
A System for Collecting, Managing, Analyzing and
Sharing Diverse, Multi-faceted Cultural Heritage

and Tourism Data
Kimon Deligiannis∗, Paraskevi Raftopoulou†, Christos Tryfonopoulos‡ and Costas Vassilakis§

Department of Informatics & Telecommunications,
University of the Peloponnese,

Tripolis, GR22100, Greece
Email: ∗deligiannis@uop.gr, †praftop@uop.gr, ‡trifon@uop.gr, §costas@uop.gr

Abstract—Today, social media platforms and other online
sources, like forums and review sites, offer an abundance of
cultural and touristic information that is voluntarily offered by
travelers; this information, although helpful for other travelers,
is typically fragmented and thus cannot be easily leveraged to ex-
ploitable knowledge by scientists and other tourism stakeholders.
In this work, we present a novel, integrated system for collecting,
managing, analyzing and sharing diverse, multi-faceted cultural
heritage/tourism-related data that aims to assist scientists in the
cultural heritage domain and tourism stakeholders to gather
and synthesize scattered information to exploitable knowledge.
The proposed system is tailored to the tourism domain needs,
and allows users with minimum effort and zero IT expertise
to (i) gather data from both structured and unstructured/semi-
structured online sources, (ii) leverage the data to knowledge via
appropriate analysis and visualization tools, and (iii) share the
collected data and gathered knowledge with other stakeholdres
via appropriate publish-subscribe mechanisms. The proposed
system is entirely open-source, designed upon big data tools and
principles for the data store, the analytics production, and the
knowledge sharing, and targets both performance and usability.

I. INTRODUCTION

In the Social Media (SM) and the Internet of Things (IoT)
era, the vast amounts of data that are produced every day and
the increasing number of people who register in SM platforms
turn out to be two interconnected notions [1], [2], [3], [4].
SM users are characterized as prosumers -i.e. producers and
consumers, since they not only benefit from utilizing the SM
services, but also produce and publish considerable amounts of
contents themselves. This content eventually becomes essential
for economy sector applications and for other institutional
operations in many scientific domains [5]. In the same manner,
SM users produce immense amounts of information in the
Cultural Heritage (CH) and tourism domains by generating
varying types of data, including photos, videos, text (reviews
or own stories), trajectories, geospatial data, URLs linking
items etc. A considerable amount of this data are posted on
social networks through the users’ IoT devices, predominantly
smartphones; the information is either posted on their own
profile page or on the page of a cultural venue [6]. This
aggregation of heterogeneous SM data flows composes an

information waterfall that can be defined by the famous 3Vs
[7] that represent the Volume, the Velocity and the Variety
of Big Data. Such an information plethora can be used in
various scientific and domain-specific applications in the CH
and tourism fields, considering that scientists in the Cultural
Informatics (CI) and the tourism domains can capture, manage
and analyze this data, with the view to synthesize and exploit
knowledge of great importance, which can then be used to
improve the way visitors experience cultural venues (e.g.
archaeological sites, museums, galleries and other cultural
foundations) [8], [9], [10]. However, as the magnitude and the
diversity of information increases, many stakeholders associ-
ated with the CI domain realize that the traditional information
management approaches prove to be inadequate [11]. This
does not only stem from the 3Vs that characterize cultural data,
but also from the diversity in the needs of data consumers, with
each category of consumers requiring a different viewpoint (or
facet) to the cultural database.

In this paper we present a novel, integrated system for
collecting, managing, analyzing and sharing diverse, multi-
faceted cultural heritage/tourism-related data. The proposed
system is able to gather data from both structured and
unstructured/semi-structured sources, and stores all data under
a homogenized scheme in a flexible, document-oriented store.
Users may access the data either on-request, through data
analytics and visualization services, or according to a publish-
subscribe scheme. The proposed system additionally includes
functionality for administrators to manage users and access
rights to the content. The system is designed to require low
or no IT expertise for deploying, populating and managing
data collections, facilitating and accelerating the relevant op-
erations.

The rest of the paper is structured as follows: section
II overviews related work on information systems providing
flexible document storage. Section III presents the proposed
system, while in section IV conclusions are drawn and future
work is outlined.



II. RELATED WORK

In recent years, with the emergence of big data, consid-
erable research efforts on information systems have been
conducted, aiming to improve and facilitate the harvesting,
storage, querying and analysis of vast quantities of structured,
semi-structured and unstructured information. However, the
idiosyncrasies and heterogeneity of data, technology evolu-
tion, scalability demand as well as evolving and fluid user
requirements necessitate pioneering and efficient scientific
approaches. In this section, we overview the related state-of-
the-art literature that offers solutions to the aforementioned
issues. This literature is classified into two parts; the first
part is related to the NoSQL (Not Only SQL) database sys-
tems philosophy, which is the new wave of high-performance
database systems, tailored to meet the expanding requirements
of modern big data applications. The second part focuses
on the most notable approaches in information systems that
employ the document-oriented NoSQL paradigm to realize the
data storage layer.

A. NoSQL database approaches

As the variety and the mass of data produced by web
applications, SM and the IoT grows every minute, the need
of novel database management techniques, that are able to
efficiently adapt and manage this data supporting the needs
of information systems rises too. The solutions presented in
[12], [13], [14], tackle this issue by putting aside the con-
ventional RDMS (Relational Database Management Systems)
SQL-based approaches and introducing the most widespread
NoSQL implementations. The NoSQL databases surveyed in
these works are classified in four main categories, namely
(i) Key-Value, (ii) Wide-Column, (iii) Document-oriented and
(iv) Graph-oriented databases), and each database class is
evaluated in terms of scalability, performance, consistency,
security, analytical capabilities and fault-tolerance, to con-
clude that each NoSQL database kind can handle different
operations better, whereas the database selection has to be
determined depending on the use case scenario and the or-
ganization/application needs. The authors in [15] state that
the column-based NoSQL DBMS are not able to support
online analysis operators (OLAP) and suggest a cube operator,
coined MC-CUBE (MapReduce Columnar CUBE), which
enables the construction of columnar NoSQL cubes once
collecting the data repositories. Two more column-oriented
NoSQL paradigms are presented in [16], [17]. The first work
proposes a method to put on conversion regulations in order
to migrate the SQL relational database content to a big
data column-based NoSQL database, while the second one
is associated with the comprehension, the arrangement, the
pros and cons of Clickhouse database and the way that this
column-oriented NoSQL database is able to replace Oracle
relational database when the workload augments. In [18], the
authors argue that database schemas need to be transformed
to meet ever-changing application needs. To tackle this issue,
they introduce a framework to detect alterations in a NoSQL

database schema and its data, supporting efficiently the con-
ceptual model evolution. The contribution in [19], examines
the way to implement a big data mart on a key-value based
NoSQL database, by applying a transformation procedure
from a multifaceted conceptual schema to a logical pattern,
employing three models that furnish key-value stores with an
SQL-like table structure overlay. In [20], the authors present
a data lake, designed to store multi-sourced structured and
unstructured data streams characterized by the 3Vs [7], that
is implemented utilizing the Hadoop Distributed File System
(HDFS) on the Hadoop Data Platform (HDP) and they apply
it on a car trading company use case scenario.

Regarding the management of geographical content derived
from the Web, which is a major application class involving
SM and IoT systems, the approaches in [21], [22] focus
on NoSQL DBMSs capable of storing and indexing spatio-
temporal and geospatial data respectively. The first solution,
named TrajMesa, is a route storage system which is founded
on GeoMesa and embraces an innovative warehousing mecha-
nism that minimizes the storage volume and is able to support
queries adeptly, while GeoYCSB constitutes a benchmarking
framework designed to measure the performance and scalabil-
ity between NoSQL databases, capable to manage geospatial
volumes of work.

The article in [23], deals with the necessity of decision-
making and knowledge extraction derived from data gener-
ated from social networking platforms, that leads to Extract-
Transform-Load (ETL) big data procedures development. The
presented solution, coined BigDimETL (Big Dimensional
ETL), has been assembled by exploiting MapReduce and
Hbase technologies and is closely aligned with ETL methods
adaptation. A prominent work concerning document-oriented
NoSQL databases is presented in [24]. In this work, the
authors, propose a database schema recommendation model
at the primary system evolution phase, according to the use
case scenario requirements and CRUD functionalities, that is
capable to assist developers in the context of a time consuming
process, such as designing a NoSQL database. Finally, as
noted in [25], a very challenging issue is the implementation
of composite queries on multiform data stores. To solve
this problem, the authors introduce an intermediate module
stated as VDS (Virtual Data Store), able to efficiently perform
complex queries on several heterogeneous data stores in Cloud
environments.

B. NoSQL information systems

Big data analytics have emerged as a significant research do-
main that necessitates a number of requirements from the data
storage layer, including performance, scalability, flexibility and
manageability. The need for scalable applications, capable to
support heavy workloads and retrieve data effectively has led
many systems to adopt document-based NoSQL databases
[26]. This section presents the state-of-the-art approaches that
make use of the NoSQL paradigm to realize the data storage
layer.



In the approaches cited in [27], [28], the authors focus
on knowledge representation through ontologies, a modeling
tool that is frequently used in the data integration research
domain. To this end, they follow a three-stages procedure by
stockpiling and homogenizing the data to a NoSQL database,
spawning local ontologies and finally, arranging the local
ontologies to produce a more generic one. In [29], a novel
method combining both a routing meta-model and a number of
innovative algebraic structures to provide a real-time analysis
of traffic jams in urban environments is demonstrated. The
approach takes advantage of space-time path data collected
using cloud computing and IoT technologies, while data
storage and management is achieved using a NoSQL database
and in Hadoop ecosystem respectively. The authors in [30]
introduce a Mongoose mediation module which is able to
model and manage real-time temporal data, obtained from
ANT+ sensors, as hierarchical MongoDB documents in a
Node.js environment. [31] present a framework aiming to
support and facilitate the analysis of semi-structured applica-
tion data stored in a NoSQL database, while delivering high
performance; the framework is applied in a cluster monitoring
and prediction use case. In a similar spirit, MyStore [32]
is an efficient, user-friendly and always-available dispersed
storage framework for handling large amounts of unstructured
data using NoSQL. CryptMDB [33], constitutes a cumulative
homomorphic asymmetric cryptosystem capable to encipher
users’ data maintained in a NoSQL database. The approach
in [34], puts forward a user-friendly tool performing model
transmutation from relational databases to NoSQL for auto-
matic data migrations.

The work in [3] demonstrates a data lake employing NoSQL
with a view to store, manage and bridge vast and diverse
data sets embracing heterogeneous information from multiple
SM sources. This approach is the most theoretically and
operationally similar work to the one presented in this paper;
however, the SM data extraction in this work is achieved
by retrieving information from the API directly or by using
third party applications in order to interact with the related
SM’s API, while data acquisition in our work is realized by
initiating properly adapted SM crawlers that are specifically
developed for this purpose; furthermore, the work in [3] was
designed for the needs of a specific project and applied to
a particular research study, while our work is an online, free,
zero-administration data lake that offers both fundamental and
advanced user and data/knowledge management functionality
in the cultural heritage and the tourism domains, able to
be customized for the requirements of any cultural heritage
or tourism-related project, and addresses all users, without
requiring any IT background/skills.

Large volumes of data can be also found in the e-learning
domain, especially in the pandemic era where students partic-
ipate in their courses remotely, producing thus a bigger digital
footprint. The e-learning infrastructure cited in [35], adopts
a hybrid database architecture encapsulating both RDBMS
for managing structured data and a NoSQL database for
manipulating unstructured data, while SCeLE [36] has been

restructured to use MongoDB (a NoSQL implementation)
instead of MySQL, to prove much faster.

The necessity of big data technologies has emerged in
the research field of EHR (Electronic Health Records) too.
The work in [37], introduces a searchable privacy-preserving
enciphering mechanism for encrypted personal health records
stored in MongoDB, while the article in [38], proposes a
system to manage the intensive analytic workloads by realizing
them in a NoSQL data store, where possible, while code in the
R language is used to perform any procedural computations.
Finally, the authors in [39], present an AQL (Archetype Query
Language) interpreter operating on top of the MongoDB
NoSQL query language, to efficiently perform storage and
retrieval operations in EHRs.

To the best of our knowledge, the present work constitutes
the first system that supports the collection, management,
analysis, and sharing diverse, multi-faceted data in the cultural
heritage and tourism domains, allowing users without an IT
background to deploy, populate, and manage their own data
ponds within minutes, alleviating the need to rely on expensive
custom-made solutions that require IT infrastructure and skills
to maintain.

III. SYSTEM ARCHITECTURE

Inspired from our previous work [40] and taking into
account the experience drawn from the literature surveyed in
the previous section, we decided to reconstruct the Hydria data
lake [40] applying cutting-edge NoSQL technologies, in order
to enhance the system’s performance and scalability. In this
chapter, we mainly emphasize on the Data Storage and Man-
agement unit, while we briefly outline the other components of
the Hydria data lake system. Broadly, the proposed data lake
has the ability to (i) gather/import structured, semi-structured
and unstructured data out of varying digital sources, (ii)
pile up user-generated survey records through appropriately
crafted questionnaires, (iii) maintain, handle and arrange the
captured data in separate data ponds (tailored data collections
used to conceptually group data within an individual cultural
heritage application), (iv) distribute entire data collections or
data collection portions to other users bearing similar interests
through a robust Pub/Sub sharing tool, (v) explore, filter and
examine stored data employing a powerful, yet easy-to-use
data visualization widget, which executes dynamic queries
in the background, with a view to present various graphical
representations of information, and (vi) administer system
users, defining and fine-tuning access rights on the data. Figure
1 depicts a high-level perspective of the system’s architecture,
the infrastructure’s distinct operational tiers, their functionality
and their arrangement and interoperation within the data lake
framework.

A. Data Storage and Management trier

The Data Storage and Management (DSM) unit is respon-
sible for manipulating the data collected and/or created by the
Data Harvesting module and the Input Collection Manager
respectively, and maintaining them it data ponds. The DSM



Fig. 1. System architecture separated in four layers (starting from the upper to
the lower level): i) the internet layer illustrates the heterogeneous data sources
on the web, ii) the second layer depicts the data harvesting mechanisms, iii)
the data storage and management layer constitutes system’s back-end and iv)
the UI level presents the various services offered to system users.

unit additionally supports agile and versatile methods for
designing, managing and broadening a data pond (or a data
pond template). In the system’s core lies MongoDB database,
which underpins the construction, modification, arrangement
and administration functionalities of each data pond, while it
also undertakes the four basic CRUD (Create, Read, Update,
and Delete) operations on persistent storage, i.e., it manages
the stockpiled data associated with a specific data pond at the
physical level.

According to the MongoDB terminology [41], a MongoDB
database constitutes a physical repository for collections. A
collection is an equivalent notion to a table in an RDBMS;
a Collection represents a set of Documents following the
BSON syntax, which is similar to the JSON syntax, although
BSON is an extended version of JSON format implemented by
MongoDB. A MongoDB Document can be considered as the
counterpart of a tuple (or row) in an RDBMS. Additionally,
a Document comprises a set of fields, where each field
is a name/value pair, similar to the concept of column of
an RDBMS. With respect to document indexing, MongoDB
spontaneously indexes all documents based on the _id key.
The _id key ensures a unique identification of each document
in a specific collection and can be correlated to the Primary
Key concept of an RDBMS. Moreover, MongoDB can create
indexes on embedded documents, or even create composite
indexes combining two or more keys to compose a particular
index. Taking advantage of embedded documents and linking,
MongoDB can easily relate records avoiding table joinning
operations employed in SQL philosophy, allowing thus for
considerable performance improvements, since table joining is
a costly operation. Finally, MongoDB provides the aggregation
pipeline framework, where several processing stages are orga-
nized into a pipeline, to efficiently compute the desired out-

TABLE I
MONGODB CONCEPTS CORRELATED WITH THE CORRESPONDING

RDBMS CONCEPTS.

MongoDB Terms RDBMS Terms
Database Database

Collection Table

BSON document Row (or tuple)

Field Column

Index Index

Embedded documents and linking Table joins

_id field Primary key

Aggregation pipeline framework Aggregation (e.g., Group By)

come. This aggregation framework uses the MapReduce robust
mechanism in the background of MongoDB; the aggregation
pipeline framework bears analogies to the aggregate functions
(e.g., count(), sum(), etc.) supported by SQL in RDBMSs,
where the values of multiple rows are grouped together as
input on certain criteria to produce the requested result. Table
I summarizes the aforementioned MongoDB terms, correlating
them to the respective terms in RDBMS terminology.

1) Data pond management: The proposed system offers
various services assisting its users with straightforward, intu-
itive point-and-click methods to create and edit the desired
data ponds. The creation process comprises determining a
unique title and providing a description for the new data pond;
subsequently, the data pond is stored into the system catalog
for datastores_index collection; thereupon, the user is
able to edit the newly created data pond defining several data
fields by specifying a textual passage as the field name, and
one of the available data types as the field type. Field types,
besides being used for data type checking, are also utilized in
the questionnaire construction process, where data is directly
sourced from users via dynamically constructed forms. Every
constructed type-independent data field of every data pond
is deposited in the datastore_fields collection, which
effectively realizes a system dictionary for data fields. For
example, as we can observe in figure 2, the document on
the left outlines a simple text type field containing just the
field’s textual description (field_name), its answering type
(field_type) and some meta-data elements (such as the
field’s unique id, its order in the data pond and its creation and
modification timestamps). The definition of multiple choice-
type fields requires that the above-presented field specifi-
cation document is complemented with an additional field
(mc_values), which holds an array of acceptable values that
can be used for this particular multiple choice field. Complex
data type fields can be also be defined, consisting of equivalent
content with the documents already stated, however, it addi-
tionally accomodates the number of times that this complex
data type field will occur (row_num) in the data pond and an
embedded document (sub_fields_mc_values), which,
in turn, encapsulates two arrays of multiple choice response
values and the number (starting from zero) of the respective
sub-field name that the array belongs to. Complex data fields



are described in detail in subsection III-A2. All three document
types are stored in the system dictionary for data fields (i.e.
the datastore_fields collection). In figure 2, we can ob-
serve notice that the left field definition documents on the left
and on the right share the same datastore_id value, which
means that both documents appear in the same data pond. It
is worth mentioning that based on the selected answering data
type, hidden panels or dialogs occur prompting the user to
enter proper material for the particular element (e.g., if the
chosen answering data type is of multiple choice category,
the user has to be presented with a list of appropriate values
or has to pick one of the available lists already stored in the
multiple_choice_lists collection). The available data
types that are currently supported by the proposed solution are
as follows: title (non-fillable field acting as a label to separate
data pond field sections), text, integer, decimal, date, multiple
choice, picture drawing, image file, and complex data types.

2) Complex data types: Complex data types are composite
and advanced data types that are made available to empower
the data pond design process, providing a methodical and
effective way of modeling groups of fields that occur more
than once within a data pond record, among separate records
of the same data pond, or even within records of distinct
data ponds. The document on the right side of figure 2
illustrates an example of a complex data type field, as stored
in the MongoDB database collection. The composite data type
defined in this example models the museum experience of
a group of four people (e.g., a family of four), comprising
four sub-fields (sub_field_names) of different data types
(sub_field_types). These sub-fields appear four times
and each of these appearances corresponds to an individual
occurrence of the field group; therefore, the four occurrences
allow for the accommodation of four distinct replies in a
questionnaire. A user may append a complex data type field on
a data pond, providing the specification of a recurring element
containing multiple fields. It should be pointed out that a
complex data type definition may be restructured at a later
time by editing, deleting and/or rearranging any individual
sub-field via an appropriate pop-up wizard; any modifications
on a complex data type are reflected within the relative data
pond. The creation and usage of complex data types offer:
(i) higher versatility in the formulation process of a data
pond, (ii) enhanced modeling of the input data, facilitating
information acquisition, storage and management and thus,
(iii) more eloquent and semantically richer query possibilities.

3) Reusing and sharing data shards: To guarantee informa-
tion consistency across data ponds, and improve data integrity
and validation of input, the proposed system provides users
with the ability to:

1) compose and share data pond templates by promoting
the reuse of all or collections of data pond fields (e.g.,
a survey of demographic information) among several
data ponds. To advocate template usage, an integrated
mechanism prompts users to consider using any of the
already stored templates once she edits a new data pond
for the first time. Constructing and editing a template is

Fig. 2. Example of BSON documents representing three data pond fields. The
document on the left denotes a field of a text-type answer, the document in the
middle shows a multiple choice-type field, while the document on the right
defines a complex type response field. All three documents are of different
structure and contain dissimilar content, however all of them are stored within
the datastore_fields collection.

roughly the same procedure as generating a data pond,
however, information about templates is stored in the
templates_index collection.

2) dynamically create, store, and edit drop-down lists
of elements. Constructing a new drop-down list re-
quires defining a unique list label and specifying the
list elements. Thereafter, the list is stored in the
multiple_choice_lists collection and can be
imported in any data pond containing a multiple choice
field that conceptually corresponds to this drop-down
list.

4) Populating data ponds: Once a data pond has been
created, a user is able to populate it with data, employing
any of the available data acquisition services (described in
detail in III-B1) provided in this data lake context. For
instance, the following population methods may be used: (i)
initiation of automated data gathering crawlers, through the
Data Gathering Framework, which is capable of navigating the
web and popular social media platforms, identifying, gathering
and stockpiling within a data pond content of interest; (ii)
by employing the Input Collection Manager that provides: (a)
the construction of survey-style digital forms authorizing users
to manage data collection operations that concern electronic
data input of end-users into structured forms, (e.g., surveys,
end-user evaluations, museum experience records, etc.), and
(b) the automatic loading of CSV/XML/JSON formatted
datasets. An the system back-end, the MongoDB schemaless
database offers an elastic and flexible way to store data in
its collections. Practically, before storing the first document
within an individual data pond, the specific data pond is not
physically realized at storage level: only a description of the
fields that it would contain is stored in the proposed system’s
dictionaries. Subsequently, when the first document/record is
inserted, a new collection and its fields (name-value pairs)
are dynamically generated within MongoDB database; the
collection name inherits the unique data pond title stored in
the datastores_index collection, while each document
field name acquires the field name (which has been stored
in the datastore_fields collection) that corresponds
to this particular data pond through the datastore_id



field; additionally, the field is assigned a value from the
collected content that matches its data type. The advantages of
applying MongoDB in the back-end of our approach include
an intuitive, adaptable and versatile fashion of managing data
ponds, a straightforward way to scale up already stored and
loaded data ponds (e.g., after completing the data population
process, a user is able to redefine a particular data pond by
adding/editing/removing any number of data pond fields), as
well as fast performance and good scalability, with query
execution time remaining practically unaltered as workload
increases.

B. Further data lake components

In this subsection, the rest of the components showin in
figure 1, are described.

1) Data acquisition tier: Browsing the web, including
tourism-related sites (e.g. the Odysseus platform of the Greek
Ministry of Culture1), online encyclopedias, digital libraries,
portals and cultural govermental websites, large amounts of
information of interest in the CH domain and in the tourism
sector can be retrieved. Besides that, nowdays, large volumes
of data concerning the CH field and the tourism sector are pro-
duced and uploaded in popular SM platforms like Facebook,
TripAdvisor or Twitter. This information can be utilized in
numerous cultural and tourism-related applications, and there-
fore the capturing of this information constitutes an essential
task for many cultural and tourism-related foundations. To
support this need for information capturing in the domains of
culture and tourism, the proposed approach offers an efficient
data acquisition unit, that comprises two individual modules
as illustrated in the Data Acquisition Tier of figure 1.

• The Data Gathering Framework provides various web
scraping services allowing users to configure and launch
automated data acquisition tasks against widespread SM
platforms (currently Facebook and TripAdvisor crawlers
are available, while support for more SM platforms is
under development). At the heart of this module lies
the open source crawling framework Scrapy2, which
is responsible for scraping SM content. To initiate the
crawling mechanism, the appropriate web scraping spider
needs to be provided with the initial seed URLs; subse-
quently, the spider identifies the respective SM platform,
navigates in the HTML elements of the current page,
recognizes and extracts the targeted data (e.g., cultural
venues, PoIs, reviews). However, in their efforts to make
their content more interactive and improve user experi-
ence, SM platforms utilize to a great extent Javascript,
Ajax and dynamic content, making the crawling process
and data extraction process more tricky; to tackle this
issue, the Data Gathering Framework utilizes the Sele-
nium library3, which provides a web browsing method
that simulates human behaviour through a browser on

1http://odysseus.culture.gr/
2https://docs.scrapy.org/en/latest/intro/overview.html
3https://pypi.org/project/selenium/

a given website and allows the programmatic collection
of web page data. Furthermore, the Data Gathering
Framework involves a focused crawl service, utilizing
the ACHE crawling infrastructure4, tailored to operate
thematic crawls on the open web with the view to uncover
new resources that might hold information of interest
in the CH field and the tourism domain. The ACHE
crawler ranks URLs in the crawl frontier and classifies
the crawled pages as relevant or irrelevant using machine
learning techniques. It has to be noted that the Data
Gathering Framework includes provisions to respect user
privacy and ensure -to the greatest extent possible using
reasonable means- that no individual may be identifiable
through the collected data.

• The Input Collection Manager supports a variety of
services supplying users with suitable mechanisms to
(i) manage (in a stand-alone data ponds) questionnaire-
style digital forms tailored for cultural surveys, as well
as (ii) gather the associated survey electronic records
filled up by end-users, who have access on the particular
data pond (described in detail in User Management and
Admission Control service in III-B2); (iii) reuse entire or
segments of the questionnaires created through the Data
Pond Template Management service; and (iv) import/load
structured CSV/XML/JSON formatted datasets, via a ro-
bust document importing mechanism, that automatically
matches the columns of the file with the pre-defined
data pond fields and for each data item (commonly a
row in the CSV file or an element under the root of
the XML/JSON document) a new data pond record is
created and stored. Additionally, we have to note that
all of the above functionalities are native in our work
and are linked with the Data Storage and Management
service (described in detail in III-A).

2) User interface tier: As depicted in figure 1, the User
Interface layer consists of three modules related with the
system’s User Management and Admission Control, the Data
Analysis and Visualization and the Publish/Subscribe Collab-
oration services respectively.

• Regarding the User Management and Admission Control,
this module is responsible for administering the system’s
users by granting the appropriate rights and permissions,
defining thus access control on data ponds and the
records stockpiled within them. The users in the system’s
community are classified in the following categories: (i)
System administrators, who are granted with all privi-
leges and are capable to manage all data ponds and the
collected records, while they are allowed to administer
all user types and assign user roles in the data lake;
(ii) Power-users are broadly curators responsible for their
own data ponds (and the data stored within them). They
are supplied with the suitable permissions to compose
and manage new data ponds, establish data gathering
procedures (c.f. section III-B1); they are able to access,

4https://github.com/VIDA-NYU/ache



filter, investigate and visualize collected data, while they
may request from the system administrator to attach
certain end-users in the data ponds they possess, or even
cooperate with other power-users, who bear similar inter-
ests and wish to participate in a specific study by applying
the Publish/Subscribe tool; (iii) End-users are located at
the lowest level of the user management hierarchy, as they
are provided with fewer functionalities and capabilities
in the data lake ecosystem. The are able to contribute
in data collection tasks by creating/viewing/editing elec-
tronic records out of questionnaire-style forms in the data
ponds they are assigned to; they are allowed to apply
shallow analysis operations on their own contributed data;
however, they are neither able to manage data ponds, nor
view records created by other users across the same data
pond.

• The Data Analysis and Visualization service provides
a robust, point-and-click query and data handling tool
allowing users to explore, filter out and analyze multi-
ple fields of the stored data of each data pond, with-
out necessitating any MongoQL (MongoDB Query Lan-
guage) knowledge or any form of IT experience. Ad-
ditionally, this service supports data visualization by
exporting charts in miscellaneous forms such as his-
tograms, pie charts, (heat) maps, (stacked) bars/columns,
area/mekko/bubble charts and scatter plots. Exporting a
graph requires a procedure of three phases where the
user: (i) determines the chart type, (ii) selects the desired
dataset by designating a data pond and any number of its
fields, and (iii) establishes filtering conditions/restriction
on the specified dataset (if needed). It is worth mentioning
that the data lake environment assists users by offering
them online assistance with examples for the various data
analysis elements.

• Regarding the Publish/Subscribe Collaboration mech-
anism, this handy and user-friendly tool supports the
sharing of datasets (or dataset segments), the exploration
of the available data ponds, as well as the cooperation
between power-users within the data lake environment. A
power-user is able to use this functionality by applying
the subsequent two-step procedure: (i) initially, she has
to search for already stored data ponds that fulfill the
given keyword-based query; after picking out any of the
resulting data ponds, she is able to register a subscription
request to the possessor(s) of the chosen data pond(s),
seeking access permission on the data pond’s contents
(schema definition). The data pond owner can accept or
decline the subscription request; if the request is accepted,
the initial power-user can access the data pond’s contents;
(ii) afterwards, having access in the data pond’s schema,
the power user may choose any number of data pond
fields and send a follow-up subscription request to the
data pond owner(s) to access the selected data pond fields
at record level. In the same manner, the owner(s) of the
data pond(s) may accept or deny the request as is, or opt
to share only specific data pond field records, selectively

granting thus access to a subset of the fields initially
requested for.

Once both steps have been completed, the requesting power-
user has obtained access to view the data to which she has
subscribed, employ them alongside with her own data ponds
and/or export visualization graphs. Any newly introduced
records matching the subscription are incorporated in the
subscribed data pond, while the subscribed power-user will
be appropriately notified.

3) Implementation overview: Our data lake environment
has been entirely developed using open source software.
The Data Gathering Framework (shown in Data Acquisi-
tion Tier of figure 1) is implemented exploiting the LAMP
(Linux/Apache/MariaDB/PHP) solution stack for temporary
storage of the extracted data and was developed using Python
tools. The other built-in components were developed applying
the web application framework Laravel and the NoSQL DBMS
MongoDB as the back-end of our system’s infrastucture (in
figure 1, these components are surrounded by the solid green
line). To enhance system interactivity, many operations utilize
the JavaScript/JQuery/AJAX programming languages.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel, integrated sys-
tem for collecting, managing, analyzing and sharing diverse,
multi-faceted cultural heritage/tourism-related data. The pro-
posed system can gather data from both structured and
unstructured/semi-structured sources, and stores all data under
a homogenized scheme in a flexible, document-oriented store.
Users may access the data either on-request, through data
analytics and visualization services, or according to a publish-
subscribe scheme. The proposed system additionally includes
functionality for administrators to manage users and access
rights to the content. The system is designed to require low
or no IT expertise for deploying, populating and managing
data collections, facilitating and accelerating the relevant op-
erations.

In our future work, we aim to conduct extended performance
evaluation experiments to compare in detail the performance
cultural/tourism-related data lakes employing NoSQL DBMS,
such as MongoDB, and hybrid cultural/tourism-related data
lakes realizing warehousing techniques over RDBMSs. We
also plan to develop a module to supply the data lake en-
vironment with the ability to understand scripts utilizing the
proper NLP (Natural Language Processing) tools, with the
view to achieve sentiment analysis of the captured review texts
and underpin recommendations on touristic destinations and
points-of-interest for users.

V. ACKNOWLEDGMENT

This research has been co-financed by European Union
and Greek national funds through the Operational Pro-
gramme “Competitiveness, Entrepreneurship and Innovation”,
under the call RESEARCH—CREATE—INNOVATE (project
code: T1EDK - 03874)



REFERENCES

[1] N. A. Ghani, S. Hamid, I. A. T. Hashem, and E. Ahmed,
“Social media big data analytics: A survey,” Comput. Hum.
Behav., vol. 101, pp. 417–428, 2019. [Online]. Available: https:
//doi.org/10.1016/j.chb.2018.08.039

[2] S. B. Abkenar, M. H. Kashani, E. Mahdipour, and S. M.
Jameii, “Big data analytics meets social media: A systematic
review of techniques, open issues, and future directions,” Telematics
Informatics, vol. 57, p. 101517, 2021. [Online]. Available: https:
//doi.org/10.1016/j.tele.2020.101517

[3] H. Dabbèchi, N. Z. Haddar, H. Elghazel, and K. Haddar, “Nosql data
lake: A big data source from social media,” in Hybrid Intelligent
Systems - 20th International Conference on Hybrid Intelligent
Systems (HIS 2020), Virtual Event, India, December 14-16, 2020,
ser. Advances in Intelligent Systems and Computing, A. Abraham,
T. Hanne, O. Castillo, N. Gandhi, T. N. Rios, and T. Hong,
Eds., vol. 1375. Springer, 2020, pp. 93–102. [Online]. Available:
https://doi.org/10.1007/978-3-030-73050-5\ 10

[4] L. D. Valle and R. S. Kenett, “Social media big data integration: A new
approach based on calibration,” Expert Syst. Appl., vol. 111, pp. 76–90,
2018. [Online]. Available: https://doi.org/10.1016/j.eswa.2017.12.044

[5] G. Ritzer, P. Dean, and N. Jurgenson, “The coming of age of the
prosumer,” American behavioral scientist, vol. 56, no. 4, pp. 379–398,
2012.

[6] J. Pybus, “Social networks and cultural workers: Towards an archive for
the prosumer,” Journal of Cultural Economy, vol. 6, no. 2, pp. 137–152,
2013.

[7] O. Ormandjieva, M. Omidbakhsh, and S. Trudel, “Measuring the
3v’s of big data: A rigorous approach,” in Joint Proceedings of
the 30th International Workshop on Software Measurement and the
15th International Conference on Software Process and Product
Measurement (IWSM Mensura 2020), Mexico City, Mexico, October
29-30, 2020, ser. CEUR Workshop Proceedings, A. Abran and
Ö. Özcan-Top, Eds., vol. 2725. CEUR-WS.org, 2020. [Online].
Available: http://ceur-ws.org/Vol-2725/paper5.pdf

[8] V. Poulopoulos, C. Vassilakis, M. Wallace, A. Antoniou, and
G. Lepouras, “The effect of social media trending topics related
to cultural venues’ content,” in 13th International Workshop on
Semantic and Social Media Adaptation and Personalization, SMAP
2018, Zaragoza, Spain, September 6-7, 2018. IEEE, 2018, pp. 7–12.
[Online]. Available: https://doi.org/10.1109/SMAP.2018.8501878

[9] S. Bampatzia, A. Antoniou, G. Lepouras, C. Vassilakis, and
M. Wallace, “Using social media to stimulate history reflection
in cultural heritage,” in 11th International Workshop on Semantic
and Social Media Adaptation and Personalization, SMAP 2016,
Thessaloniki, Greece, October 20-21, 2016, I. Anagnostopoulos and
I. Paraskakis, Eds. IEEE, 2016, pp. 89–92. [Online]. Available:
https://doi.org/10.1109/SMAP.2016.7753390

[10] C. Vassilakis, V. Poulopoulos, M. Wallace, A. Antoniou, and
G. Lepouras, “Tripmentor project: Scope and challenges,” in
Proceedings of the Workshop on Cultural Informatics co-located
with the 14th International Workshop On Semantic And Social Media
Adaptation And Personalization, CI@SMAP 2019, Larnaca, Cyprus,
June 9, 2019, ser. CEUR Workshop Proceedings, A. Antoniou and
M. Wallace, Eds., vol. 2412. CEUR-WS.org, 2019. [Online]. Available:
http://ceur-ws.org/Vol-2412/paper6.pdf

[11] A. Alharthi, V. Krotov, and M. Bowman, “Addressing barriers to big
data,” Business Horizons, vol. 60, no. 3, pp. 285–292, 2017.

[12] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql database,”
in 2011 6th international conference on pervasive computing and
applications. IEEE, 2011, pp. 363–366.

[13] A. Oussous, F. Benjelloun, A. A. Lahcen, and S. Belfkih, “Nosql
databases for big data,” Int. J. Big Data Intell., vol. 4, no. 3, pp. 171–185,
2017. [Online]. Available: https://doi.org/10.1504/IJBDI.2017.10006121

[14] A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. N. Schiaffino,
“Persisting big-data: The nosql landscape,” Inf. Syst., vol. 63, pp. 1–23,
2017. [Online]. Available: https://doi.org/10.1016/j.is.2016.07.009

[15] K. Dehdouh, O. Boussaid, and F. Bentayeb, “Big data warehouse:
Building columnar nosql OLAP cubes,” Int. J. Decis. Support
Syst. Technol., vol. 12, no. 1, pp. 1–24, 2020. [Online]. Available:
https://doi.org/10.4018/IJDSST.2020010101

[16] R. Esbai, F. Elotmani, and F. Z. Belkadi, “Toward automatic generation
of column-oriented nosql databases in big data context,” Int. J. Online

Biomed. Eng., vol. 15, no. 9, pp. 4–16, 2019. [Online]. Available:
https://www.online-journals.org/index.php/i-joe/article/view/10433

[17] B. Imasheva, A. Nakispekov, A. Sidelkovskaya, and A. Sidelkovskiy,
“The practice of moving to big data on the case of the nosql
database, clickhouse,” in Optimization of Complex Systems: Theory,
Models, Algorithms and Applications, WCGO 2019, World Congress
on Global Optimization, Metz, France, 8-10 July, 2019, ser. Advances
in Intelligent Systems and Computing, H. A. L. Thi, H. M. Le, and
T. P. Dinh, Eds., vol. 991. Springer, 2019, pp. 820–828. [Online].
Available: https://doi.org/10.1007/978-3-030-21803-4\ 82

[18] P. Suárez-Otero, M. J. Mior, M. José Suárez-Cabal, and J. Tuya,
“Maintaining nosql database quality during conceptual model evolution,”
in 2020 IEEE International Conference on Big Data (Big Data), 2020,
pp. 2043–2048.

[19] A. Khalil and M. Belaı̈ssaoui, “New approach for implementing big
datamart using nosql key-value stores,” in 5th International Conference
on Cloud Computing and Artificial Intelligence: Technologies and
Applications, CloudTech 2020, Marrakesh, Morocco, November 24-26,
2020, M. Essaaidi, M. Zbakh, and A. Ouacha, Eds. IEEE, 2020, pp.
1–6. [Online]. Available: https://doi.org/10.1109/CloudTech49835.2020.
9365897

[20] R. Liu, H. Isah, and F. Zulkernine, “A big data lake for multilevel
streaming analytics,” in 2020 1st International Conference on Big Data
Analytics and Practices (IBDAP). IEEE, 2020, pp. 1–6.

[21] R. Li, H. He, R. Wang, S. Ruan, Y. Sui, J. Bao, and Y. Zheng,
“Trajmesa: A distributed nosql storage engine for big trajectory data,” in
36th IEEE International Conference on Data Engineering, ICDE 2020,
Dallas, TX, USA, April 20-24, 2020. IEEE, 2020, pp. 2002–2005.
[Online]. Available: https://doi.org/10.1109/ICDE48307.2020.00224

[22] S. Kim and Y. S. Kanwar, “Geoycsb: A benchmark framework for the
performance and scalability evaluation of nosql databases for geospatial
workloads,” in 2019 IEEE International Conference on Big Data (Big
Data), Los Angeles, CA, USA, December 9-12, 2019, C. Baru, J. Huan,
L. Khan, X. Hu, R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee,
and Y. F. Ye, Eds. IEEE, 2019, pp. 3666–3675. [Online]. Available:
https://doi.org/10.1109/BigData47090.2019.9005570

[23] H. Mallek, F. Ghozzi, O. Teste, and F. Gargouri, “Bigdimetl with
nosql database,” in Knowledge-Based and Intelligent Information
& Engineering Systems: Proceedings of the 22nd International
Conference KES-2018, Belgrade, Serbia, 3-5 September 2018, ser.
Procedia Computer Science, R. J. Howlett, L. C. Jain, Z. Popovic,
D. B. Popovic, S. N. Vukosavic, C. Toro, and Y. Hicks, Eds.,
vol. 126. Elsevier, 2018, pp. 798–807. [Online]. Available: https:
//doi.org/10.1016/j.procs.2018.08.014

[24] A. A. Imam, S. B. Basri, R. Ahmad, J. Watada, and M. T.
González-Aparicio, “Automatic schema suggestion model for nosql
document-stores databases,” J. Big Data, vol. 5, p. 46, 2018. [Online].
Available: https://doi.org/10.1186/s40537-018-0156-1

[25] R. Sellami and B. Defude, “Complex queries optimization and
evaluation over relational and nosql data stores in cloud environments,”
IEEE Trans. Big Data, vol. 4, no. 2, pp. 217–230, 2018. [Online].
Available: https://doi.org/10.1109/TBDATA.2017.2719054

[26] M. H. Gharanai, R. S. Gh, and A. A. Rashid, “In the digital
future: Revitalizing information management systems in afghan settings
through not only SQL (mongodb) technology,” in 10th International
Conference on Software, Knowledge, Information Management &
Applications, SKIMA 2016, Chengdu, China, December 15-17, 2016.
IEEE, 2016, pp. 45–48. [Online]. Available: https://doi.org/10.1109/
SKIMA.2016.7916195

[27] H. Abbes and F. Gargouri, “Big data integration: A mongodb database
and modular ontologies based approach,” in Knowledge-Based and
Intelligent Information & Engineering Systems: Proceedings of the 20th
International Conference KES-2016, York, UK, 5-7 September 2016,
ser. Procedia Computer Science, R. J. Howlett, L. C. Jain, B. Gabrys,
C. Toro, and C. P. Lim, Eds., vol. 96. Elsevier, 2016, pp. 446–455.
[Online]. Available: https://doi.org/10.1016/j.procs.2016.08.099

[28] ——, “Mongodb-based modular ontology building for big data
integration,” J. Data Semant., vol. 7, no. 1, pp. 1–27, 2018. [Online].
Available: https://doi.org/10.1007/s13740-017-0081-z

[29] L. Karim, A. Boulmakoul, and A. Lbath, “Real time analytics of
urban congestion trajectories on hadoop-mongodb cloud ecosystem,”
in Proceedings of the Second International Conference on Internet of
things and Cloud Computing, ICC 2017, Cambridge, United Kingdom,
March 22-23, 2017, H. Hamdan, D. E. Boubiche, H. Toral-Cruz,



S. Akleylek, and H. Mcheick, Eds. ACM, 2017, pp. 29:1–29:11.
[Online]. Available: https://doi.org/10.1145/3018896.3018923

[30] N. Q. Mehmood, R. Culmone, and L. Mostarda, “Modeling
temporal aspects of sensor data for mongodb nosql database,”
J. Big Data, vol. 4, p. 8, 2017. [Online]. Available: https:
//doi.org/10.1186/s40537-017-0068-5

[31] S. Hiriyannaiah, G. M. Siddesh, P. Anoop, and K. G. Srinivasa,
“Semi-structured data analysis and visualisation using nosql,” Int. J.
Big Data Intell., vol. 5, no. 3, pp. 133–142, 2018. [Online]. Available:
https://doi.org/10.1504/IJBDI.2018.10008726

[32] W. Jiang, L. Zhang, X. Liao, H. Jin, and Y. Peng, “A novel
clustered mongodb-based storage system for unstructured data with
high availability,” Computing, vol. 96, no. 6, pp. 455–478, 2014.
[Online]. Available: https://doi.org/10.1007/s00607-013-0355-8

[33] G. Xu, Y. Ren, H. Li, D. Liu, Y. Dai, and K. Yang, “Cryptmdb:
A practical encrypted mongodb over big data,” in IEEE International
Conference on Communications, ICC 2017, Paris, France, May
21-25, 2017. IEEE, 2017, pp. 1–6. [Online]. Available: https:
//doi.org/10.1109/ICC.2017.7997105

[34] T. Jia, X. Zhao, Z. Wang, D. Gong, and G. Ding, “Model transformation
and data migration from relational database to mongodb,” in 2016
IEEE International Congress on Big Data, San Francisco, CA, USA,
June 27 - July 2, 2016, C. Pu, G. C. Fox, and E. Damiani,
Eds. IEEE Computer Society, 2016, pp. 60–67. [Online]. Available:
https://doi.org/10.1109/BigDataCongress.2016.16

[35] M. P. Stevic, B. Milosavljevic, and B. R. Perisic, “Enhancing
the management of unstructured data in e-learning systems using
mongodb,” Program, vol. 49, no. 1, pp. 91–114, 2015. [Online].
Available: https://doi.org/10.1108/PROG-11-2013-0063

[36] A. Rahartomo, R. F. Aji, and Y. Ruldeviyani, “The application of big
data using mongodb: Case study with scele fasilkom UI forum data,” in
International Workshop on Big Data and Information Security, IWBIS
2016, Jakarta, Indonesia, October 18-19, 2016. IEEE, 2016, pp. 51–56.
[Online]. Available: https://doi.org/10.1109/IWBIS.2016.7872889

[37] L. Chen, N. Zhang, H. Sun, C. Chang, S. Yu, and K. R. Choo,
“Secure search for encrypted personal health records from big data
nosql databases in cloud,” Computing, vol. 102, no. 6, pp. 1521–1545,
2020. [Online]. Available: https://doi.org/10.1007/s00607-019-00762-z

[38] S. Saini, S. P. Singh, and R. Agarwal, “Healthcare analytics
with R and mongodb using social media,” Int. J. Adv. Intell.
Paradigms, vol. 18, no. 4, pp. 552–567, 2021. [Online]. Available:
https://doi.org/10.1504/IJAIP.2021.113788

[39] M. R. Naveira, R. Sánchez-de-Madariaga, J. B. Castro, L. C. Garcı́a,
G. V. González, S. Pérez, M. P. Carrasco, F. Martı́n-Sánchez, and
A. M. Carrero, “An archetype query language interpreter into mongodb:
Managing nosql standardized electronic health record extracts systems,”
J. Biomed. Informatics, vol. 101, p. 103339, 2020. [Online]. Available:
https://doi.org/10.1016/j.jbi.2019.103339

[40] K. Deligiannis, P. Raftopoulou, C. Tryfonopoulos, N. Platis, and
C. Vassilakis, “Hydria: An online data lake for multi-faceted analytics
in the cultural heritage domain,” Big Data Cogn. Comput., vol. 4, no. 2,
p. 7, 2020. [Online]. Available: https://doi.org/10.3390/bdcc4020007

[41] D. Hows, P. Membrey, E. Plugge, and T. Hawkins, “Introduction to
mongodb,” in The Definitive Guide to MongoDB. Springer, 2015, pp.
1–16.


