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ABSTRACT
Transaction data about individuals are increasingly collected
to support a plethora of applications, spanning from market-
ing to biomedical studies. Publishing these data is required
by many organizations, but may result in privacy breaches,
if an attacker exploits potentially identifying information to
link individuals to their records in the published data. Algo-
rithms that prevent this threat by transforming transaction
data prior to their release have been proposed recently, but
incur significant information loss due to their inability to
accommodate a range of different privacy requirements that
data owners often have. To address this issue, we propose
a novel clustering-based framework to anonymizing trans-
action data. Our framework provides the basis for design-
ing algorithms that explore a larger solution space than ex-
isting methods, which allows publishing data with less in-
formation loss, and can satisfy a wide range of privacy re-
quirements. Based on this framework, we develop PCTA, a
generalization-based algorithm to construct anonymizations
that incur a small amount of information loss under many
different privacy requirements. Experiments with bench-
mark datasets verify that PCTA significantly outperforms
the current state-of-the-art algorithms in terms of data util-
ity, while being comparable in terms of efficiency.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity,
and protection; H.2.8 [Database Applications]: Data
Mining

General Terms
Algorithms, Privacy, Experimentation, Theory

Keywords
Anonymity, Privacy-preserving data mining, Transaction
data, Clustering, Database utility
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1. INTRODUCTION
Transaction datasets containing information about indi-

viduals’ behaviors or activities are commonly used in a
wide spectrum of applications, including recommendation
systems [6], e-commerce [38], and biomedical studies [22].
These datasets are comprised of records, called transactions,
which consist of a set of items, such as the products pur-
chased by a customer of a supermarket, or the diagnosis
codes contained in the electronic medical record of a patient.

Unfortunately, publishing transaction data may lead to
privacy breaches, even when explicit identifiers, such as in-
dividuals’ names or social security numbers, have been re-
moved prior data release. This occurs because potentially
identifying information (e.g., the diagnosis codes given to
an individual during a hospital visit [5]), can still be used
to link an individual to her transaction in the published
dataset. Consider, for example, releasing the dataset of Fig.
1(a), which records the items purchased by customers of
a supermarket, after removing customers’ names. This al-
lows an attacker, who knows that Anne has purchased the
items a, b, and c during her visit to a supermarket, to asso-
ciate Anne with her transaction, since no other transaction
in this dataset contains these 3 items together. This is a
major privacy threat to individual’s privacy, which needs
to be addressed to comply with data sharing regulations
(e.g., those that guide the sharing of health-related informa-
tion [1,2]) and legislation (e.g., the EU Directive on privacy
and electronic communications 1). Having associated Anne
with her transaction, for example, allows an attacker to infer
any other item purchased by her.

Several methods for anonymizing transaction data have
been proposed recently [5, 11, 21, 23, 32, 33, 37], but they all
produce solutions that incur a large amount of information
loss. This is because these methods consider a small num-
ber of possible transformations to anonymize data and are
unable to accommodate specific privacy requirements data
owners often have. For instance, the method introduced
in [14] assumes that an item in the original data, represented
as a leaf-level node in a generalization hierarchy such as the
one shown in Fig. 1(c), can only be replaced by a node ly-
ing in the path between itself and the root of the hierarchy,
and that an attacker has knowledge of all items associated
with an individual transaction. This may lead to produc-
ing data with unnecessarily low data utility, particularly
when attackers have knowledge of some of the items that
are associated with an individual, as is the case for transac-

1http://eur-lex.europa.eu/LexUriServ/LexUriServ.
do?uri=CELEX:32002L0058:EN:NOT



Name Purchased items
Anne a b c d e f
Greg a b e g
Jack a e
Tom b f g
Mary a b
Jim c f

(a)

Purchased items
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)
(a, b, c, d, e, f, g)

(b)

(a,b,c,d,e,f,g)

g(d,e,f)

fed

(a,b,c)

cba

(c)

Purchased items
(a, b, c) (d, e, f, g)
(a, b, c) (d, e, f, g)
(a, b, c) (d, e, f, g)
(a, b, c) (d, e, f, g)
(a, b, c)
(a, b, c) (d, e, f, g)

(d)

Purchased items
(a, b) c (d, e, f)
(a, b) (d, e, f) g
(a, b) (d, e, f)
(a, b) (d, e, f) g
(a, b)
c (d, e, f)

(e)

Figure 1: An example of: (a) original dataset, (b) output of Apriori Anonymization (AA), (c) item general-
ization hierarchy, (d) output of COAT, and (e) output of PCTA

tion data that are high-dimensional and sparse [21, 33, 37].
Note that these characteristics of transaction data make it
difficult to use a gamut of methods that have been devel-
oped for anonymizing relational data, such as those proposed
in [3,4,8,10,18,24,26,30].

To anonymize transaction data with less information loss,
we propose a novel clustering-based framework inspired from
agglomerative clustering [36]. The framework we propose is
independent of the way items are transformed and allows
flexible algorithms that can anonymize transactions with low
information loss under various privacy requirements to be
developed. We also design PCTA, an effective and efficient
algorithm that uses our clustering-based framework. PCTA
explores a large number of possible data transformations,
which helps produce data with less information loss, and ex-
ploits a lazy updating strategy, which is crucial to achieving
efficiency. Through an extensive experimental evaluation,
we verify that PCTA significantly outperforms the state-of-
the-art algorithms in terms of retaining data utility, while
also maintaining good scalability.

The rest of this paper is organized as follows. Section
2 provides the necessary background and introduces our
clustering-based framework. In Section 3, we present our
anonymization algorithm and, in Section 4, we evaluate our
approach against the state-of-the-art algorithms for trans-
action data anonymization. Next, Section 5 discusses how
PCTA can be extended to support utility and privacy re-
quirements that are common in real-world applications. Fi-
nally, Section 6 concludes the paper.

2. BACKGROUND
In this section, we provide the background that is neces-

sary to introduce our algorithm, given in Section 3. First,
we review transformation strategies for anonymizing trans-
action data, discuss measures that capture the utility loss
incurred by data transformation, and provide an overview of
transaction data anonymization principles and algorithms.
After that, we present a clustering-based formulation of the
transaction data anonymization problem, based on which
our algorithm is built.

2.1 Notation
Let I = {i1, ..., iM} be a finite set of literals, called items.

Any subset I ⊆ I is called an itemset over I, and is rep-
resented as the concatenation of the items it contains. An
itemset that has m items or equivalently a size of m, is
called an m-itemset, and its size is denoted with |I |. A
dataset D = {T1, ..., TN} is a set of N transactions. Each
transaction Tn, n = 1, ..., N , corresponds to a unique in-
dividual and is a pair Tn = 〈tid , I〉, where tid is a unique

identifier and I is the itemset. A transaction Tn = 〈tid , J〉
supports an itemset I over I, if I ⊆ J . Given an itemset
I over I in D, we use sup(I,D) to represent the number of
transactions Tn ∈ D that support I . This set is called the
set of supporting transactions of I in D.

a

b

c

d

e

f

g

(a,b)

(c)

(d,e,f)

(g)

         I

Figure 2: Mapping original to generalized items us-
ing global generalization.

2.2 Data transformation strategies
Constructing an anonymous transaction dataset is pos-

sible through techniques that transform items. One such
technique is perturbation [7, 9], which operates by adding
or deleting items from transactions with certain probabil-
ity [29]. While data produced by perturbation can be used
to build accurate data mining models, they cannot be an-
alyzed at a record level, which is crucial in several appli-
cations, such as biomedical analysis [9, 22]. On the other
hand, the techniques of suppression and generalization pro-
duce data that are not falsified. Both of these techniques
can be applied either globally, in which case all items of the
dataset undergo the same type of transformation, or locally,
when items of certain transactions of the dataset are trans-
formed. Suppression is an operation which removes items
from the dataset before they are anonymized [37]. Global
suppression is generally preferred, because it produces data
in which all items have the same support as in the original
dataset. This is important in building accurate data mining
models using the anonymized data [37].

Generalization transforms an original dataset D to an
anonymized dataset D̃ by mapping original items in D to
generalized items [21,33]. This technique often retains more
information than suppression, as suppression is a special case
of generalization where an original item is mapped to a gen-
eralized item that is not released [21]. As an example of
applying generalization, consider the items a and b in Fig.
1(a), which are mapped to a generalized item (a, b) in the
anonymized dataset of Fig. 1(e). The generalized item (a, b)



is interpreted as a, or b, or a and b and appears in the same
transactions as those that have these items in the data of
Fig. 1(a). This generalization is performed by a global gen-
eralization model, since a and b have been replaced by (a, b)
in all transactions of Fig. 1(e).

As it can be easily observed, global generalization is essen-
tially a mapping function from I to the space of generalized
items Ĩ, which is constructed by assigning each item i ∈ I
to a unique generalized item ĩ ∈ Ĩ that contains i. As an
example, consider Fig. 2 which illustrates the mapping of
original items, contained in the dataset of Fig. 1(a), to the
anonymized items of the dataset shown in Fig. 1(e). Based
on this mapping, the item a is mapped to the generalized
item (a, b), and c to the generalized item (c)2. Observe also
that the generalized item (a, b) appears in all the transac-
tions that contained a and/or b before the anonymization.

2.3 Information loss measures
There are numerous ways to anonymize a transaction

dataset, but the one that harms data utility the least, is
typically preferred. To capture data utility, many criteria
measure the information loss that is incurred by generaliza-
tion based on item generalization hierarchies [32, 35]. The
Normalized Certainty Penalty (NCP) measure, originally in-
troduced in [35], has been employed in [32, 33]. NCP is
expressed as the weighted average of the information loss
of all generalized items, which are penalized based on the
number of ascendants they have in the hierarchy. Other
measures are the multiple level mining loss (ML2), and dif-
ferential multiple level mining loss (dML2), which express
utility based on how well anonymized data supports fre-
quent itemset mining [32]. However, all the above measures
require the items to be generalized according to hierarchies.
A measure that can be used in the absence of hierarchies is
Utility Loss (UL) [21], which is defined below.

Definition 2.1 (Utility loss). The Utility Loss
(UL) for a generalized item ĩ is defined as

UL(̃i) =
2|̃i| − 1

2|I| − 1
× w(̃i)×

sup(̃i, D̃)

N

where |̃i| denotes the number of items in I that are mapped

to ĩ, and w : Ĩ → [0, 1] is a function assigning a weight
according to the perceived usefulness of ĩ in analysis. Based
on this definition, the Utility Loss (UL) for a generalized

dataset D̃ is defined as UL(D̃) =
∑

∀ĩ∈Ĩ UL(̃i).

UL quantifies information loss based on the size, weight
and support of generalized items, imposing a “large” penalty
on generalized items that are comprised of a large number of
“important” items that appear in many transactions. The
size is taken into account because ĩ can represent any of

the (2|̃i| − 1) non-empty subsets of the items mapped to
it. That is, the larger ĩ is, the less certain we are about
the set of original items represented by ĩ. The support of
ĩ also contributes to the loss of utility, as highly supported
items will affect more transactions, resulting more distor-
tion. The denominators (2|I| − 1) and N in Definition 2.1
are used for normalization purposes, so that the scores for
UL are in [0, 1]. Moreover, a weight w is used to penalize

2We note that we may skip notation () from a generalized
item when a single item is mapped to it.

generalizations exercised on more “important” items. This
weight is specified by the data owner based on the perceived
importance of the items to the subsequent analysis tasks.
We note, however, that w can also be computed based on
the semantic similarity of the items that are mapped to a
generalized item [16, 21]. For example, to compute the UL
score for ĩ = (a, b) in Fig. 1(e) assuming w(̃i) = 1, we have

UL(̃i) = 2
2−1

27−1
× 1× 5

6
≈ 0.02.

2.4 Principles and algorithms for transaction
data anonymization

In this section, we review the privacy principles that have
been proposed in the transaction anonymization literature
and explain why and how these principles offer privacy pro-
tection from the main threats in data publishing, namely
identity [33] and sensitive itemset disclosure [23, 37]. We
also survey algorithms that transform the original transac-
tion data to satisfy these principles.

Identity disclosure. A well-established and widely used
anonymization principle is k-anonymity, which was origi-
nally proposed for relational data [30,31], but has also been
employed to protect many other types of data, including se-
quential [28], mobility [12,13,17,34], and graph data [20]. He
et al. [14] applied a k-anonymity-based principle, called com-
plete k-anonymity, to transaction datasets, requiring each
transaction to be indistinguishable from at least k− 1 other
transactions, as explained below.

Definition 2.2 (Complete k-anonymity). Given a
parameter k, a dataset D satisfies complete k-anonymity
when sup(Ij ,D) ≥ k, for each itemset Ij of a transaction
Tj = 〈tidj , Ij〉 in D, with j ∈ [1, N ].

Satisfying complete k-anonymity guarantees protection
against identity disclosure, because it ensures that an at-
tacker cannot link an individual to less than k transactions of
the released dataset, even when this attacker knows all items
of a transaction. To enforce this principle, He et al. [14]
proposed a top-down algorithm, called Partition, that uses
a local generalization model. Partition starts by generaliz-
ing all items to the most generalized item lying in the root
of the hierarchy and then replaces this item with its imme-
diate descendants in the hierarchy if complete k-anonymity
is satisfied. In subsequent iterations, generalized items are
replaced with less general items (one at a time, starting with
the one that incurs the least amount of data distortion), as
long as complete k-anonymity is satisfied, or the generalized
items are replaced by leaf-level items in the hierarchy. As
mentioned in the Introduction, Partition has two shortcom-
ings that lead to producing data with excessive information
loss: (i) it cannot be readily extended to accommodate var-
ious privacy requirements that data owners may have, since
its effectiveness and efficiency depend on the use of complete
k-anonymity, and (ii) it explores a small number of possible
generalizations due to the hierarchy-based model it uses to
generalize data.

Terrovitis et al. [33] argued that it may be difficult for an
attacker to acquire knowledge about all items of a transac-
tion, in which case protecting all items would unnecessarily
incur excessive information loss. In response, the authors
proposed the km-anonymity principle, defined as follows.



Definition 2.3 (km-anonymity). Given parameters
k and m, a dataset D satisfies km-anonymity when
sup(I,D) ≥ k, for each m-itemset I in D.

A km-anonymous dataset offers protection from attackers
who know up to m items of an individual, because it ensures
that these items cannot be used to link this individual to less
than k transactions of the released dataset. Terrovitis et al.
[33] designed the Apriori algorithm to efficiently construct
km-anonymous datasets. Apriori operates in a bottom-
up fashion, beginning with 1-itemsets (items) and subse-
quently considering incrementally larger itemsets. In each
iteration, the proposed algorithm enforces km-anonymity us-
ing the full-subtree, global generalization model [15]. The
same authors have recently proposed two other algorithms
to enforce km-anonymity [32], namely Vertical Partitioning
Anonymization (VPA) and Local Recoding Anonymization
(LRA). These algorithms operate in the following way. VPA
first partitions the domain of items into sets and then gener-
alizes items in each set to achieve km-anonymity. Next, the
algorithm merges the generalized items to ensure that the
entire dataset satisfies km-anonymity. LRA, on the other
hand, partitions a dataset horizontally into sets in a way
that would result in low information loss when the data is
anonymized, and then generalizes items in each set sepa-
rately, using local generalization. These algorithms are more
flexible than Partition in the sense that they can be config-
ured to offer protection against attackers who do not know
all items of a transaction, but, contrary to our approach,
still perform hierarchy-based generalization.

Loukides et al. [21] proposed a privacy principle that im-
poses a lower bound of k to the support of combinations
of items that need to be protected from identity disclosure.
Different from previous works, the approach of [21] limits
the amount of allowable generalization for each item to en-
sure that the generalized dataset remains useful for specific
data analysis requirements. To satisfy this principle, the
authors of [21] proposed COAT, an algorithm that operates
in a greedy fashion and employs both generalization and
suppression. The choice of the items generalized by COAT
is governed by utility constraints that model data analysis
requirements and correspond to the most generalized item
that can replace a set of items. Thus, COAT allows con-
structing any generalized item that is not more general than
an owner-specified utility constraint. When such an item is
not found, COAT selectively suppresses a minimum num-
ber of items from the corresponding utility constraint to
ensure privacy. Our method is similar to COAT in that it
addresses the aforementioned limitations of the approaches
of [14,32,33], but it significantly outperforms COAT in terms
of retaining data utility due to the use of clustering-based
heuristics, as our experiments verify.

Sensitive itemset disclosure. Beyond identity disclosure
is the threat of sensitive itemset disclosure, in which an indi-
vidual is associated with an itemset that reveals some sensi-
tive information, e.g., purchased items an individual would
not be willing to be associated with. The afore-mentioned
principles do not guarantee preventing sensitive itemset dis-
closure, since a large number of transactions that have the
same generalized item can all contain the same sensitive
itemset. To guard against this type of inferences, several
approaches have been recently proposed. Ghinita et al. [11]
developed an approach that releases transactions in groups,

each of which contains public items in their original form
and a summary of the frequencies of the sensitive items,
while Cao et al. [5] introduced ρ-uncertainty, a privacy prin-
ciple that limits the probability of inferring any sensitive
itemset and a greedy algorithm to enforce it. The proposed
algorithm for ρ-uncertainty iteratively suppresses sensitive
items and then generalizes non-sensitive ones using the gen-
eralization model of [33].

Identity and sensitive itemset disclosure. Different
from [11] and [5], which provide no protection guarantees
against identity disclosure, the works of [37] and [23] are able
to prevent both identity and sensitive itemset disclosure.
In particular, Xu et al. [37] proposed (h, k, p)-coherence, a
privacy principle which treats public items similarly to km-
anonymity (the function of parameter p is the same as m
in km-anonymity) and additionally limits the probability of
inferring any sensitive item using a parameter h. More re-
cently, Loukides et al. [23] examined how to anonymize data
to ensure that owner-specified itemsets are sufficiently pro-
tected. The authors proposed the notion of PS-rules to effec-
tively capture privacy protection requirements and designed
a generalization-based anonymization algorithm. This algo-
rithm operates in a top-down fashion, starting with the most
generalized transaction dataset, and then gradually replaces
generalized items with less general ones, as long as the data
remain protected.

Our approach focuses on guarding against identity dis-
closure but can be easily extended to additionally prevent
sensitive itemset disclosure, as we will discuss in Section 5.

2.5 Achieving anonymity through clustering
In this section, we model the task of anonymizing trans-

action data as a clustering problem. The latter problem
requires assigning a label to each record of a dataset so that
the records that are similar, according to an objective func-
tion, are assigned the same label. A series of papers, such
as [4,19,24], have shown that anonymized relational datasets
can be constructed based on clustering. In these approaches,
records that incur low information loss when anonymized
end up in the same cluster, and each cluster needs to con-
tain at least k records to satisfy k-anonymity.

To anonymize a transaction dataset D, in this work, we
attempt to solve the following problem.

Problem 2.1. Construct a set of clusters C of generalized
items such that: (i) each cluster c ∈ C corresponds to a
unique generalized item, (ii) C satisfies the owner-specified

privacy constraints, and (iii) the anonymized version D̃ of
D, constructed based on C, incurs minimal Utility Loss.

We note that Problem 2.1 is fundamentally different from
the one considered in [4, 19, 24]. First, clusters are built
around generalized items, and not transactions. As a re-
sult, a cluster that represents a generalized item ĩ may be
associated with more than one transactions, since it is asso-
ciated with the supporting transactions of ĩ in D̃. Second,
instead of requiring all clusters to have at least k elements
for achieving k-anonymity, we require the entire anonymized
dataset D̃ to adhere to a set of specified privacy constraints
that can span clusters. A privacy constraint is modeled as
a set of potentially linkable items from I and needs to be
satisfied to thwart identity disclosure, as explained below.



Definition 2.4. A privacy constraint p = {i1, ..., ir} is a
set of potentially linkable items in I. Given a parameter k

of anonymity, p is satisfied in D̃ when sup(p, D̃) ≥ k.

Privacy constraints can be satisfied by using several mod-
els, such as complete k-anonymity [14] and km-anonymity
[33], as explained in [21]. For example, consider the privacy
constraint {a, d} (which translates to “at least k transac-
tions of the anonymized dataset should be associated with
a, or d, or a and d”) and that k = 4. This privacy re-
quirement is satisfied in the anonymized data of Fig. 1(d),
because the generalized item (a, b, c)∪ (d, e, f, g) to which a
and d are mapped, is supported by at least 4 transactions.
It is also worth noting that an attacker does not gain any
advantage by using subsets of p in linkage attacks, since,
for every p′ ⊆ p and anonymized dataset D̃, it holds that
sup(p′, D̃) ≥ sup(p, D̃).

The clustering-based model we propose aims to satisfy
privacy constraints by progressively merging clusters as in
hierarchical agglomerative clustering algorithms do [36]. As

one can observe, the support of a privacy constraint in D̃
will either increase or remain the same as more items from
D are mapped to the same generalized item ĩ ∈ D̃. This
implies that a clustering that satisfies the specified privacy
constraints will eventually be found by following a bottom-
up approach that iteratively merges clusters formed by the
items in D, for any k ∈ [2, N ]. This approach initially con-
siders each original item as a singleton cluster and then
iteratively merges singleton clusters (leading to the corre-
sponding item generalizations) until the privacy constraints
are met. Although there are alternative approaches, such
as divisive methods that split large clusters in a top-down
fashion, these approaches have been shown to incur more
information loss than the bottom-up methods [35]. Since
disparate item generalization decisions may incur a substan-
tially different amount of information loss, the entire clus-
tering process is driven by the UL measure, so that the two
clusters that lead to minimizing information loss are merged
at each step. Figures 3 and 4 illustrate this process through
an example.

Assume that the original dataset of Fig. 4(a) needs to be
anonymized to satisfy the privacy constraints p1 = {i1} and
p2 = {i5, i6} for k = 3. First, a set of singleton clusters are
constructed, each built around one of the (generalized) items
(i1) to (i7), so that the data of Fig. 4(a) are transformed as
shown in Fig. 4(b). Since the specified privacy constraints
are not satisfied in the dataset of Fig. 4(b), the current
(singleton) clusters are subsequently merged. Among the
different merging options, assume that merging the clusters
for (i1) and (i2) incurs the minimum amount of utility loss,
as measured by UL. This merging operation leads to a new
cluster for the generalized item (i1, i2), which is associated
with transactions T1 and T2. Note that the latter cluster will
always have a higher UL score than each of the clusters from
which it was constructed. Still, the dataset produced by this
clustering, shown in Fig. 4(c), does not satisfy the privacy
constraints, because (i1, i2) is associated with less than k
transactions. As a next step, the clusters for (i3) and (i4) are
merged to create the cluster (i3, i4) that has the lowest UL
score. This produces the dataset of Fig. 4(d). After addi-
tional cluster merging operations, the clusters (i1, i2, i3, i4),
(i5, i6), and (i7), are obtained and not extended any further,
as they correspond to the dataset of Fig. 4(e) which satisfies

the specified privacy constraints.
An important benefit of adopting our clustering-based

framework when designing anonymization algorithms is that
it is independent of generalization models and anonymiza-
tion requirements. This allows algorithms that exploit sev-
eral generalization and privacy models to be developed. In
terms of generalization models, the soft (overlapping) clus-
tering solution that is produced in the transactions-space by
our clustering-based model, leads to the generation of a cover
instead of a partition of the original transactions, thus al-
lowing each produced cluster to be anonymized differently.
This is important because it can lead to anonymizations
with significantly less information loss [32]. Furthermore,
the proposed model can be easily employed to anonymize
data that satisfies stringent privacy and utility constraints,
as we discuss in Section 5. In any case, we note that finding
the clustering that incurs the minimum information loss is
an NP-hard problem (the proof follows from [21]), and thus
one needs to resort to heuristics to tackle it.

3. PCTA ALGORITHM
Dealing with Problem 2.1 is possible by mapping origi-

nal items to generalized ones to construct a clustering and
then examining whether this clustering satisfies the speci-
fied privacy constraints. This is conceptually similar to how
Apriori [33] and Partition [14] algorithms work. However,
this strategy is likely to incur excessive information loss, be-
cause generalization is not “focused” on the items that are
potentially linkable and need to be protected. For this rea-
son, we opt for a different strategy that exploits the knowl-
edge of which items need to be protected by targeting items
contained in privacy constraints. Specifically, our strategy
considers the imposed privacy constraints one at a time, se-
lecting the privacy constraint p that is most likely to require
a small amount of generalization in order to be satisfied.
Then, it examines all possible cluster merging decisions that
correspond to items in p and applies the one that leads to
the minimum utility loss. The same process continues until
the privacy constraint is satisfied, at which point the next
non-satisfied privacy constraint is selected. By coupling this
strategy with a novel lazy cluster-updating heuristic, we de-
veloped the Privacy-constrained Clustering-based Transac-
tion Anonymization (PCTA) algorithm to anonymize trans-
action data with low utility loss. The pseudocode of PCTA
is provided in Algorithm 1.

The algorithm works as follows. In steps 1 and 2, we ini-
tialize D̃ to D and a priority queue PQ to the set containing
all the specified privacy constraints P . PQ orders the con-
straints with respect to their support in decreasing order and
implements the usual operations top(), which retrieves the
privacy constraint that corresponds to an itemset with the
maximum support in D̃ without deleting it from PQ, and
pop(), which deletes the privacy constraint with the maxi-
mum support from PQ. In steps 3 − 27, PCTA iteratively
merges clusters to increase the support of each privacy con-
straint in PQ to at least k, so that the constraint is satisfied
in D̃. More specifically, we assign the privacy constraint that
lies in the top of PQ to p (step 4) and update its items to
reflect the generalizations that have occurred in previous it-
erations of PCTA (steps 5−11). This lazy updating strategy
significantly improves the runtime cost of PCTA, as exper-
imentally shown in Section 4.3, since the generalized items
that are needed to update p are retrieved without scanning
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Figure 3: Data anonymization as a clustering problem.

tid Items

T1 i1 i2 i7
T2 i2 i7
T3 i3 i5
T4 i4 i6 i7
T5 i5 i7

(a)

tid Items

T1 (i1) (i2) (i7)
T2 (i2) (i7)
T3 (i3) (i5)
T4 (i4) (i6) (i7)
T5 (i5) (i7)

(b)

tid Items

T1 (i1, i2) (i7)
T2 (i1, i2) (i7)
T3 (i3) (i5)
T4 (i4) (i6) (i7)
T5 (i5) (i7)

(c)

tid Items

T1 (i1, i2) (i7)
T2 (i1, i2) (i7)
T3 (i3, i4) (i5)
T4 (i3, i4) (i6) (i7)
T5 (i5) (i7)

(d)

tid Items

T1 (i1, i2, i3, i4) (i7)
T2 (i1, i2, i3, i4) (i7)
T3 (i1, i2, i3, i4) (i5, i6)
T4 (i1, i2, i3, i4) (i5, i6) (i7)
T5 (i5, i6) (i7)

(e)

Figure 4: Example of original data and its
different anonymizations for Fig. 3.

Algorithm 1 PCTA(D,P, k)

input: Dataset D, set of privacy constraints P, parameter k

output: Anonymous dataset D̃
1. D̃ ← D
2. PQ← privacy constraints of P
3. while (PQ 6= ∅)
4. p← PQ.top()
5. foreach (im ∈ p) //lazy updating strategy
6. if (H(im) 6= im)
7. ˜im ← H(im)
8. if ( ˜im ∈ p)
9. p← p\im
10. else

11. p← (p\im) ∪ ˜im
12. if (sup(p, D̃) ≥ k) //p is protected
13. PQ.pop()
14. else // apply generalization to protect p

15. while (sup(p, D̃) < k)
16. µ← 1 // maximum UL score
17. foreach (im ∈ p)
18. is ← arg min

∀ir∈H,ir 6=im
UL( (im, ir) )

19. if (UL( (im, is) ) < µ)
20. µ← UL( (im, is) )
21. σ ← {im, is}
22. ĩ← (im, is) // generalize σ (cluster merging)

23. update transactions of D̃ based on σ

24. p← (p ∪ {̃i})\σ
25. foreach (ir ∈ σ)
26. H(ir)← ĩ
27. PQ.pop()
28. return D̃

the anonymized dataset. This leads to considerably bet-
ter efficiency, particularly when many clusters need to be
merged, as is the case for large k values. For this purpose,
we use a hashtable H which has each item of D̃ as key and
the generalized item that corresponds to this item as value.
Then, we remove the privacy constraint p from PQ if its
support is at least k (step 13), in which case p is satisfied by
the current clustering solution, or we merge clusters to pro-
tect it (steps 11− 27), if p is still unprotected in D̃. In steps
16 − 21, we select the best cluster merging decision among

the clusters that affect the support of privacy constraint p.
This is achieved by identifying the item im that can be gen-
eralized with another item is such that the resultant item σ
incurs the least amount of information loss as measured by
UL. When the best pair of clusters is found, PCTA performs
the merging of the clusters by generalizing the items’ pair σ
to construct a new generalized item ĩ (step 22). Following

that, the affected transactions in D̃, the items in privacy
constraint p, and the hashtable H , are all updated to reflect
the new generalization (steps 23 − 26). Steps 15 − 26 are
repeated until the support of p becomes at least k, in which
case the current clustering satisfies the privacy constraint p.
Then, p is removed from PQ in step 27. Finally, the dataset
D̃ is returned in step 28.

Example 1. To illustrate the operation of the PCTA al-
gorithm, we apply it to the dataset of Fig. 1(a), assuming a
single privacy constraint p = {a, b, e, f} and k = 3. In steps

1 and 2, we initialize the anonymized dataset D̃ to the origi-
nal dataset D and add p to the priority queue PQ. Then, in
step 4, we retrieve p from PQ and subsequently (steps 5-11)
iterate over its items a, b, e and f , replacing each of them
with its value in the hashtable H. Since these items have not
been generalized before, their values in H contain the items
themselves and thus p is left intact. Next, in step 12, we
compute the support of p in D̃, and, since it is less than k,
we execute the loop beginning in step 15. In steps 16 to 21,
PCTA considers all possible cluster merging operations that
affect the privacy constraint p. Put in terms of item general-
ization decisions, the algorithm considers generalizing each
of the items {a, b, e, f} together with any other item in the
domain I and constructs the generalized item (d, f), which
incurs the minimum utility loss among all the examined gen-
eralized items. Next, the algorithm assigns (d, f) to ĩ, in step

22, and updates D̃, p and H (steps 23-26). Specifically, the
generalized item (d, f) replaces d, and the values of d and f
in H are updated. Since the support of p remains less than
k after generalizing d to (d, f), the loop of step 15 is exe-
cuted again. Now, PCTA considers a, b, e, and (d, f) for
generalization and constructs (a, b) that has the minimum
utility loss. While p is updated to (a, b)e(d, f), it still has



a support of less than k, and thus PCTA performs another
iteration of the loop of step 15. In the latter, p is updated
to {(a, b)(d, e, f)}, which has a support of 3. Thus, in step
27, p is removed from PQ and, in step 28, the anonymized
dataset of Fig. 1(e) is returned.
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Figure 5: Anonymizing the data of Fig. 1(a)

Cost analysis. Assuming that we have |P| privacy con-
straints and each of them has |p| items, PCTA takes
O(|P| × |p| × (N + |I|2)) time. This is because we need
O(|P| × log(|P|)) time to build PQ and O(|P| × |p| ×
(log(|I|)+N+ |I|2)) time for steps 3−27. More specifically,
the lazy updating strategy for the items of p in steps 5− 11
takes O(|p|× log(|I|)) time, the support computation of p in
step 12 takes O(|p| ×N) time, and the while loop in step 15
takes O(|p| × (|I| − 1) + (|p| − 1)× (|I| − 2) + . . .+1× 1) ≈
O(|p| × |I|2) time.

4. EXPERIMENTAL EVALUATION
In this section, we present extensive experiments to eval-

uate the ability of PCTA to produce anonymized data with
low information loss efficiently. Specifically, in Section 4.1
we discuss the experimental setup and provide information
about the datasets that we used. Then, Section 4.2, evalu-
ates our algorithm against Apriori [33] and COAT [21], in
terms of data utility, under several different privacy require-
ments. The results of this set of experiments confirm that
PCTA is able to retain much more data utility when com-
pared to other methods under all tested scenarios, as: (1)
it allows aggregate queries to be answered many times more
accurately (e.g., the average error for our method was up
to 26 and 6 times lower than that of Apriori and COAT
respectively), and (2) it incurs an amount of information
loss that is smaller by several orders of magnitude. In the
second set of experiments, presented in Section 4.3, we ex-
amine the runtime of our method. Our results indicate that
PCTA can produce anonymized data efficiently, as it scales
well with respect to both dataset size and k.

4.1 Experimental setup and data
To allow a direct comparison between the tested algo-

rithms, we configured all of them as in [21] and transformed
the anonymized datasets produced by them by replacing
each generalized item with the set of items it contains. We
note that, in this setup, COAT does not take the specified

utility constraints into account. We used a C++ imple-
mentation of Apriori provided by the authors of [33] and
implemented PCTA and COAT in C++. All methods ran
on an Intel 2.8GHz machine with 4GB of RAM and tested
using a common framework to measure data utility that is
built in Java.

We use the datasets BMS-WebView-1 and BMS-
WebView-2 (referred to as BMS1 and BMS2 respectively),
which contain click-stream data from two e-commerce sites
and have been used extensively in evaluating prior work
[11,21,33]. The first of these datasets is comprised of 59602
transactions, whose maximum and average size are 267 and
2.5, respectively, and it has a domain size of 497, while the
second one is comprised of 77512 transactions, whose max-
imum and average size are 161 and 5, respectively, and has
a domain size of 3340.

4.2 Data utility evaluation
We compare the amount of data utility preserved by all

methods by considering three utility measures: Average Rel-
ative Error (AvgRE ) measure [11,18], Utility Loss (UL) [21],
and Normalized Certainty Penalty (NCP) [35]. AvgRE cap-
tures the accuracy of query answering on anonymized data.
It is computed as the mean error of answering a workload of
queries and reflects the average number of transactions that
are retrieved incorrectly as part of query answers. To mea-
sure AvgRE, we constructed workloads comprised of 1000
COUNT() queries that retrieve the set of supporting trans-
actions of 5-itemsets, following the methodology of [11, 21].
The items participating in these queries were selected ran-
domly from the generalized items. Due to space limitations,
we only report a small subset of our experiments.

4.2.1 Anonymization using km-anonymity
We first assumed that combinations of up to 2 items need

to be protected. Thus, we set m = 2 and configured COAT
and PCTA by using all 2-itemsets as privacy constraints.
We evaluated data utility for various k values in [2, 50]. Fig.
6 illustrates the result with respect to AvgRE for BMS1
and Fig. 7 for BMS2. It can be seen that PCTA allows at
least 7 and 2 times (and up to 26 and 6 times) more accu-
rate query answering than Apriori and COAT respectively.
Furthermore, PCTA incurred significantly less information
loss to anonymize data, as shown in Fig. 8, which illus-
trates the UL scores for BMS1. These results verify that the
clustering-based search strategy that is employed by PCTA
is much more powerful than the space partitioning strategies
of Apriori and COAT.

Another observation is that the performance of both Apri-
ori and COAT in terms of preserving data utility deteriorates
much faster when k increases. This is mainly because these
algorithms create much larger groups of items than PCTA.
Specifically, Apriori considers fixed groups of items, whose
size depends on the fan-out of the hierarchy, and general-
izes together all items in each group, while COAT parti-
tions items based on the utility loss incurred by generalizing
a single item in a group.

Next, we assumed that combinations of 1 to 3 items need
to be protected using k = 5. Figure 9 illustrates the re-
sult with respect to AvgRE for BMS1. Observe that the
amount of information loss incurred by all methods de-
creases as a function of the number of items attackers are
expected to know, as more generalization is required to pre-
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serve privacy. However, PCTA outperformed Apriori and
COAT in all cases, permitting queries to be answered with
an error that is at least 8 times lower than that of Apri-
ori and 1.6 times lower than that of COAT. Similar results
were obtained when UL was used to capture data utility, as
can be seen in Figs. 10 and 11 for BMS1 and BMS2, re-
spectively. This demonstrates that protecting incrementally
larger itemsets as Apriori does, leads to significantly more
generalization compared to applying generalization to pro-
tect that items in each privacy constraint as in the PCTA
algorithm.

4.2.2 Anonymization using privacy constraints with
various characteristics

For this set of experiments, we constructed 5 sets of pri-
vacy constraints: PR1,...,PR5, comprised of 2-itemsets, and
we assumed that they need protection with k = 5. Each set
contains a certain percentage of randomly selected items,
which is 2% for PR1, 5% for PR2, 10% for PR3, 25% for
PR4, and 50% for PR5. The AvgRE scores for all methods,
when applied on BMS1, are shown in Fig. 12.

Since Apriori does not take into account the specified pri-
vacy constraints, its performance remains constant in this
experiment and is the worst among the tested algorithms.
PCTA outperformed both Apriori and COAT, achieving up
to 26 times lower AvgRE scores than those of Apriori and
2.5 times lower than those of COAT. Furthermore, the differ-
ence in AvgRE scores between PCTA and COAT increases
as policies become more stringent, which confirms the ben-
efit of our clustering-based strategy. The ability of PCTA
to preserve data utility better than Apriori and COAT was
also confirmed when UL was used, as shown in Fig. 13.

Next, we constructed 4 sets of privacy constraints
PR6,...,PR9 that are comprised of 1000 itemsets and need
to be protected with k = 5. A summary of these constraints
appears in Table 1. Figure 14 illustrates the NCP scores
for BMS1 and Fig. 15 the UL scores for BMS2. As can be
seen, PCTA consistently outperformed Apriori and COAT,
being able to incur less information loss. This again demon-
strates the ability of the clustering-based strategy employed
in PCTA to preserve data utility.



Privacy Constraints % of items % of 2-itemsets % of 3-itemsets % of 4-itemsets

PR6 33% 33% 33% 1%
PR7 30% 30% 30% 10%
PR8 25% 25% 25% 25%
PR9 16.7% 16.7% 16.7% 50%

Table 1: Summary of privacy constraints PR6, PR7, PR8 and PR9

4.2.3 Anonymization using complete k-anonymity
Last, we evaluated the effectiveness of the methods when

privacy is enforced through complete k-anonymity, which
requires protecting all items of a transaction. To achieve
this, we configured Apriori by setting m to the size of the
largest transaction of each dataset, and COAT and PCTA
by generating itemsets using the Pgen algorithm introduced
in [21]. As shown in Figs. 16 and 17, which present re-
sults for NCP and UL respectively, PCTA performs better
than Apriori and COAT, while Apriori and COAT incur
much information loss particularly when k is 10 or larger.
In fact, in these cases, these algorithms created generalized
items whose size was much larger than those constructed
by PCTA. This again shows that PCTA is more effective in
retaining information loss.

4.3 Runtime efficiency
We used BMS1 to evaluate the runtime efficiency of

PCTA, assuming that all 2-itemsets require protection. We
first tested scalability in terms of dataset size, using increas-
ingly larger subsets of BMS1. Since the size and items of
a transaction can affect the runtime of the algorithms, we
require the transactions of a subset to be contained in all
larger subsets. From Fig. 18 we can see that PCTA is more
efficient than Apriori, because it discards protected item-
sets, whereas Apriori considers all m-itemsets, as well as
their possible generalizations. This incurs more overhead,
particularly for large datasets. However, PCTA is less effi-
cient than COAT, as it explores a larger number of potential
generalizations.

Finally, we examined how our method scales with respect
to k and report the result in Fig. 19. Observe that Apriori
becomes slightly more efficient as k increases, while the run-
time of both PCTA and COAT follows an opposite trend.
This is because Apriori generalizes entire subtrees of items,
while both our method and COAT generalize one item (or
generalized item) at a time. Nevertheless, PCTA was found
to be up to 44% more efficient than COAT. This is at-
tributed to the lazy updating strategy that it adopts. Since
data needs to be scanned after each item generalization, the
savings from using this strategy increase as k gets larger, as
discussed in Section 3.
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5. EXTENSIONS
This section discusses how our approach can be extended

to deal with constraints that anonymized transactions need
to satisfy to be protected and useful in many real-world ap-
plications. The first class of constraints we consider are
related to privacy and impose the need to prevent the in-
ference of sensitive items. Items that are considered to be
sensitive are those that an individual would not want to be
associated with, such as diagnosis codes for HIV or alco-
hol/drug abuse [27], or purchased goods that may reveal an
individual’s political or religious beliefs [25]. As mentioned
in Section 2.4, an anonymized dataset may still be suscepti-
ble to sensitive itemset disclosure when it allows an attacker
to associate an individual with one or more sensitive items
in this dataset with a sufficiently large probability. To illus-
trate the threat of sensitive itemset disclosure, we provide
the following example.

Example 2. Consider the anonymized data shown in
Fig. 1(e) and assume that inferring whether an individual
has purchased the sensitive item g with a probability of at
least 1/2 needs to be prevented. Observe that the dataset
of Fig. 1(e) is not protected against sensitive itemset dis-
closure. This is because, knowing that Greg has purchased
items a and e, an attacker can infer that Greg purchased
g with a probability of 1/2, since there are 4 transactions
that are associated with a and e, and 2 of these transactions
contain the sensitive item g.

To tackle sensitive itemset disclosure, we assume a cat-
egorization of items in I into public and sensitive items,
which are contained in the sets Ip and Is respectively. Fol-
lowing [23, 37], we also assume that all potentially linkable
items are contained in Ip, In ∪ Is = I, and In ∩ Is = ∅.
Our approach can produce an anonymized dataset D̃ that
prevents sensitive itemset disclosure in this setting. This
requires ensuring that an attacker with the knowledge of
a privacy constraint p cannot associate an individual to a
transaction of D̃ that contains any item i ∈ p together with
any item is ∈ Is with a probability that exceeds h, where
h ∈ [0, 1] is a threshold specified by data owners. PCTA can
be extended to forestall sensitive itemset disclosure by con-
structing an anonymized dataset D̃ such that sup(p, D̃) ≥ k

and
sup(p∪is,D̃)

sup(p,D̃)
< h, for each privacy constraint p and item

is ∈ Is. This is possible through generalizing public items,
since this process can increase the number of transactions
that support p and sensitive items.

We also consider anonymizing data to support applica-
tions in which accurately computing the number of transac-
tions that are associated with specific items or itemsets is
required [22, 27]. In these applications, we cannot assume
that a generalized item can replace any set of items in I,
as most approaches do [14,33,37]. Consider, for example, a



marketing study that needs to determine exactly how many
individuals have purchased a or b. It easy to see that it is
difficult to conduct this study using the anonymized data of
Fig. 1(d), since the fact that a, b, and c are all mapped to
(a, b, c) makes it difficult to accurately compute the number
of transactions that support a or b.

To deal with these applications, we assume a clustering
CU that is specified by data owners according to the ap-
plications anonymized data are intended for, so that each
cluster in CU corresponds to the most generalized item that
can be contained in D̃. We also state that a cluster c ∈ C
is subsumed by a cluster c′ ∈ CU when, for each set of items
that is mapped to a generalized item ĩ (represented as c ∈ C),
this set of items is mapped to exactly one generalized item
ĩ′, represented as c′ ∈ CU . To satisfy the constraints ex-
pressed through CU , PCTA can be extended to produce an
anonymized dataset D̃, such that all clusters of C are sub-
sumed by clusters of CU .

Due to space limitations, we do not provide details on how
PCTA can be modified to accommodate the aforementioned
extensions.

6. CONCLUSIONS
Existing algorithms are unable to anonymize transaction

data under a range of different privacy requirements without
incurring excessive information loss, because they are built
upon the intrinsic properties of a single privacy model. To
address this issue, we introduced a novel formulation of the
problem of transaction data anonymization based on clus-
tering. The generality of this formulation allows designing
algorithms that are independent of generalization strategies
and privacy models and able to achieve high data utility and
privacy. We also proposed PCTA, a clustering-based algo-
rithm that can produce a significantly better result than the
state-of-the-art methods in terms of data utility and be ex-
tended to accommodate privacy and utility constraints that
are common in real-world applications.
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