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Abstract. As the number of published scientific papers continuously
increases, the need to assess paper impact becomes more valuable than
ever. In this work, we focus on citation-based measures that try to esti-
mate the popularity (current impact) of an article. State-of-the-art meth-
ods in this category calculate estimates of popularity based on paper
citation data. However, with respect to recent publications, only limited
data of this type are available, rendering these measures prone to in-
accuracies. In this work, we present ArtSim, an approach that exploits
paper similarity, calculated using scholarly knowledge graphs, to better
estimate paper popularity for recently published papers. Our approach is
designed to be applied on top of existing popularity measures, to improve
their accuracy. We apply ArtSim on top of four well-known popularity
measures and demonstrate through experiments its potential in improv-
ing their popularity estimates.
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1 Introduction

With the growth rate of scientific articles continuously increasing [8], the reliable
assessment of their scientific impact is now more valuable than ever. As a result, a
variety of impact measures have been proposed in the literature, aiming to quan-
tify scientific impact at the article level. Such measures have various practical
applications: for instance, they can be used to rank the results of keyword-based
searches (e.g., [18]), facilitating literature exploration and reading prioritisation,
or to compare and monitor the impact of different articles, research projects,
institutions, or researchers.

Since scientific impact can be defined in many, distinct ways [3], the pro-
posed measures vary in terms of the approach they follow (e.g., citation-based,
altmetrics), as well as in the aspect of scientific impact they attempt to capture
(e.g., impact in academia, social media attention). In this work, we focus on
citation-based measures, that attempt to estimate the current impact of each
article, i.e., its current popularity or hype. Providing accurate estimations of
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article popularity is an open problem, as has been shown by a recent extensive
experimental evaluation [6]. Furthermore, popularity distinctly differs from the
overall (long-term) impact of an article that is usually captured by traditional
citation-based measures (e.g., citation count).

One important issue in estimating article popularity is to provide accurate
estimations for the most recently published articles. The estimations of most
popularity measures rely on the existing citation history of each article. How-
ever, since very limited citation history data are available for recent articles,
their impact estimation based on these data is prone to inaccuracies. Hence,
these measures fail to provide correct estimations for recent articles. To alleviate
this issue, in this work we introduce ArtSim, a new approach to assess article
popularity. Our approach does not only rely on each article’s historical data, but
also considers the history of older, similar papers, for which these data are more
complete. The intuition behind our method is that similar papers are likely to
follow a similar trajectory in terms of popularity. To quantify article similarity,
we exploit the corresponding author lists and the involved topics3. This informa-
tion is available in scholarly knowledge graphs, a large variety of which has been
made available in recent years (e.g., AMiner’s DBPL-based datasets [17], the
Open Research Knowledge Graph [5], the OpenAIRE Research Graph [9, 10].)

The real power of ArtSim comes from the fact that it can be applied on
top of any existing popularity measure to improve its accuracy. To demonstrate
this, we first apply ArtSim on top of the best performing popularity measures
(according to [6]) to produce a set of improved measures. Then, we examine
the achieved benefits (by replicating the experimental process in [6]). Our ex-
periments indicate that ArtSim effectively enhances the performance of common
measures in estimating article popularity.

2 Our approach

2.1 Background

Our proposed method aims at transforming popularity scores based on any pop-
ularity measure, in order to increase the accuracy of its estimations. To achieve
this, it attempts to improve the estimation for all recent articles by exploiting
path-based article similarities in scholarly knowledge graphs.

Knowledge graphs, also known as heterogeneous information networks [15],
are graphs that encode rich domain-specific information about various types of
entities, represented as nodes, and the relationships between them, represented
as edges. Figure 1 presents an example of such a knowledge graph, consist-
ing of nodes representing papers, authors and topics (i.e., three different node
types). Two types of (bidirectional) edges are present in this example network:
edges between authors and papers, denoted as Author - Paper (AP or PA, for
brevity), and edges between papers and topics, denoted as Paper - Topic (PT

3 Here we use similarity based on authors and topics as a proof of concept. However,
our approach can be generalized using any other definition of article similarity.
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Fig. 1: A scholarly knowledge graph including papers, authors and topics.

or TP). The former represent the authorship of papers, while the latter encode
the information that a particular paper is written on a particular topic.

Various semantics are implicitly encoded in the paths of knowledge graphs.
For example, in the graph of Figure 1, a path from an author node to another
one of the same type that involves an AP edge followed by a PT, a TP, and
a PA edge relates two authors that have published works in the same topic
(e.g., both Author1 and Author4 have papers about Topic1). In fact, all paths
that correspond to the same sequence of node and edge types encode latent,
“multi-hop” relationships having the same interpretation. In the literature, such
a sequence of node and edge types (e.g., the APTPA of the previous example)
is known as a metapath. Metapaths are useful for many graph analysis and
exploration applications. For example, in our approach, we use them to calculate
metapath-based similarities: the similarity between two nodes of the same type,
based on the semantics of a given metapath, can be captured by counting the
number of instances of this metapath connecting these nodes (e.g., [16, 20]).

2.2 ArtSim

Our proposed method, called ArtSim, can be applied on top of any popularity
measure to increase the accuracy of its estimations. As such, ArtSim takes the
scores calculated by any popularity measure as input, applies transformations
on them, and produces a new set of improved popularity scores. This process is
presented in Figure 2.

The transformations applied on popularity scores by ArtSim rely on the in-
tuition that similar articles are expected to share similar popularity dynamics.
To calculate the similarity between different papers, ArtSim relies on the Join-
Sim [20] similarity measure calculated on PAP and PTP metapaths. Evidently,
the similarity between papers is not uniquely defined, hence different metapaths
encode different similarity semantics. For example, while PAP metapaths define
paper similarity based on their common authors, PTP metapaths define paper
similarity based on their common topics. ArtSim uses the calculated similarity
scores to provide improved popularity estimates (scores), focusing in particular
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Fig. 2: Our proposed approach.

on recent papers that have a limited citation history. The calculation of ArtSim
scores is based on the following formula:

S(p) =

{
α ∗ SPAP (p) + β ∗ SPTP (p) + γ ∗ Sinitial(p), p.year ≥ tc − y
Sinitial(p), otherwise

where SPAP and SPTP are the average popularity scores of all the articles that
are similar to p, based on metapaths PAP and PTP respectively. Sinitial is the
popularity score of paper p, based on the original popularity measure and tc
denotes the current time. Finally, our method applies transformations on popu-
larity scores for those papers published in years, which range in the time span
[tc − y, tc], where y ≥ 0.

Note, that parameters α, β, γ ∈ [0, 1]. Furthermore, we set α, β, γ so that
α+ β + γ = 1. Varying these parameters in the range [0 − 1] has the following
effects: as α increases, article similarity is mostly calculated based on common
authors. As β increases, article similarity depends mainly on common topics. Fi-
nally, as γ approaches 1 the popularity scores remain identical to those calculated
by the initial popularity measure.

3 Evaluation

In this section, we discuss the experiments conducted to assess the effectiveness
of our method. Section 3.1 discusses the experimental setup of our evaluation
approach i.e., the datasets, methodology and popularity measures used, and Sec-
tion 3.2 showcases the improvements that ArtSim brings to popularity measures.

3.1 Setup

Datasets. For our experiments, we used the following datasets:

– DBLP Scholarly Knowledge Graph (DSKG) dataset. It contains data for
3, 079, 008 papers, 1, 766, 548 authors, 5, 079 venues and 3, 294 topics from
DBLP. It is based on AMiner’s citation network dataset [17] enriched with
topics from the CSO Ontology [13] using the CSO Classifier [12] on paper
abstracts.
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– DBLP Article Similarities (DBLP-ArtSim) dataset. It contains similarities
among articles in the previous network based on different metapaths. In
particular, we calculated paper similarities based on their author list us-
ing metapath Paper - Author - Paper and on common topics, captured
by metapath Paper - Topic - Paper. This dataset is openly available on
Zenodo4 under CC BY 4.0 license.

Methodology. To assess paper popularity we follow the experimental frame-
work proposed in [6], which is based on the evaluation of total orderings (rank-
ings) of papers based on their short-term future citations. As explained in the
referenced work, the number of citations a paper receives in the near future, is
a good a-posteriori indicator of its current popularity. Thus, the aforementioned
rankings can be used as a ground truth for experiments to evaluate the effective-
ness of measures in ordering papers based on their popularity. This approach is
also suitable for our needs, since an overall ordering of papers can be used as a
basis for the comparison of any pair of papers based on their relative impact.

Based on the above, we define a split time ts that splits our dataset in half,
into two equally sized sets. The first half, denoted as S(ts) contains papers pub-
lished before ts and is considered known to the examined popularity measures.
We also consider a future state of the network in the time ts + τ which we use to
construct the ground truth. In our case, set S(ts +τ) contains 30% more articles
than S(ts). We finally rank each paper in the future state of the network based
on the number of its citations (i.e., the citations it received in the time span from
ts to ts + τ). This ranked list acts as the ground truth and is used to evaluate
the effectiveness of popularity measures.

We measure the effectiveness of any approach compared to the ground truth
using the following two measures:

– Kendall’s τ [7], is a non-parametric measure for the similarity in the ordering
of two ranked lists, based on the number of concordantly ordered pairs of
items between them. Its values range from −1 to 1, with 1 denoting perfect
agreement, −1 denoting perfect inversion, and 0 denoting no correlation.

– Normalised Discounted Cumulative Gain at rank k (nDCG@k) is a mea-
sure of ranking quality using the graded relevance scale of documents in the
ranking list. It is a normalized version of the Discounted Cumulative Gain
(DCG) at rank k in the range [0, 1]. The value 1 corresponds to the ideal
DCG, achieved when the ranking perfectly agrees with the ground truth.

We use Kendall’s τ and nDCG@k to capture the overall, and top-k similarity
of the ranked lists to the ground truth, respectively.

Popularity measures. To evaluate our method, we chose the four overall best
performing popularity measures in terms of correlation in the DBLP dataset
for the scenario of popularity according to a recent experimental study [6]. The

4 https://doi.org/10.5281/zenodo.3778916

https://doi.org/10.5281/zenodo.3778916


6 S. Chatzopoulos et al.

Table 1: Parameter configuration for each popularity measure.
Method Configuration

ECM α = 0.2, γ = 0.4

RAM γ = 0.4

CR α = 0.4, τdir = 10

FR α = 0.5, β = 0.2, γ = 0.3, ρ = −0.42

optimal parameter settings per measure were selected after running each one
for various parameterisations and calculating the correlation of the ranked list
produced by each one to the ground truth ranking. Table 1 presents the selected
parameter setting per popularity measure. We briefly describe the intuition be-
hind each measure below:

– Retained Adjacency Matrix (RAM) [4] estimates popularity using a time-
aware adjacency matrix to capture the recency of cited papers. The param-
eter γ ∈ (0, 1) is used as a basis of an exponential function to scale down the
value of a citation link according to its age.

– Effective Contagion Matrix (ECM) [4] is an extension of RAM that also
considers the temporal order of citation chains apart from direct links. It
uses two parameters α, γ ∈ (0, 1) where α is used to adjust the weight of
citation chains based on their length and γ is the same as in RAM.

– CiteRank (CR) [19] measures popularity by simulating the behaviour of re-
searchers searching for new articles. It uses two parameters α ∈ (0, 1) and
τdir ∈ (0,∞) to model the traffic to a given paper. A paper is randomly se-
lected with an exponentially discounted probability according to its age with
τdir being the decay factor. Parameter α is the probability that a researcher
stops its search, with 1 − α being the probability that he continues with a
reference of the paper he just read.

– FutureRank (FR) [14] scores are calculated combining PageRank scores with
calculations on a bipartite graph with authors and papers, while also pro-
moting recently published articles with time-based weights. It uses param-
eters α, β, γ ∈ (0, 1) and ρ ∈ (−∞, 0); α is the coefficient of the PageRank
scores, β is the coefficient of the authorship scores and γ is the coefficient of
time-based weights which exponentially decrease based on the exponent ρ.

3.2 Effectiveness of our approach

Improvements in correlation. In this experiment, we examine the gains of
ArtSim in terms of Kendall’s τ correlation. For each examined popularity mea-
sure (ECM, RAM, CR and FR) we vary parameters α, β, γ of our method, as
well as parameter y, which sets the number of past years for which we consider
papers in the cold start phase. We visualise, in the form of heatmaps, the corre-
lation achieved for each method for different configurations when α, β ∈ [0, 0.6]
and y ∈ [1, 4] (Figure 3). Parameter γ is implied, since α+ β + γ = 1.
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(a) ECM

(b) RAM

(c) CR

(d) FR

Fig. 3: Heatmaps depicting the effectiveness of our approach for different param-
eters in terms of Kendall’s τ correlation for each popularity measure.
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Fig. 4: Effectiveness of our approach in terms of Kendall’s τ for the best param-
eterisation per year for each popularity measure.

In general, we observe that our approach achieves the maximum gains for
y ∈ {2, 3}. For y = 1, we see that for all methods, the scores have a small
deviation as expected, as our method adjusts the popularity scores of a small
fraction of the overall articles, i.e., only those published in the last year. The
heatmaps also validate that both scores based on similarity of authors and topics
are important, since the correlation observed decreases when both parameters α
and β approach zero.

Based on the experiments, ArtSim achieves the best correlation, τ = 0.4661
using the ECM method when {α = 0.3, β = 0.2, γ = 0.6, y = 3}. The best scores
for ArtSim using the other methods are τ = 0.4653 at {α = 0.3, β = 0.1, γ =
0.7, y = 3} for RAM, τ = 0.4012 at {α = 0.2, β = 0, γ = 0.8, y = 2} for CR, and
τ = 0.3830 at {α = 0.4, β = 0.2, γ = 0.4, y = 2} for FR.

We further examined the gains of ArtSim in terms of Kendall’s τ correlation
compared to the plain popularity measures. The best parameter configuration
for each method is selected for each year. The results are illustrated in Figure 4.
Overall, significant improvements in correlation are observed when ArtSim is
applied on the ECM and RAM measures. In particular, ECM and RAM are
improved by 8% for the best parameter configuration for y ∈ [2, 4]. As expected,
smaller gains for all methods are achieved for y = 1. In that case, as previously
mentioned, our approach affects the popularity score of the papers published
only in the last year, affecting only a small fraction of the overall papers.

Improvements in nDCG. In this experiment, we examine the effectiveness of
ArtSim in terms of nDCG@k for all considered popularity measures compared
to the ground truth. We performed two sets of experiments: (a) we measure
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Table 2: Effectiveness of our approach for y = 3 in terms of nDCG@k.
Small values of k Large values of k

5 50 500 400,000 500,000 600,000

ECM 0.8323 0.8634 0.8953 0.8780 0.8833 0.8884

ArtSim-ECM 0.8323 0.8634 0.8953 0.8837 0.8912 0.9003

RAM 0.8588 0.8521 0.8943 0.8774 0.8842 0.8881

ArtSim-RAM 0.8588 0.8521 0.8943 0.8836 0.8904 0.9008

CR 0.3530 0.5263 0.6060 0.7904 0.8149 0.8272

ArtSim-CR 0.3530 0.5263 0.6060 0.7983 0.8199 0.8307

FR 0.3403 0.5018 0.5526 0.7586 0.7934 0.8101

ArtSim-FR 0.3403 0.5018 0.5526 0.7731 0.7961 0.8152

the nDCG@k achieved by ArtSim, varying k, and (b) we examine how ArtSim

affects top-k results in two indicative keyword search scenarios.

Table 2 presents the nDCG@k values, per popularity measure, both when
plainly run, as well as when ArtSim is applied on them. In this experiment we
select y = 3, which produces the best correlation according to the previously
presented results. In particular, we separately examined ArtSim’s behaviour for
small and for large values of parameter k. In particular we examine nDCG@k
for k ∈ {5, 50, 500}, as well as for k ∈ {400.000, 500.000, 600.000}. Interestingly,
for small values of k, our approach performs equally to the initial popularity
measures, at its best configuration. This behaviour indicates that existing state-
of-the-art popularity measures accurately identify the top papers in terms of
popularity. Another apparent explanation is that the set of most popular papers,
at the global level, mainly includes those that already have a more extended
citation history, i.e., they have become known by the scientific community and
maintain their status. ArtSim’s performance gain becomes apparent for larger
values of k. In relative terms, our method improves upon the nDCG achieved
by the popularity measures, starting at the top 7% of the most popular papers
and beyond. In other words, our method does provide gains in terms of nDCG
for the large majority of papers, while maintaining the nDCG values achieved
for the overall most popular papers. Likely, these larger sets of top popular
papers also include recently published ones for which the popularity estimations
are improved by ArtSim. This is further supported by the observation that the
nDCG values achieved increase with k, i.e., the more recent papers are included,
the more noticeable ArtSim’s effect.

In our second set of experiments we illustrate that the performance gains,
which are observed at the global level only for large values of k, are not negligi-
ble in practical applications. For example, in a real scenario of literature explo-
ration, academic search engine users usually refine their searches using multiple
keywords and by applying filters (e.g., based on the venues of interest or the
publication years). Their intention is to reduce the number of papers they have
to examine, however even in this case usually at least hundreds of papers are con-
tained in the results. Hence, effective ranking is crucial to facilitate the reading
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(a) Expert Finding (b) Recommender Systems

Fig. 5: Effectiveness of our approach in terms of nDCG for different keyword
search scenarios with y = 3 and varying k.

prioritization. Furthermore, the resulting article lists usually contain only a small
subset of all the articles in a dataset. We do not expect to only find the overall
most popular papers in such subsets, owing to the different publication dynamics
in each subdomain (i.e., different research communities have different sized and
publish and/or cite at different speeds). Hence, in our second set of experiments
we measure the nDCG@k achieved by ArtSim for k ∈ {5, 10, 50, 100, 500} on the
results of two indicative keyword search scenarios.

In the first search scenario we used the query “expert finding”. This keyword
search resulted in a set of 549 articles. Figure 5a presents the nDCG values for
this search, per popularity measure, along with the gains of ArtSim for y = 3.
We observe that ArtSim improves the nDCG values for k = 50 and k = 100. In
our second scenario, we tried a conditioned query. Particularly, we used “recom-
mender systems” as the search keywords keeping only papers published in well-
known venues of data management and recommender systems, namely VLDB,
SIGMOD, TKDE, ICDE, EDBT, RecSym and ICDM. The result set includes 525
articles. Figure 5b presents the nDCG results. We observe that ArtSim boosts
nDCG scores for all measures, starting from the smallest value of k = 5. These
results indicate that in addition to improving the overall correlation, our ap-
proach also offers improvements in the case of practical, keyword-search based
queries with regards to the top returned results.

4 Related Work

There is a lot of work in the areas of bibliometrics and scientometrics to quan-
tify the impact of scientific articles. In particular, much focus has been put on
quantifying current or recent impact of scientific publications [4, 14, 19], in con-
trast to the overall impact traditionally estimated by bibliometric measures, such
as the citation counts. In depth examinations of various impact measures that
have been proposed in the literature can be found in [1, 6]. In contrast to the
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above, our own approach does not aim to introduce a new popularity measure,
but rather aims at improving the accuracy of existing ones. To the best of our
knowledge, this is the first approach of this type to be introduced.

Our approach is built upon recent work on entity similarity in the area of het-
erogeneous information networks. Some of the first entity similarity approaches
for such networks (e.g., PopRank [11] and ObjectRank [2]) are based on random
walks. Later works, like PathSim [16], focus on providing more meaningful re-
sults by calculating node similarity measures based on user-defined semantics.
Our own work is based on JoinSim [20], which is more efficient compared to
PathSim, making it more suitable for analyses on large scale networks.

5 Conclusions

We presented ArtSim, an approach that can be applied on top of existing pop-
ularity measures to increase the accuracy of their results. The main idea of our
approach is that the popularity of papers in their cold start period can be bet-
ter estimated based on the characteristics of other, similar papers. We calculate
the similarity of papers using metapath analyses on the underlying scholarly
knowledge graphs. Our experimental evaluation showcases the effectiveness of
ArtSim, yielding noteworthy improvements in terms of Kendall’s tau correlation
and nDCG when applied on four state-of-the-art popularity measures.

Acknowledgments

We acknowledge support of this work by the project “Moving from Big Data
Management to Data Science” (MIS 5002437/3) which is implemented under the
Action “Re-inforcement of the Research and Innovation Infrastructure”, funded
by the Operational Programme “Competitiveness, Entrepreneurship and Inno-
vation” (NSRF 2014-2020) and co-financed by Greece and the European Union
(European Regional Development Fund). Icons in Figure 1 were collected from
www.flaticon.com and were made by Freepik, Good Ware and Pixel perfect.

References

1. Bai, X., Liu, H., Zhang, F., Ning, Z., Kong, X., Lee, I., Xia, F.: An overview on
evaluating and predicting scholarly article impact. Information (2017)

2. Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based key-
word search in databases. In: VLDB (2004)

3. Bollen, J., Van de Sompel, H., Hagberg, A., Chute, R.: A principal component
analysis of 39 scientific impact measures. PloS one (2009)

4. Ghosh, R., Kuo, T., Hsu, C., Lin, S., Lerman, K.: Time-aware ranking in dynamic
citation networks. In: International Conference on Data Mining Workshops. pp.
373–380 (2011)

https://www.flaticon.com/
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/good-ware
https://www.flaticon.com/authors/pixel-perfect


12 S. Chatzopoulos et al.

5. Jaradeh, M.Y., Oelen, A., Farfar, K.E., Prinz, M., D’Souza, J., Kismihók, G.,
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