new vertex may
create triangles of very low compactness (very thin and elon-
gated ones), which are not desirable since they cause render-
ing artefacts, or triangles whose normal direction changes
significantly after the edge collapse, which could lead to
creases or self-intersections on the mesh. Incorporating rel-
evant measures in the minimization problems would result
in quadratic problems, which we avoided for reasons of effi-
ciency. Instead, we introduce two additional tests after com-
puting the position of the new vertex but before accepting
the collapse.

The first test ensures that the compactness of the triangles
on the star of the collapsed edge will not decline consider-
ably after the collapse. We calculate the minimum compact-
nessce of the triangles at the star of the collapsed edgevovd
as well as the minimum compactnesscv of the triangles at
the star of the new vertexvs, and allow the collapse only if
cv/ce > r wherer is a user-specified tolerance value.

The second test rejects collapses that lead to significant
changes in the orientation of normals of the affected trian-
gles. For each triangle at the star of the new vertex, we calcu-
late the deviation of its normal before and after the collapse;
if it is greater than a user-specified maximum deviationθ
then we reject the collapse. The angleθ must be in the range
[0,π/2] in order to avoid creases on the mesh.

These two tests (as well as the valence test above) were
previously proposed by Guéziec3 in the context of his sim-
plification method based on edge collapses, but, to our
knowledge, they were not applied to progressive hulls.

Priority queue Most other authors have used a priority
queue, typically implemented as a binary heap, to sort candi-
date edge collapses. We experimented with a red-black tree
instead, which performed faster. All the basic operations of
both these data structures16 areO(logn). However, the most
frequent operations in the simplification algorithm are up-
dates and deletions: in any iteration, two edges are removed
from the queue andO(n2

max) edges are updated. The better
internal sorting of the red-black tree contributes to faster run-
ning times.

3.2. Intersection Tests with Progressive Hulls

Our initial motivation for the work of this paper was the use
of progressive hulls for the efficient determination of inter-

sections between a triangle mesh and a geometric primitive
(ray, triangle, line segment). In this section we describe in
detail the relevant algorithm we developed.

3.2.1. Progressive Hull Intersection Algorithm

Our algorithm selectively refines the progressive hull of the
mesh in areas where intersections with the given primi-
tive are detected, until the original mesh is reached or no
more intersections are found. Selective refinement is real-
ized through suitable vertex splits, and, owing to their local-
ized effect on the mesh, the algorithm continuously restricts
the areas of the mesh where intersections may occur, up to
individual faces on the original meshMn.

Specifically, our algorithm maintains a list ofcandidate
faces, which will be tested for intersection with the given
primitive. This list is initially populated with all the faces of
the base meshM0.

Each face is removed from the list and tested for intersec-
tion with the primitive. The following three cases must be
distinguished:

1. The intersection test is negative. In this case the face is
simply disregarded.

2. The test is positive and the face belongs to the original
mesh; this is true if none of its vertices can be further
split in the progressive hull representation. In this case
the primitive intersects with the original mesh and the in-
tersection point(s) can be recorded.

3. The test is positive but the face belongs to some interme-
diate level of detail in the progressive hull, so it is pos-
sible to split some of its vertices. In this case for every
such vertex we perform the corresponding split (see next
paragraph), refining the hull in the vicinity of the face. We
also record all the faces affected by the splits. These faces
essentially belong to levels of finer detail in the progres-
sive hull; they must be (re)tested for intersection against
the primitive, and are thus appended to the list of candi-
date faces (unless they are already in the list).

The algorithm terminates when the list of candidate faces
becomes empty. The intersections between the original mesh
and the primitive, if any, will have been found in the second
case above, thanks to the refinement of the progressive hull
performed in the third case (Figure 4).

The above algorithm may fail to detect some “inner” in-
tersections between the primitive and the mesh, if the mesh
folds and the primitive lies completely below the hull in the
vicinity of the intersection points (Figure 5). Our experi-
ments have shown that such intersections occur rarely and
most “inner” intersections are detected correctly. In prac-
tice, most intersection applications are only interested in the
“outer” (extreme) intersections only, which are always de-
tected by our algorithm.

submitted to COMPUTER GRAPHICSForum(12/2002).

Platis, Theoharis / Progressive Hulls for Intersection Applications 5

Figure 4: A progressive hull of the balljoint model inter-
sected by a line segment. The 2,000 face base hull has been
locally refined around the intersection point.

Figure 5: The “inner” intersections of the line segment and
the screwdriver model (dotted) are not detected by our algo-
rithm. The line segment passes completely below the hull in
this area.

Performing selective refinement on a progressive mesh
Selective refinement of a progressive mesh assumes the abil-
ity to perform vertex splits in arbitrary order. Various ways to
accomplish this have been devised, each imposing different
dependencies for vertex splits8, 9, 10. For our application, the
link (and thus the star) of the vertex that will be split must
be identical to what it would be if all the preceding splits
were performed in order. Referring back to Figure 1, in or-
der to splitvs, all verticesvl , vr , v1, . . . ,v5 must exist on the
current mesh. Some of these vertices would be created by
splits earlier in the progressive mesh, and these splits must
be performed (recursively) prior to splittingvs.

This scheme is similar to the one of Xia and Varshney9,
and imposes dependencies between vertex splits as men-
tioned in their work. The selective refinement scheme of
Hoppe8 is less constrained, requiring only the neighboring
faces of fl and fr to exist on the mesh, and thus more effi-
cient; unfortunately, it cannot be used in the context of in-
tersection queries, since the star of selectively split vertices
may not be recovered exactly and consequently the enclos-
ing property of the progressive hull hierarchy may not be
retained.

Due to the vertex split dependencies, our hull hierarchy is
more involved than the simple binary trees ofk-DOPs and
OBBTrees, which incurs higher cost to update it during its
traversal; however it is also finer, allowing more localized
updates on the mesh.

3.2.2. Incremental updates of the hull

Intersection tests against a mesh are typically performed in
batches, for example with sets of rays or with the triangles
of another mesh. Therefore, coherence can be potentially ex-
ploited in order to accelerate the procedure.

To this end, we experimented with incremental updates
of the hull. For each test, we used the partially refined hull
that resulted from the previous test, applied the intersection
algorithm as above, and additionally coarsened the parts of
the hull that were no longer near the areas of intersection.
However, our tests showed that for our particular application
this technique actuallydeterioratedperformance. This can
be justified by noticing that to coarsen the mesh selectively,
we need to verify that candidate edge collapses are legal and
do not affect intersecting faces. This requires several valid-
ity checks8, 9 and makes this method inefficient in practice.
On the contrary, for any intersection test only small parts of
the mesh are refined and relatively few vertex splits are per-
formed; thus it is very efficient to invert them and restore the
base hull. This is the solution we used for our tests.

A variation of this scheme is used in17: selective coarsen-
ing is also avoided, but the partially refined hull is used for
several consecutive queries before reverting to the base hull.

4. Results

We tested our approach using progressive hulls for inter-
section tests with six models of varying numbers of trian-
gles and geometric complexity: a rocker arm model (20,088
faces), a screwdriver model (54,300 faces), a dinosaur model
(84,288 faces), a horse model (96,966 faces), an Igea head
model (134,342 faces) and a balljoint model (274,120 faces).
We constructed their progressive hulls at various levels of
detail and report our results in Section 4.1. We then per-
formed intersection tests, representative of real-world appli-
cations, using the constructed hulls, and present the outcome
of our tests in Section 4.2. All tests were performed on 800
MHz Pentium III PCs with 384 MB of RAM.

4.1. Progressive Hulls

Our simplification algorithm requires three user-defined pa-
rameters; we carried out most of our tests using the following
values: we imposed a maximum valence of 12 (most ver-
tices of triangle meshes have initial valence of 6 to 8), we
employed a tolerance of 0.8 for compactness deterioration,
so as to allow some decline in triangle shape, and we used a
moderately low maximum normal deviation ofπ/4.

submitted to COMPUTER GRAPHICSForum(12/2002).

6 Platis, Theoharis / Progressive Hulls for Intersection Applications

This choice of rather strict parameters generated very
good progressive hulls, which, for resolutions of up to 2,000
faces were visually very close to the original models (see
Figures 7, 9–12); however it also terminated the simplifica-
tion process relatively early, at around 20–70 faces in most
cases. We also experimented with looser parameters but the
differences were small: models with a lot of detail, such as
the dinosaur, gave somewhat better results, whereas smooth
models such as Igea gave marginally worse results. In any
case, such small differences in the progressive hulls have no
essential effect during the intersection queries, as will be ev-
idenced by the results in the next section.

Table 1 reports times needed to construct progressive hulls
of 2,000 faces for the six models, using the two strategies of
§3.1.3 for assigning edge collapse priorities. The new strat-
egy proposed in this paper reduces simplification times sig-
nificantly.

Table 1: Simplification times to construct progressive hulls
of 2,000 faces.

Model #faces 1st strategy 2nd strategy

Rocker Arm 20,088 54 s 8 s
Screwdriver 54,300 161 s 26 s
Dinosaur 84,288 245 s 37 s
Horse 96,966 298 s 45 s
Igea 134,342 478 s 69 s
Balljoint 274,120 1,006 s 158 s

Table 2 presents the percentage of void space between the
original models and the generated base hulls of 2,000 and
200 faces. This is an appropriate measure of the fit of these
hulls to the original models. More concrete measures used
to assess the quality of simplified meshes, such as distance
from the model, would probably be misleading in this con-
text since the construction of progressive hulls imposes se-
vere restrictions on the position of new vertices.

The void space was computed by subtracting the volume
of the original model from the volume of the hull. Volumes
were calculated by summing16Πi(0,0,0) for all trianglesTi
of the mesh, using double precision. Guéziec3 suggests more
accurate methods for this calculation, which were not ap-
plied for simplicity.

For 2,000 faces the hulls enclose the original models very
tightly, confirming the visual impression of Figures 7 and
9–12. In all cases, as expected, the first strategy for assign-
ing collapse priorities produces better results than the sec-
ond one (Figures 6 and 7), but the deterioration is acceptable
given the large decrease in simplification times and the small
impact on intersection test times, as will be shown next.

Table 2: Percentages of void space for hulls of 2,000 and
200 faces.

Model Hull size 1st strat. 2nd strat.

Rocker Arm 2000 2.87% 5.72%
200 28.90% 62.91%

Screwdriver 2000 2.21% 3.53%
200 20.70% 38.99%

Dinosaur 2000 15.08% 21.70%
200 164.84% 165.85%

Horse 2000 4.11% 6.86%
200 65.06% 65.60%

Igea 2000 2.04% 3.02%
200 12.06% 17.14%

Balljoint 2000 3.46% 5.32%
200 19.60% 31.16%

Figure 6: Screwdriver:Initial model (54,300 faces), hulls of
200 faces generated with the 1st and 2nd strategy respec-
tively.

4.2. Intersection Tests

To test our algorithm for intersection queries we chose to
implement intersection tests between line segments and the
constructed progressive hulls. This situation is representa-
tive of applications that may benefit from our algorithm and

submitted to COMPUTER GRAPHICSForum(12/2002).

Platis, Theoharis / Progressive Hulls for Intersection Applications 7

Figure 7: Igea:Initial model (134,342 faces), hulls of 2,000
faces generated with the 1st and 2nd strategy respectively.

demonstrates our concept in a straightforward manner. For
each of the six models we created 10,000 random line seg-
ments with ends on the sides of a box twice as large as their
minmax box and tested for intersections against the model.

Table 3 presents in detail our results for the horse model.
In all cases the minmax box of the base hull (or the model)
was used to quickly discard non-intersecting line segments.

From the data in this table we can deduce, first and fore-
most, that the use of progressive hulls can dramatically de-
crease the workload of intersection applications. Secondly,
we observe that the increase in void space for the hulls ob-
tained with the second strategy for assigning edge collapse
priorities does not cause significant increase in the time re-
quired for the intersection tests; this is a good indicationof
the usefulness of our new strategy.

Intersection tests with progressive hulls for the other mod-
els follow a similar pattern. Figure 8 presents intersection
times as a function of base hull size, using progressive hulls
generated with the second strategy. The height of each curve
depends on the number of line segments that intersected
each model, cf. Table 4. In general, hulls of 500–3000 faces
performed best, with small variation; they represent a good
trade-off between quality of fit, number of intersection tests
and number of vertex splits performed. It should be noted
that the performance of progressive hulls cannot be deter-
mined only based on these factors; it depends on the num-
ber of faces and the shape of the original model, and is cer-
tainly affected by the implementation efficiency of intersec-
tion tests and of updates to the mesh for vertex splits/edge
collapses.

Comparison with other bounding volume hierarchies
Comparisons between techniques that accelerate intersec-
tion queries is inherently difficult, since the type of testscan
strongly affect the performance of each method. To have
some measure for the performance of our algorithm, we
repeated the above tests usingk-DOPs, which are gener-
ally accepted as one of the most efficient bounding volume
hierarchies13.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 200 1000 2000 3000 4000 5000 10000

T
im

es
 fo

r
in

te
rs

ec
tio

n
te

st
s

(m
s)

Number of faces of hull

Rocker Arm
Screwdriver
Dinosaur
Horse
Igea
Balljoint

Figure 8: Times for intersection tests with progressive hulls
of various numbers of faces.

It should be noted that the original code ofk-DOPs imple-
ments intersection queries between two triangle meshes. We
adapted it to our test situation by changing the final triangle–
triangle intersection test with the same line segment–triangle
intersection test that we use in our algorithm18 with a perfor-
mance gain of 30%–40% compared to the unmodified code.
Moreover, we tried the whole family of 6-, 14-, 18- and 26-
DOPs, and 26-DOPs were faster in all cases, at the expense
of considerably higher preparation times. Table 4 summa-
rizes our results.

5. Conclusions and Further Work

An efficient framework for intersection queries against trian-
gle meshes using progressive hulls was presented. Through
selective refinement of the hull, our algorithm quickly lo-
calizes areas of potential intersection and can determine the
intersection points in less time than alternative methods.In
addition, we have streamlined the progressive hull construc-
tion algorithm with a new efficient strategy for assigning pri-
orities to edge collapses and with several enhancements for
higher quality results.

The progressive hull generation procedure could be fur-
ther improved and accelerated. Concerning our implemen-
tation, we have used the Simplex method to solve the lin-
ear programming problems, which is adequately efficient
given the small size of the problems. Seidel19 has proposed a
fast randomized algorithm for such optimization problems,
which could be used instead. On the other hand, the encour-
aging results of our new strategy for calculating collapse pri-
orities indicate that simpler strategies should be investigated;
even the optimization procedure for computing the resulting
vertex position could be replaced by a looser (but more effi-
cient) computation.

Our algorithm for intersection queries against progressive
hulls also has potential for improvement. We are currently
investigating the possibility to fully detect all “inner” inter-

submitted to COMPUTER GRAPHICSForum(12/2002).

8 Platis, Theoharis / Progressive Hulls for Intersection Applications

Table 3: Intersection tests for progressive hulls of the horse model. The times are total for 10,000 random line segments. The
numbers of intersection tests and performed splits are averaged for the 10,000 line segments. 1,119 line segments intersected
the model.

Base hull 1st strategy 2nd strategy
(#faces) time #tests #splits time #tests #splits

200 22.11 s 759 226 23.11 s 798 238
500 21.15 s 812 203 22.38 s 868 217

1,000 20.77 s 939 179 21.79 s 986 192
2,000 21.41 s 1,209 145 22.59 s 1,254 155
3,000 23.93 s 1,522 124 24.44 s 1,550 131
4,000 26.07 s 1,841 108 26.98 s 1,871 114
5,000 28.79 s 2,176 96 29.46 s 2,200 100

10,000 44.12 s 3,904 61 44.29 s 3,907 63

Horse (96,966) 362.63 s 35,751

Table 4: Intersection times for k-DOPs and progressive hulls (PH).

Model #inters. lines 6-DOPs 14-DOPs 18-DOPs 26-DOPs PH

Rocker Arm 2,044 45 s 24 s 21 s 18 s 14 s
Screwdriver 1,641 120 s 69 s 50 s 45 s 24 s
Dinosaur 955 190 s 73 s 68 s 49 s 14 s
Horse 1,119 216 s 79 s 76 s 52 s 21 s
Igea 1,808 298 s 107 s 68 s 45 s 35 s
Balljoint 1,545 707 s 258 s 204 s 137 s 41 s

section points when the surface folds; we feel that it will be
necessary to use the enclosed volume, as opposed to the hull
itself, to make this possible. We are also considering the use
of our algorithm in intersection queries between two meshes,
and any possible enhancements in this context. Exploitation
of spatial and temporal coherence for successive intersection
queries should be further considered, and techniques similar
to the ones presented in17 could be applied.

Acknowledgements

The authors would like to thank Vassilis Zissimopoulos for
helpful discussions on optimization, André Guéziec for pro-
viding the Technical Report of3, and James Klosowski for
the code ofk-DOPs. The authors would also like to thank
the anonymous reviewers for their constructive comments
and suggestions on the original version of this paper.

The horse model is from the Large Geometric
Models Archive at Georgia Institute of Technology
(http://www.cc.gatech.edu/projects/
large_models/), all other models were obtained from
Cyberware Inc. (http://www.cyberware.com/).

References

1. H. Hoppe, “Progressive Meshes”, inSIGGRAPH 96
Proceedings, pp. 99–108.

2. M. Garland and P. S. Heckbert, “Surface Simplification
Using Quadric Error Metrics”, inSIGGRAPH 97 Pro-
ceedings, pp. 209–216.

3. A. Guéziec, “Locally Toleranced Surface Simplifica-
tion”, IEEE Visualization and Computer Graphics,
5(2), pp. 168–189 (1999). Extended version as IBM
TR-97-8700.

4. L. Kobbelt, S. Campagna, and H.-P. Seidel, “A General
Framework for Mesh Decimation”, inProceedings of
Graphics Interface ’98, pp. 43–50.

5. P. Lindstrom and G. Turk, “Fast and Memory Efficient
Polygonal Simplification”, inProceedings of IEEE Vi-
sualization ’98, pp. 279–286.

6. M. Garland, “Multiresolution Modeling: Survey & Fu-
ture Opportunities”,State of the Art Report, Eurograph-
ics ’99, (1999).

7. E. Puppo and R. Scopigno, “Simplification, LOD and
Multiresolution — Principles and Applications”,Euro-
graphics ’97 Tutorial Notes, (1997).

submitted to COMPUTER GRAPHICSForum(12/2002).

Platis, Theoharis / Progressive Hulls for Intersection Applications 9

8. H. Hoppe, “View-Dependent Refinement of Progres-
sive Meshes”, inSIGGRAPH 97 Proceedings, pp. 189–
198.

9. J. C. Xia and A. Varshney, “Dynamic View-Dependent
Simplification for Polygonal Models”, inProceedings
of IEEE Visualization ’96, pp. 327–334.

10. L. D. Floriani, P. Magillo, and E. Puppo, “Building and
Traversing a Surface at Variable Resolution”, inPro-
ceedings of IEEE Visualization ’97, pp. 103–110.

11. P. V. Sander, X. Gu, S. J. Gortler, H. Hoppe, and J. Sny-
der, “Silhouette Clipping”, inSIGGRAPH 2000 Pro-
ceedings, pp. 327–334.

12. D. P. Dobkin and D. G. Kirkpatrick, “Determining the
Separation of Preprocessed Polyhedra — A Unified
Approach”, inAutomata, Languages and Programming
(Coventry 1990), no. 443 in Lecture Notes in Computer
Science, pp. 400–413, Springer-Verlag, (1990).

13. J. T. Klosowski, M. Held, J. S. Mitchell, H. Sowiz-
ral, and K. Zikan, “Efficient Collision Detection Us-
ing Bounding Volume Hierarchies of k-DOPs”,IEEE
Visualization and Computer Graphics, 4(1), pp. 21–36
(1998).

14. S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree:
A Hierarchical Structure for Rapid Interference Detec-
tion”, in SIGGRAPH 96 Proceedings, pp. 171–180.

15. T. K. Dey, H. Edelsbrunner, S. Guha, and D. V.
Nekhayev, “Topology Preserving Edge Contraction”,
Publications de l’Institut Mathématique (Beograd),
66(80), pp. 23–45 (1999).

16. T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Intro-
duction to Algorithms. MIT Press, first ed., (1990).

17. A. Guéziec, ““Meshsweeper”: Dynamic Point-to-
Polygonal-Mesh Distance and Applications”,IEEE Vi-
sualization and Computer Graphics, 7(1), pp. 47–61
(1999).

18. T. Möller and B. Trumbore, “Fast, Minimum Storage
Ray-Triangle Intersection”,Journal of Graphics Tools,
2(1), pp. 21–28 (1997).

19. R. Seidel, “Small-dimensional linear programming and
convex hulls made easy”,Discrete Computational Ge-
ometry, 6, pp. 423–434 (1991).

Figure 9: RockerArm:Initial model (20,088 faces), hulls of
2,000 and 200 faces generated with the 2nd strategy.

Figure 10: Balljoint:Initial model (274,120 faces), hulls of
2,000 and 200 faces generated with the 2nd strategy.

Figure 11: Horse:Initial model (96,966 faces), hulls of
2,000 and 200 faces generated with the 2nd strategy.

Figure 12: Dinosaur:Initial model (84,288 faces) in its 200-
face hull, hull of 2,000 faces generated with the 2nd strategy.

submitted to COMPUTER GRAPHICSForum(12/2002).

