
Anonymity and Censorship Resistance
in Unstructured Overlay Networks�

Michael Backes4, Marek Hamerlik1, Alessandro Linari2, Matteo Maffei1,
Christos Tryfonopoulos3, and Gerhard Weikum3

1 Saarland University
{maffei,mhamerli}@cs.uni-sb.de

2 Oxford Brookes University & Nominet UK
alessandro@nominet.org.uk

3 Max Planck Institut für Informatik
{trifon,weikum}@mpi-inf.mpg.de

4 Saarland University & MPI-SWS
backes@cs.uni-sb.de

Abstract. This paper presents Clouds, a peer-to-peer protocol that guarantees
both anonymity and censorship resistance in semantic overlay networks. The de-
sign of such a protocol needs to meet a number of challenging goals: enabling
the exchange of encrypted messages without assuming previously shared se-
crets, avoiding centralised infrastructures, like trusted servers or gateways, and
guaranteeing efficiency without establishing direct connections between peers.
Anonymity is achieved by cloaking the identity of protocol participants behind
groups of semantically close peers. Censorship resistance is guaranteed by a cryp-
tographic protocol securing the anonymous communication between the query-
ing peer and the resource provider. Although we instantiate our technique on
semantic overlay networks to exploit their retrieval capabilities, our framework
is general and can be applied to any unstructured overlay network. Experimental
results demonstrate the security properties of Clouds under different attacks and
show the message overhead and retrieval effectiveness of the protocol.

1 Introduction

Over the last years unstructured overlays have evolved as a natural decentralised way
to share data and services among a network of loosely connected peers. The popularity
of systems like Gnutella and Freenet [5], has propelled research in this field, while
lately the proliferation of social networking has added another interesting dimension
to the problem of searching for content in such networks. In unstructured overlays,
peers typically connect to a small set of other peers, and queries are propagated along
connections in the overlay network, using some query forwarding strategy that aims at
finding peers with resources matching the issued query.

� Work partially supported by the initiative for excellence and by Emmy Noether program
of the German federal government and by Miur project SOFT: “Security Oriented Formal
Techniques”.

R. Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part I, LNCS 5870, pp. 147–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

148 M. Backes et al.

Semantic Overlay Networks (SONs) are an instance of unstructured networks that
has lately been given considerable attention [6,18,2,20]. In a SON, peers that are seman-
tically, thematically, or socially close (i.e., peers sharing similar interests or resources)
are organised into groups to exploit similarities at query time. This flexible organisation
improves query performance while maintaining high peer autonomy, and has proved
a useful technology not only for distributed Information Retrieval (IR) applications,
but also as a natural distributed alternative to Web 2.0 application domains such as de-
centralised social networking in the spirit of Flickr or del.icio.us. Query processing is
achieved by identifying which region in the network is better suited to answer the query
and routing the query towards a peer in that region. This peer is then responsible for
forwarding the query to his neighbours in the region.

In such an information exchange, not all information providers are willing to reveal
their true identity: for instance, publishers may want to present their opinions anony-
mously to avoid associations with their race, ethnic background or other sensitive char-
acteristics. Furthermore, people seeking for sensitive information may want to remain
anonymous so as to avoid being stigmatised or even to avoid physical, financial or social
detriment by suppressors. The freedom of information exchange is another important
issue that got increasing attention in the last years. Some organisations, such as govern-
ments or private companies, may regard a discussion topic or a report as inconvenient
or even harmful. They may thus try to censor the exchange of undesired information by
either suppressing resource providers or, if these are protected by anonymity, by taking
control of strategic regions of the network, such as gateways and proxies, in order to
filter the communication.

Despite the importance of SONs as a building block of data management and social
networking applications, security issues have not been investigated in this setting. To
the best of our knowledge, there exist no studies that try to solve the anonymity and
censorship resistance problems arising in SONs. This, together with the observation that
SONs are actually vulnerable to a number of different attacks, varying from surrounding
to man-in-the-middle attacks, shows the importance of enforcing security in such an
environment.

In this work we present Clouds, a P2P search infrastructure for providing anony-
mous and censorship resistant search functionality in a SON. We exploit the inherently
high connectivity among similar peers for guaranteeing anonymity by relying on a self-
organisation of peers into groups that we call clouds. Message routing is modified to
take place among clouds instead of peers, thus hiding the identity of both the resource
provider and the querying peer, while cloud size is a tunable parameter that affects
anonymity and efficiency. Censorship resistance at communication level is achieved
by a cryptographic protocol that guarantees the secrecy of the resource, thus avoid-
ing censorship based on the inspection of the messages circulating in the network.
This protocol achieves a number of challenging goals: enabling the exchange of en-
crypted messages without assuming previously shared secrets, avoiding centralised in-
frastructures, such as trusted servers or gateways, and guaranteeing efficiency without
establishing direct connections between peers. The contribution of this paper is two-
fold:

Anonymity and Censorship Resistance in Unstructured Overlay Networks 149

– We present the first system to guarantee anonymity and censorship resistance in
SONs. Although we instantiate our technique on SONs to leverage their retrieval
capabilities and to support a rich data model and query language, our framework
can be applied to any type of unstructured overlay network.

– We demonstrate the effectiveness of our architecture by analysing the anonymity
and censorship-resistance properties provided by Clouds under different attack sce-
narios, namely surrounding, intersection, man-in-the-middle, and blocking attacks.

The rest of the paper is organised as follows. Section 2 discusses our data model and
query language, and outlines the SON paradigm. Section 3 presents Clouds and its asso-
ciated protocols. Section 4 introduces the attack scenarios addressed in this paper. Our
experimental evaluation is given in Section 5, and related work is discussed in Section 6.
Finally, Section 7 concludes the paper and gives directions for future research.

2 Background Information

This section outlines our data model and query language, and describes the construction
and properties of SONs. For more detail, we refer the interested reader to [6,18,2,20].

2.1 Data Model and Query Language

We utilise the Vector Space Model (VSM) to represent documents, queries, peer and
cloud descriptions. In our setting a resource is any piece of information that can be
described by a set of keywords, such as a text document which is characterized by its
terms, an image, which is often associated to a set of tags, or an mp3 file. We asso-
ciate a weight to each keyword so as to represent the importance of the keyword as a
description for the given resource. A query is a set of keywords, for which the weights
are explicitly assigned by the user or implicitly by the system (e.g., through relevance
feedback techniques [31]). A resource is characterized by a resource description ri, that
is a vector containing keywords and weights for these keywords. Similarly, the profile
of a peer P, profile(P), is computed using the descriptions r1, . . . ,rm of the resources
stored at this peer.

A standard technique to decide which resource description r best matches a given
query q, is to utilise a similarity function sim(q,r), which assigns a numerical score to
each pair (q,r). The scores corresponding to different resource descriptions are then
compared to derive a relevance ranking with respect to query q. A common similarity
measure in IR is the cosine of the angle formed by the vector representations of q and r.
Notice that, in practice, any function that models the similarity between a resource and
a query can be used. For example, in the case of a social network the similarity func-
tion could also contain a social component, that also considers the strength of relations
among users.

2.2 Semantic Overlay Networks

In a SON each peer P performs a variable number of random meetings with other peers
in the network, during which they exchange their profiles and compute their similarity.
Based on the similarity function sim(), a peer P establishes two types of links:

150 M. Backes et al.

– Short-distance links towards the k most similar peers in the network discovered
through the random meeting process. The number of short-distance links k is usu-
ally small (e.g., O(logN), where N is the number of peers in the network).

– Long-distance links towards k′ (typically k′ < k) peers chosen at random from the
rest of the network.

To maintain short-distance links up-to-date and ensure the clustering property of the
SON, a periodic rewiring procedure [6,18,2,20] is executed by all peers, aiming at dis-
covering new more similar peers, or refreshing links that have become outdated due
to network dynamics. Long-distance links, usually updated using random walks, are
necessary to avoid creating tightly clustered groups of peers that are disconnected from
the rest of the network. Query answering in SONs benefits from the fact that peers
containing related information are directly linked or at a short-hop distance from each
other. Thus, the task of finding a peer that can answer a query q reduces to locating the
appropriate cluster of peers. Once a peer in the appropriate cluster is reached (i.e., if
sim(profile(P),q))≥ β, where β is called broadcast threshold), the query goes through
a limited broadcast using short-distance links aiming at reaching all neighbours of P.
Due to the SON properties, these peers are able to answer q with high probability.

3 The Clouds Protocols

This section describes in detail the protocols that regulate the interactions between peers
and allow them to anonymously share and retrieve resources available in the network.

3.1 Protocol Overview

The key principle behind the anonymity mechanism of Clouds is to cloak both the
querying peer and the resource provider behind a group of neighbouring peers, called
cloud. Peers generate clouds at random, without necessarily using them, to minimise
the correlation between the events of joining and using a cloud. Additionally, they non-
deterministically decide to participate or not in clouds created by other peers. Clouds
are created using the short-distance links of peers and are thus populated by peers in the
neighbourhood of the cloud initiator. Communication takes place between clouds, and
all peers in a cloud share the same probability of being involved in any communication
which has this cloud as the start- or end-point (also known as k-anonymity [28]). To
avoid correlation of roles in the protocol with specific actions, which would compromise
anonymity, the protocol is designed so that the observable behaviour is the same for all
peers, regardless of them being initiators of forwarders of a message.

The proposed cryptographic protocol aims at addressing the problem of censorship
at the communication level, where a malicious party aims at filtering out any commu-
nication that contains unwanted content (either a query or a resource). The secrecy of
the resource is protected by cryptography, making it hard for the attacker to censor the
communication based on an inspection of the message content. The design of such a
protocol is conceptually challenging since we do not assume previously shared secrets
or centralised infrastructures.

Anonymity and Censorship Resistance in Unstructured Overlay Networks 151

)L,k,q(SUBMITQ P

)L,}k),r(m,S({ANSMDATA
Pk'PPid

)L,)}r(id{,S(REQUESTRES
'PPkid

)L,}r{,S(RETURNRES
'PPkid

CP

P P'

CP'

+

+

Require: C, p, i
Ensure: yes/no (depending whether P joined or

not C)

1: x← random value in [0,1]
2: if x > p return “no”
3: if (¬isParticipant(P,C)) then
4: for all P′ neighbour of P do
5: p′ ← update(p)
6: status← P′. joinCloud(C, p′, i+1)
7: if status then addParticipant(C,P′)
8: return “yes”

Fig. 1. Communication protocol and algorithm joinCloud(C, p, i)

The protocol is composed of four steps summarised in Figure 1. A querying peer
chooses a cloud it participates in to issue a query. The query follows a random walk
in the cloud to obscure the message initiator, leaves the cloud from multiple peers to
ensure higher resistance to censorship and is routed towards a region in the network
that possibly contains matching resources. A footprint list is used to collect the list of
traversed clouds and facilitates the routing of the subsequent messages. A responder to
the query encrypts the answer with a public key received with the query message and
routes it towards the cloud of the querying peer, as specified in the footprint list. All
subsequent messages between the querying peer and the responder will have a cloud
as a destination and, when this cloud is reached, the message will be broadcasted to
reach the intended recipient. Finally, notice that the query message does not contain
any session identifier which would connect the query to the subsequent messages. In the
last two protocol steps, however, a session identifier is used to avoid costly decryption
checks, since the message content is encrypted.

3.2 Cloud Creation

The design of a cloud creation algorithm should satisfy some fundamental properties,
such as randomness, tunability and locality, in order to reveal as little information as
possible to potential attackers while maintaining the useful clustering properties of the
underlying SON. According to our cloud creation algorithm, when a peer P generates
a new cloud C, it selects the participants among its neighbours utilising short-distance
links. This guarantees that clouds are populated by semantically close peers (cloud lo-
cality). As shown in Section 4.1, this property is crucial to guarantee that cloud inter-
sections have high cardinality, thus preventing intersection attacks that aim at breaking
anonymity. Peers that join a cloud in turn select other neighbours, and the protocol is
executed in a recursive way with decreasing probability to join C.

The joinCloud() algorithm shown in Figure 1 shows this procedure from P’s point
of view, assuming that P has received a joinCloud(C, p, i) message that may have been
generated either by itself or by any other peer. This message specifies the cloud C,
the probability p to join it, and the step i. With probability 1− p, P replies negatively
(line 2) to the request, otherwise it accepts to join C (line 8). In this case, if P is not
already in C, it triggers a recursive procedure in its neighbours (line 3) by sending
a joinCloud(C, p′, i + 1) message to each of them (lines 4-7) with join probability p′
(line 5). Finally, the peers joining C are marked by P as neighbours in C (lines 6-7).

152 M. Backes et al.

SUBMITQ

Require: SUBMITQ(q,k+,L), prw,β
1: if L = [C] for some C then
2: x ← random value in [0,1]
3: if x ≤ prw then
4: forward SUBMITQ(q,k+,L) to one neighbor in C
5: set TTL for SUBMITQ(q,k+,L)
6: if TTL≥ 0 then
7: if clouds(P)∩L = /0 then
8: select CP ∈ clouds(P) with maximum sim(q,CP)
9: L ← L :: CP
10: if sim(q,profile(P)) ≤ β then
11: forward SUBMITQ(q,k+,L) along a random

subset of long-distance links.
12: else
13: forward SUBMITQ(q,k+,L) to all short-distance

links.

ANSMDATA

Require: ANSMDATA({Sid ,m(r),k}k+ , [C1, . . . ,Cn]), peer
P

1: if C1 ∈ clouds(P) then
2: if decryption of {Sid ,m(r),k}k+ succeeds then
3: process m(r)
4: forward ANSMDATA({Sid ,m(r),k}k+ , [C1, . . . ,Cn])

to all peers in C1
5: else
6: scan [C1, . . . ,Cn] and find the left-most cloud Ci such

that P has a neighbour in Ci
7: forward ANSMDATA({Sid ,m(r),k}k+ , [C1, . . . ,Cn])

to a subset of the peers in Ci

REQUESTRES and RETURNRES

The last two messages are routed using the footprint list in
the same way as ANSMDATA

Fig. 2. Behavior of peer P in the different protocol steps

The update(p) function used to obtain p′ is the means to control cloud population and
to offer tunability between anonymity and efficiency. For simplicity, in the experiments
we consider the same function throughout the network, but in practice each peer may
use its own update() function. Notice that peers only know the neighbours certainly
belonging to their clouds (i.e., the neighbours that have sent or have positively answered
to a joinCloud request). No information can be derived from a negative answer, since
a peer already belonging to the cloud answers negatively with probability 1− p. This
helps to avoid statistical attacks on cloud membership.

3.3 Query Routing

In this section, we present the routing algorithm used to route a query q from a peer P to
a resource provider P′. Figure 2 gives the pseudocode for the query routing procedure
followed by any peer P. Notice that the protocol is the same regardless of P being the
initiator or the forwarder of the message, in order to avoid breaches in anonymity.

When P wants to issue a query q, it constructs a message msg = SUBMITQ(q,k+
P ,L =

[CP]), where k+
P is a public key generated by P especially for this session, and L is the

footprint list that will be used to collect the list of clouds msg will traverse during the
routing. P initialises this list with one of its clouds. The collection of clouds in the foot-
print list is performed as follows. A peer Pi that receives msg checks whether one of the
clouds it participates in is already listed in L. If not, it chooses a cloud CPi and appends
it to L (i.e., L← L :: CPi). This information will be exploited by the successive phases of
the communication protocol to optimise routing between P and the resource provider.

The routing algorithm for a SUBMITQ message is reported in Figure 2. The algo-
rithm consists of two steps: an intra-cloud routing, during which the message msg per-
forms a random walk in C, and an inter-cloud routing, during which msg is delivered
to a peer P′ not participating in C. Each peer receiving (or creating) msg, forwards it
to a random peer participating in C with probability prw and also to a peer that subse-
quently enters the inter-cloud phase. The intra-cloud routing phase is necessary to avoid
revealing the identity of the query initiator to a malicious long-distance neighbour that

Anonymity and Censorship Resistance in Unstructured Overlay Networks 153

exploits the existence of a single cloud C in L. By adding the random walk phase within
C, an attacker cannot know whether P is the initiator of msg or simply a forwarder
entering into the inter-cloud phase.

Inter-cloud routing is based on the fireworks query routing algorithm [17]. A peer
P receiving message msg computes the similarity sim(q,profile(P)) between q and its
profile. If sim(q,profile(P)) ≤ β, where β is the broadcast threshold, this means that
neither P, nor P’s neighbours are suitable to answer q. Thus, msg is forwarded to a
(small) subset of P’s long-distance links. If sim(q,profile(P))> β, the query has reached
a neighbourhood of peers that are likely to have relevant resources and msg goes through
a limited broadcast using short-distance links.

In order to limit the network traffic, each message entering the inter-cloud phase is
associated to a time-to-live (TTL), which is updated at every hop. Message forwarding
is stopped when TTL reaches zero. Finally, all peers maintain a message history and
use it to discard already processed messages.

3.4 Answer Collection

When a peer P′ receives the message SUBMITQ(q,k+
P ,L), it searches its local collection

and retrieves the list R = {r1,r2, . . . ,rn} of resources matching q. Then P′ constructs the
reply message msg = ANSMDATA({Sid,M,kPP′ }k+

P
,L), i.e., it encrypts with k+

P the list

M = {m(r1),m(r2), . . . ,m(rn)} of metadata for the local result list R, a unique session
identifier Sid , and a symmetric key kPP′ . Sid will be used by P′ in the subsequent protocol
steps to identify msg as an open transaction, while kPP′ will be used to encrypt the
remaining messages between P and P′ and to avoid computationally expensive public
key cryptography.

The routing algorithm for msg is based on the footprint list L, as described in
Figure 2. A peer receiving msg and not belonging to the destination cloud CP, forwards
msg to a (small) subset of its neighbours that participate in the left-most cloud of L.

Finally, when a peer P participating in the destination cloud CP receives msg, it
broadcasts it to all its neighbours in CP. Subsequently, it tries to decrypt the message
using its session private key k−P , to discover if it is the intended recipient of msg. Dur-
ing the broadcast in CP, the message history of each peer is used to discard already
processed messages. Note that even the intended recipient P forwards msg in CP, in
order to avoid detection by malicious neighbours. After a predefined timeout or a large
enough answer set, P chooses the resources to be retrieved and enters the last two phases
of the protocol with the peers responsible for them.

Assume that P is interested in the resource corresponding to the metadata m(r) and
stored at P′. It creates the message REQUESTRES(Sid ,{id(r)}kPP′ ,L), where the foot-
print list L, the session identifier Sid , and the symmetric key kPP′ have been delivered
with ANSMDATA. Here and in the remainder of the protocol, Sid can be used in clear,
since it cannot be associated with any of the previous transactions. Its usage reduces the
amount of data that needs to be encrypted/decrypted at each step and allows the peers
in the destination cloud to quickly discard messages that are not addressed to them.

Routing of REQUESTRES and RETURNRES messages is the same as ANSMDATA;
it utilises the footprint list L to reach the destination cloud, and then a cloud broadcast
to reach the intended recipient.

154 M. Backes et al.

Note that the cloud-based communication protocol is largely independent on the un-
derlying network: the only connection is given by the strategy utilised to route the query,
while the rest of the messages is routed according to the footprint list. This makes it pos-
sible to apply our framework to any kind of unstructured overlay network, choosing an
arbitrary routing strategy for the SUBMITQ message.

4 Attack Scenarios

In this section, we introduce the attacks that might in principle break anonymity and
censorship-resistance in our framework. We qualitatively reason about the resistance of
our framework against such attacks, referring to Section 5 for experimental evaluations.

4.1 Attacks on Anonymity

Surrounding Attack. Assume that a malicious peer PAdv generates a fake cloud CAdv

and sends a message JoinCloud(CAdv, p, i) to P, and assume that P accepts to join cloud
CAdv. If i is the last step of the join algorithm, P does not have any other neighbours in
CAdv. The anonymity of P is thus compromised since PAdv can monitor all P’s activities
in CAdv. This attack can be generalized by considering a population of colluding mali-
cious peers trying to surround P. They block all the JoinCloud messages received from
honest peers and instead send P messages of the form JoinCloud(CAdv, p, i), where i
is one of the last steps of the joining algorithm. Notice that the risk of incurring in
surrounding not only depends on the topology of the network but also on its physical
implementation. In a wireless scenario, for example, it is very unlikely that a malicious
peer is able to gain exclusive control of the communication channel of another peer,
which is constituted by its surrounding atmosphere.

To mitigate the threat of this attack, Section 5.1 presents an update() function that
keeps the number of peers joining the cloud in the first steps small, letting the majority
of the peers in the region join the cloud in the last steps. This guarantees that the number
of peers joining the cloud after the invitation of the peer under attack is relatively high
in the first steps of the joining algorithm, and this number represents the anonymity
guarantee of P. In fact, each peer has a significant number of clouds which he joined
in the first steps of the joining algorithm, and these clouds can be used for obtaining
strong anonymity guarantees. The experimental evaluation in Section 5.2 shows that
the surrounding attack is effective only if the adversary controls the majority (at least
50%) of the peers around the peer under attack.

Intersection Attack. Since peers participate in different clouds, a malicious peer might
try to “guess” the identity of the querying peer based on the (even partial) information
that it has available about the intersection of two clouds. Notice that computing cloud
intersections is difficult because cloud topology is not known in general and a malicious
peer only knows its neighbors.

Remember that clouds are generated using only short-distance links and that clouds
are thus confined in a small region of the network (locality property). As confirmed by
the experiments in Section 5.3, this guarantees that the intersection of the clouds that a
peer participates in has high cardinality, demonstrating that our framework is resistant
to intersection attacks.

Anonymity and Censorship Resistance in Unstructured Overlay Networks 155

4.2 Attacks on Censorship Resistance

Blocking Attack. The blocking attack aims at blocking (instead of monitoring) all
SUBMITQ messages containing undesired queries and, tracking the cloud C of the
querying peer, at subsequently blocking all ANSMDATA messages directed to C . Note
that our query routing mechanism (see Section 3.3) guarantees that SUBMITQ is repli-
cated and routed through different paths: this redundancy helps to overcome the block-
ing attack, since it requires the attackers to be located either in all the paths followed by
SUBMITQ message or in one of the paths followed by SUBMITQ message and all the
paths followed by ANSMDATA message. As confirmed by the experiments in Section
5.4, the blocking attack is effective only if the adversary has a pervasive control (at least
50%) of the region to surround.

In the following we present a theoretical characterisation of the resistance to blocking
attacks. This is formalised as the probability that a communication which an adversary
is willing to censor will not be blocked.

The probabilities that all SUBMITQ and all ANSMDATA messages are blocked is
given by:

Pr{block(SUBMITQ)}= [Pr{A1}]p1 (1)

Pr{block(ANSMDATA)}= Pr{A1}× [Pr{A2}]p2 (2)

where p1 (resp. p2) is the number of distinct paths followed by the first (resp. sec-
ond) message and A1 (resp. A2) denotes the event that at least one attacker resides in
one of the paths of SUBMITQ (resp. ANSMDATA). For simplicity, we have assumed
these events to be independent from each other and from the specific path followed by
the messages. If the attackers are randomly distributed in the network, the probability
associated to events A1 and A2 is:

Pr{A1}= Pr{A2}= 1−
(

N− k
m

)
/

(
N
m

)
(3)

where N is the number of peers in the network, k is the number of adversaries, and m
is the average number of peers in a path connecting P to P′ (where P and P′ are not
counted). The fraction in Equation 3 represents the number of safe (i.e., not including
any attacker) paths divided by the total number of paths.

Finally, the degree of censorship resistance can be computed as

1−Pr{block(SUBMITQ)∨block(ANSMDATA)} (4)

which can be obtained as the combination of the two non-independent events.

Man-in-the-middle Attack. In the man-in-the-middle attack (MITM), the attacker in-
tercepts the SUBMITQ(q,k+

P , [CP, . . .]) message sent by P and replaces it by a freshly
generated message SUBMITQ(q,k+

Adv, [CAdv]), where k+
Adv and CAdv are the adversary’s

public key and cloud, respectively. The adversary then runs two sessions of the proto-
col, one with the querying peer P and one with provider R, pretending to be the query
responder and initiator respectively. This allows the attacker to filter and possibly inter-
rupt the communication between P and R. Note that the attackers need to be located in
all the paths followed by SUBMITQ, and hence the MITM is just a special case of the
blocking attack.

156 M. Backes et al.

5 Experimental Evaluation

In this section, we present our experimental evaluation, which is designed to demon-
strate the anonymity and censorship resistance properties of our framework and the
message overhead imposed by the protocol.

5.1 Experimental Setup

For our experiments, we used a subset of the OHSUMED medical corpus [16] with
32000 documents and 100 point queries. Documents were clustered using the incre-
mental k-means algorithm and each cluster was assigned to a single peer to simulate dif-
ferent peer interests. This peer specialisation assumption is common in SONs [6,18,2],
and does not restrict our setting since a peer with multiple interests might cluster its
documents locally and create one identity for each interest in the spirit of [20]. These
interests are then used to build a semantic overlay network according to standard tech-
niques [6,18,2]. The resulting SON is composed of 2000 peers and the description of a
peer’s interest is represented by the centroid vector of its documents. Each peer main-
tains a routing index with 10 links to other peers, 20% of which are long-distance links.
On top of the created SON we invoke the cloud creation process and implement the
cryptographic cloud-based protocol presented in Section 3. The update() function used
in our setting has values 0.25 for the first six steps of the cloud creation and 1.0 for the
remaining 4 steps. Therefore the number of peers joining the cloud in the first steps is
small, and the majority of the peers in the region joins the cloud in the last steps. As
shown in Section 5.2, this choice of the update() function mitigates the threat of sur-
rounding attacks. This update() function produces clouds with average size of about 70
peers, which is the baseline value for our experiments.

We have explored different values for the update() function, and the values consid-
ered in this section returned the best results in terms of anonymity and cloud locality.
Due to space constraints, we do not further discuss other options.

Our simulator is written in Java, and our experimental results were averaged over
64 runs to eliminate fluctuations in the measurements. In the experiments presented
below we consider the following system parameters that are varied appropriately to
demonstrate Clouds’ performance.

– κ: The average number of clouds created per peer. In our experiments the baseline
value for κ is one, unless otherwise stated.

– µ: In our experimental setting, we consider colluding attackers that aim at attacking
a region of the network (either for censoring or for breaking anonymity). Parameter
µ represents the percentage of malicious peers in the region under attack, where the
region size may vary depending on the attack type.

– β: The broadcast threshold is used to measure the similarity between a query and
a peer profile, and assists a peer in deciding whether a query may be effectively
answered by it and its neighbours. Decreasing β results in more broadcasts and
thus higher message traffic and also higher recall. The baseline value used in our
experiments is 0.6.

Anonymity and Censorship Resistance in Unstructured Overlay Networks 157

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9

ho

ne
st

 p
ee

r j
oi

ns
 p

er
 c

lo
ud

step number

µ=0%
µ=25%
µ=50%

(a) Peers joining a cloud after invitation at
step i

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

of

 c
lo

ud
s

jo
in

ed
 p

er
 p

ee
r

step number

µ=0%
µ=25%
µ=50%

(b) Clouds joined by each peer at step i

Fig. 3. Surrounding attack when varying the percentage of malicious peers

5.2 Surrounding Attack

The experiments on the surrounding attack are conducted by selecting 100 peers with
profiles closest to the peer under attack and, from this pool of peers, by selecting a
percentage µ varying from 0% to 50% to be malicious. This surrounding scenario cor-
responds to the best strategy for the attackers to surround a peer, since in our system
each peer randomly selects his neighbours among the peers with close profile. In other
words, trying to surround a peer by positioning malicious peers as close as possible,
so as to form a sort of barrier, is not the best strategy since that peer would not neces-
sarily select them as neighbours. Notice that if the neighbours of a peer were selected
to be the peers with the closest profiles, as in a typical SON, then the attackers might
generate profiles extremely close to the peer under attack in order to occupy all its short-
distance links and effectively isolate it from the rest of the network. We consider this
architectural choice of paramount importance to enforce anonymity in SONs.

Figure 3(a) shows the average number of honest participants joining a cloud C after
an invitation from peer P or from one of its descendants in C, depending on the step i in
which P has joined C. This number represents the anonymity degree of P in C, assuming
that the adversary knows i. In this experiment, malicious peers intercept and block all
JoinCloud(C, p′, i′) messages received from honest participants. The graph shows that
under a scenario where the 25% of the peers in a region attack a single honest peer
(µ = 25%), Clouds offers good anonymity guarantees, and at least 10 honest peers join
the cloud after P in all the first six steps of the joining algorithm. Even under a scenario
where µ = 50%, the peer under attack is not completely surrounded and in the first six
steps a number between five and ten peers joins the cloud after P.

Observe that the number of peers joining the cloud decreases over the number of
steps in the scenario without malicious peers, as expected, but tends to increase until
the sixth step when half of the peers is set to be malicious. This positive and seemingly
surprising result can be explained by the cloud shape induced by the update function. In
the first phase of the joining algorithm (steps 0-5), the probability p that P’s neighbours
join the cloud is low and, since many of them are malicious, the blocking strategy of

158 M. Backes et al.

the adversary is effective and the number of peers joining the cloud after P is small.
At the beginning of the second phase (steps 6-7), however, the joining probability p is
high, the blocking strategy of the adversary is less effective, and so the number of P’s
neighbours joining the cloud is high. Finally, after the seventh step, most of the honest
peers in the region have already joined cloud C, and so the number of peers joining after
P in the last steps is very small. Notice that the numbers of peers joining in the last steps
of the protocol is higher when under attack. This is easily explained since clouds are
local and when all the peers in a region are honest, most of them have already joined
the cloud in the first steps. Under attack, most of the honest peers in a region do not join
the cloud in the first steps since malicious peers block most of the JoinCloud messages.
In the last steps, however, the joining probability increases, the blocking activity of the
attackers is less effective, and, since most of the honest peers have not joined the cloud
yet, they do it in the last steps.

Figure 3(b) shows the number of clouds joined by each peer depending on the step
number and the percentage of malicious peers. In this experiment, we consider a sce-
nario where each peer generates four clouds on average. As we can see, even under
attack, each peer has at disposal a number of clouds to join at each step, and in particu-
lar at the first steps which give in general better anonymity guarantees.

5.3 Intersection Attack

In Figure 4(a), we measured the average cardinality of all 2-wise and 3-wise intersections
of the clouds which a peer participates in. Notice that the majority of the intersections has
cardinality between 40 and 50 peers, and there exist very few cloud intersections with
cardinality less than 30 peers. This result was expected due to the cloud creation process
that exploits locality and creates clouds with high overlap, populated by semantically
close peers. Figure 4(b) shows the probability for a peer to participate in clouds with
2-wise and 3-wise intersection cardinality lower than the value indicated in the x-axis.
Notice that the probability to participate in clouds with intersection smaller than 40 is

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

of

 in
te

rs
ec

tio
ns

 (x
104)

cardinality of intersection (# of peers)

2-wise intersections
3-wise intersections

(a) Number of intersections with cardinality
of size x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

pr
ob

ab
ili

ty
 to

 p
ar

tic
ip

at
e

in
 c

lo
ud

s

cardinality of intersection (# of peers)

2-wise intersections
3-wise intersections

(b) Probability to participate in clouds with in-
tersection cardinality lower than x

Fig. 4. Cardinality of intersections as a measure for intersection attacks

Anonymity and Censorship Resistance in Unstructured Overlay Networks 159

negligible, and that this probability does not change when moving from 2-wise to 3-wise
intersections, demonstrating the resistance of Clouds to intersection attacks.

5.4 Blocking Attack

This set of experiments shows the censorship resistance properties of our system under
the strongest attack, i.e., the blocking attack. In this experiment we assume a set of col-
luding attackers that try to censor some specific topic; notice however that the attackers
cannot have any precise information about which peer(s) store documents about this
topic. Thus, the attackers aim at surrounding a region in the SON and blocking all non-
qualifying information that is exchanged. To perform this attack we assumed a region
of 200 peers that are the closest to the topic to be censored and varied the percentage
µ of malicious peers in this region. Figure 5 shows the percentage of malicious peers
in this region that is needed to censor a single topic. The most interesting observation
emerging from this graph is that the attackers need to occupy at least 50% of the region
(i.e., 100 peers or 5% of the network in our setting) to make the attack effective. Notice
that this corresponds to censoring only a single topic, and an attacker should occupy a
significant part of the network to mount an effective attack against multiple topics. An-
other interesting observation is that due to our fuzzy routing mechanism, some answers
are not returned to the requesters even without malicious peers (leftmost point in the x-
axis). Finally, observe that the number of clouds created per peer (κ) does not affect the
censorship resistance properties of our approach. This is particularly interesting since,
as stated before, anonymity and censorship resistance are often conflicting goals.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

%
 o

f
re

s
o
u
rc

e
s
 f
o
u
n
d
 a

n
d
 a

n
s
w

e
rs

 r
e
c
e
iv

e
d

% of malicious peers (out of 200 closest to resource provider)

resources found κ=1
κ=2
κ=3
κ=4

answers received κ=1
κ=2
κ=3
κ=4

Fig. 5. Censorship resistance for colluding attackers surrounding a resource provider

5.5 Message Traffic

Figure 6(a) shows how the message traffic in Clouds is affected by the size and number
of the clouds in the system. To control the former parameter, we modify the update()
function described in Section 5.1, while for the latter we modify the average number
of clouds created per peer through parameter κ. An important observation derived from
this figure is that message traffic is highly sensitive to the cloud size. This was ex-
pected since our routing mechanism, that is based on the fireworks technique, depends

160 M. Backes et al.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20 40 60 80 100 120 140 160 180

#
 o

f
m

e
s
s
a

g
e

s
/q

u
e

ry
 (

x
1

0
0

)

average cloud size

κ=1
κ=2
κ=3
κ=4

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

#
 o

f
m

e
s
s
a

g
e

s
/q

u
e

ry
 (

x
1

0
0

)

broadcast threshold β

SON
Clouds

Fig. 6. Message overhead of Clouds

on message broadcasting inside clouds in all four phases of the protocol. Therefore,
even a small increase in the average cloud size results in a significant increase in mes-
sage traffic, since all cloud members have to receive all messages that have their cloud
as a destination. Another interesting conclusion drawn from this experiment, is the in-
sensitivity of message traffic to the number of clouds each peer creates. In fact, the
increase in the number of clouds a peer participates in is dampened by the decrease of
the probability to find one of these clouds in L (due to the increase in the domain of
L). Finally, notice that the message traffic imposed on the network is heavily dominated
by the broadcasting of messages within the clouds, rather than by the routing through
them. This causes the routing of messages to contribute only for a small fraction to the
observed traffic, thus resulting in a minimal effect in message overhead.

Figure 6(b) shows the overhead introduced by Clouds to achieve both anonymity
and censorship resistance in a SON environment. The important observation in this
graph is that both protocols are affected by the increase of the broadcast threshold in
the same way, since both graphs present the same behaviour. Intuitively, increasing β
results in less peers broadcasting the message to their neighbourhood, which eventually
decreases retrieval effectiveness, but also heavily affects message traffic as also shown
in the graph. The decrease in messages observed when increasing β is mainly due to
less broadcasts taking place during a SUBMITQ message. The extra message traffic
imposed by Clouds is mainly due to the broadcasting of messages inside clouds, while
the main volume of traffic for the SON is the result of the resource discovery protocol.
As already mentioned, this extra message traffic is the price we have to pay in order
to avoid previous failure-prone and attack-prone solutions like static cloud gateways
[22,26], or static paths between information providers and consumers [5,8].

5.6 Summary of Results

We have demonstrated the effectiveness of our architecture under different attack sce-
narios and we have shown that an attacker must control a large fraction of a network
region to effectively cast any type of attack. Although adversaries can utilise the SON
to place themselves near target peers, they need to control over 50% of a region to com-
promise a peer’s anonymity or effectively censor a topic. Intersection attacks are also

Anonymity and Censorship Resistance in Unstructured Overlay Networks 161

difficult to perform, even under the assumption that an adversary knows the cloud topol-
ogy and all the participants in these clouds. Both 2-wise and 3-wise cloud intersections
have a cardinality higher than 40, and the probability that a peer participates in two or
three clouds with small intersection cardinality is below 10−4.

Cloud size affects message traffic, due to the broadcasts performed at destination
clouds to locate the intended recipient of a message. Contrary, our architecture is insen-
sitive to the number of clouds generated by each peer, as shown in Figures 5 and 6(a),
thus fitting dynamic scenarios where κ is neither predictable nor enforceable. Finally,
as Figure 5 suggests, Clouds is able to retrieve about 70% of the answers created by the
resource providers, even when not under attack. This is due to our cloud-based routing
mechanism, and creates a decrease of about 30% in retrieval performance when com-
pared to a SON without security features. Notice, however, that Clouds is not meant to
be a full-fledged information retrieval system operating under ideal conditions, but is
rather designed to deliver results even under challenging attack scenarios.

6 Related Work

In this section, we briefly discuss the papers that are related to our approach and
overview proposals that support anonymity and censorship resistance in a P2P setting.

Systems for anonymity. In the recent past, several techniques have been presented
for preserving anonymity in a P2P environment. One strand of research, pioneered by
Freenet [5], tried to protect the communication channel, while other approaches tried to
anonymize the communication parties by hiding them in groups.

Onion routing [14,15] belongs to the former family and is adopted by TOR [8],
one of the most known systems for anonymity. An onion is a recursively layered data
structure, where each layer is encrypted with the public-key of the peers it was routed
through. Encrypting each layer with a different key preserves the secrecy of the path
through which the onions is routed. Contrary to our approach, onion routing relies on
static paths which makes the approach vulnerable to peer fails. A similar approach is
followed by Tarzan [13] and MorphMix [23], where layered encryption and multi-hop
routing is utilised. With the proliferation of DHTs, approaches exploiting the anonymity
properties of onion routing in structured overlays have also been proposed [29].

Crowds [22] hides peers in groups, and all intra-group communication is orchestrated
by a trusted server that knows all peers in its group, while Hordes [26] utilises multicast
groups as reply addresses from the contacted server. Contrary to our approach, both
systems rely on static groups and trusted servers, which introduce vulnerability (e.g., if
servers are compromised) and central points of failure. The notion of groups (without
a server component) as cloaks of peer identity was first introduced in Agyaat [1] for
a DHT environment. We extend this approach to unstructured networks, and utilise a
richer query language, provide cryptography-based censorship resistance, and support
dynamic cloud creation and maintenance. Other approaches like DC-nets [4] and XOR-
trees [9] guarantee anonymity by allowing at exactly one client to transmit a message
at a given time slot, making it a restrictive model for large-scale applications. Finally,
P5 [25] provides an interesting architecture that enables tuning between efficiency and
anonymity degree, a feature that we also support by the control of cloud population.

162 M. Backes et al.

Systems for censorship resistance. Censorship at storage level consists in performing
a selective filtering on the content of a peer and aims at blocking the resource as soon
as its presence is detected. To avoid this type of attack, techniques such as replication
of resources [5,11] and encryption of file chunks [19,30] have been proposed.

Censorship at communication level aims at corrupting the channel between commu-
nication participants. Approaches like [12,7,21] address the problem of an adversary
which is able to take control of a large fraction of peers and to render unwanted re-
sources unreachable. Similarly to our approach, these solutions are based on limited
broadcasts of the query and the result, but can only be applied to structured overlays
and do not address anonymity.

7 Conclusion and Future Work

We have presented Clouds, a novel P2P search infrastructure for proving anonymous
and censorship-resistant search functionality in SONs. We have demonstrated that our
system is resistant against a number of attacks. Although we instantiate our technique
on SONs to leverage their retrieval capabilities and to support a rich data model and
query language, the anonymity and censorship resistance mechanisms presented in this
paper are general and can in principle be applied to any kind of unstructured overlay.
The reason is that the cloud-based communication protocol is largely independent on
the underlying network: the only connection is given by the strategy utilized to route
the query, while the rest of the messages is routed according to the footprint list. This
makes it possible to apply our framework to any kind of unstructured overlay network,
by choosing an arbitrary routing strategy for the SUBMITQ message. For instance, our
approach could be applied to Gnutella-style networks by adopting flooding as the rout-
ing for the SUBMITQ message, or small-world networks [24,20] by adopting interest-
based query routing, while leaving the rest of the underlying protocols (e.g., rewiring
in the case of small world networks) intact.

We emphasize that SONs represent a stress-test for our architecture, due to the num-
ber of attacks that adversaries can mount by exploiting the semantic correlation among
peers. Applying our architecture to other types of unstructured overlay networks would
enhance the security guarantees offered by our framework. For instance, a Gnutella-
style overlay network, that would lack the semantic correlation between peers, would
offer more security guarantees due to the randomness of peer connections. Additionally,
in social networks peers create connections based upon trust relationships from real-life
(e.g., do not connect to people that either you or your friends do not know). This trust
mechanism would enhance the security properties of our architecture since mounting
the surrounding and blocking attacks would be harder for adversaries.

As future work, we plan to extend our analysis to other sophisticated attack scenarios
like the Sybil attack [10], where a malicious peer obtains multiple fake identities and
pretends to be multiple distinct peers in the system and the more general Eclipse attack
[3], where multiple identities are used to isolate a peer from the rest of the network.
Syngh et al. [27] present a defense against Sybil attacks in structured overlay networks:
Since a peer mounting an Eclipse attack must have a higher than average peer degree
(i.e., incoming and outgoing links), the idea is to enforce a peer degree limit by letting

Anonymity and Censorship Resistance in Unstructured Overlay Networks 163

peers anonymously audit each other’s connectivity. This conceptually elegant solution
needs the introduction of a central authority to certificate peer identifiers and the pres-
ence of a secure routing primitive using a constrained routing table [3]. It is also possible
to exploit specific features of the network in order to prevent or mitigate the threat of
Sybil attacks: for instance, Sybilguard [32] is a recently proposed protocol that exploits
trust relationships among peers to limit the corruptive influences of Sybil attacks in so-
cial networks. It would be interesting to investigate a combination of these techniques
in our system; in particular, trust relationships for choosing the bootstrap peer and for
guiding the joining procedure and auditing-based Sybil identification for reducing the
threat of Eclipse attacks against peers already present in the network.

Finally, given the importance of social networking in the Web 2.0 framework, an
interesting extension of Clouds would be to exploit links among friends in a social
network to determine the security and efficiency guarantees of our protocols against
different types of attacks.

References

1. Singh, A., Gedik, B., Liu, L.: Agyaat: Mutual Anonymity over Structured P2P Networks.
Emerald Internet Research Journal (2006)

2. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Van Pelt, T.: GridVine: Building Internet-
Scale Semantic Overlay Networks. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F.
(eds.) ISWC 2004. LNCS, vol. 3298, pp. 107–121. Springer, Heidelberg (2004)

3. Castro, M., Druschel, P., Ganesh, A.J., Rowstron, A.I.T., Wallach, D.S.: Secure Routing for
Structured Peer-to-Peer Overlay Networks. In: Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation, OSDI (2002)

4. Chaum, D.L.: The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability. Journal of Cryptology (1988)

5. Clarke, I., Miller, S., Hong, T., Sandberg, O., Wiley, B.: Protecting Free Expression Online
with Freenet. IEEE Internet Computing (2002)

6. Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems. In: Proceed-
ings of the International Workshop on Agents and Peer-to-Peer Computing, AP2PC (2004)

7. Datar, M.: Butterflies and Peer-to-Peer Networks. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, p. 310. Springer, Heidelberg (2002)

8. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In:
Proceedings of the USENIX Security Symposium (2004)

9. Dolev, S., Ostrobsky, R.: Xor-Trees for Efficient Anonymous Multicast and Reception. ACM
Transactions on Information and System Security (TISSEC) (2000)

10. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, p. 251. Springer, Heidelberg (2002)

11. Endsuleit, R., Mie, T.: Censorship-Resistant and Anonymous P2P Filesharing. In: Proceed-
ings of the International Conference on Availability, Reliability and Security (ARES) (2006)

12. Fiat, A., Saia, J.: Censorship Resistant Peer-to-Peer Content Addressable Networks. In: Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) (2002)

13. Freedman, M.J., Sit, E., Cates, J., Morris, R.: Introducing Tarzan, a Peer-to-Peer Anonymiz-
ing Network Layer. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002.
LNCS, vol. 2429, p. 121. Springer, Heidelberg (2002)

14. Goldschlag, D., Reed, M., Syverson, P.: Onion Routing. Communications of the ACM
(CACM) (1999)

164 M. Backes et al.

15. Han, J., Liu, Y., Xiao, L., Ni, L.: A Mutual Anonymous Peer-to-peer Protocol Design. In:
Proceedings of the IEEE International Symposium on Parallel and Distributed Processing
(IPDPS) (2005)

16. Hersh, W., Buckley, C., Leone, T.J., Hickam, D.: OHSUMED: An interactive retrieval eval-
uation and new large test collection for research. In: Proceedings of the Annual International
ACM SIGIR Conference (1994)

17. King, I., Ng, C.H., Sia, K.C.: Distributed content-based visual information retrieval system
on peer-to-peer networks. ACM Transactions on Information Systems (2002)

18. Loser, A., Wolpers, M., Siberski, W., Nejdl, W.: Semantic Overlay Clusters within Super-
Peer Networks. In: Proceedings of the International Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P) (2003)

19. Waldman, A.R.M., Cranor, L.: Publius: A Robust, Tamper-Evident, Censorship-Resistant,
Web Publishing System. In: Proceedings of the USENIX Security Symposium (2000)

20. Raftopoulou, P., Petrakis, E.G.M.: iCluster: A Self-organizing Overlay Network for P2P In-
formation Retrieval. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W.
(eds.) ECIR 2008. LNCS, vol. 4956, pp. 65–76. Springer, Heidelberg (2008)

21. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proceedings of the ACM Special Interest Group on Data Com-
munications (SIGCOMM) (2001)

22. Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transactions on In-
formation and System Security (TISSEC) (1998)

23. Rennhard, M., Plattner, B.: Introducing MorphMix: Peer-to-Peer Based Anonymous Internet
Usage with Collusion Detection. In: Proceedings of the International Workshop on Privacy
in the Electronic Society (WPES) (2002)

24. Schmitz, C.: Self-Organization of a Small World by Topic. In: Proceedings of the Interna-
tional Workshop on Peer-to-Peer Knowledge Management (P2PKM) (2004)

25. Sherwood, R., Bhattacharjee, B., Srinivasan, A.: P5: A Protocol for Scalable Anonymous
Communication. IEEE Security and Privacy (2002)

26. Shields, C., Levine, B.N.: A Protocol for Anonymous Communication over the Internet. In:
Proceedings of the ACM Conference on Computer and Communications Security (CCS)
(2000)

27. Singh, A., Ngan, T., Druschel, P., Wallach, D.S.: Eclipse attacks on overlay networks: Threats
and defenses. In: Proceedings of the IEEE International Conference on Computer Commu-
nications (INFOCOM), pp. 1–12 (2006)

28. Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, IJUFKS (2002)

29. Tsai, H., Harwood, A.: A scalable anonymous server overlay network. In: International Con-
ference on Advanced Information Networking and Applications (AINA) (2006)

30. Waldman, M., Mazières, D.: Tangler: a Censorship-Resistant Publishing System Based on
Document Entanglements. In: Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS) (2001)

31. Wu, L., Faloutsos, C., Sycara, K.P., Payne, T.R.: FALCON: Feedback Adaptive Loop for
Content-Based Retrieval. In: Proceedings of the VLDB Conference (2000)

32. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: Sybilguard: defending against sybil at-
tacks via social networks. In: Proceedings of the ACM Special Interest Group on Data Com-
munications (SIGCOMM), pp. 267–278 (2006)

	Anonymity and Censorship Resistance in Unstructured Overlay Networks
	Introduction
	Background Information
	Data Model and Query Language
	Semantic Overlay Networks

	The Clouds Protocols
	Protocol Overview
	Cloud Creation
	Query Routing
	Answer Collection

	Attack Scenarios
	Attacks on Anonymity
	Attacks on Censorship Resistance

	Experimental Evaluation
	Experimental Setup
	Surrounding Attack
	Intersection Attack
	Blocking Attack
	Message Traffic
	Summary of Results

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

