Distrib Parallel Databases (2009) 26: 181-205
DOI 10.1007/s10619-009-7046-7

Rewiring strategies for semantic overlay networks

Paraskevi Raftopoulou - Euripides G.M. Petrakis -
Christos Tryfonopoulos

Published online: 9 July 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Semantic overlay networks cluster peers that are semantically, themati-
cally or socially close into groups, by means of a rewiring procedure that is period-
ically executed by each peer. This procedure establishes new connections to similar
peers and disregards connections to peers that are dissimilar. Retrieval effectiveness
is then improved by exploiting this information at query time (as queries may address
clusters of similar peers). Although all systems based on semantic overlay networks
apply some rewiring technique, there is no comprehensive study showing the effect
of rewiring on system’s performance. In this work, a framework for studying the at-
tribution of rewiring strategies in semantic overlay networks is proposed. A generic
approach to rewiring is presented and several variants of this approach are reviewed
and evaluated. We show how peer organisation is affected by the different design
choices of the rewiring mechanism and how these choices affect the performance
of the system overall (both in terms of communication overhead and retrieval effec-
tiveness). Our experimental evaluation with real-word data and queries confirms the
dependence between rewiring strategies and retrieval performance, and gives insights
on the trade-offs involved in the selection of a rewiring strategy.

P. Raftopoulou (X)) - E.G.M. Petrakis

Technical University of Crete, University Campus, 73100 Chania, Greece
e-mail: paraskevi@intelligence.tuc.gr

E.G.M. Petrakis

e-mail: petrakis @intelligence.tuc.gr

C. Tryfonopoulos
University of Peloponnese, University Campus, 22100 Tripoli, Greece

e-mail: trifon@uop.gr

C. Tryfonopoulos
Max-Plank Institute for Informatics, 66123 Saarbruecken, Germany

@ Springer

mailto:paraskevi@intelligence.tuc.gr
mailto:petrakis@intelligence.tuc.gr
mailto:trifon@uop.gr

182 Distrib Parallel Databases (2009) 26: 181-205

Keywords Peer-to-peer networks - Semantic overlay networks -
Rewiring strategies - Information retrieval

1 Introduction

Peer-to-peer (P2P) systems offer the potential for low-cost sharing of information,
while ensuring autonomy and privacy of the participating entities. The main idea be-
hind P2P is that, instead of relying on central components, functionality is provided
through decentralised overlay architectures. In overlay networks, peers typically con-
nect to a small set of other peers. Queries are then, propagated to the network search-
ing for information qualifying query criteria by utilising existing connections and fol-
lowing a predetermined query forwarding strategy. The popularity of earlier systems
like Gnutella' and Freenet,? built upon the idea of unstructured overlay networks, has
propelled research in this direction while lately, the proliferation of social networking
has added yet another interesting dimension to the problem of searching for content.

In Semantic Overlay Networks (SONs), peers that are semantically, thematically
or socially similar are organised into groups. SONs, while being highly flexible, im-
prove query performance and guarantee high degree of peer autonomy [2, 12, 20, 23].
This technology has proven useful not only for information sharing in distributed en-
vironments, but also as a natural distributed alternative to Web 2.0 application do-
mains, such as decentralised social networking in the spirit of Flickr? or del.icio.us.*
Contrary to structured overlays that focus on providing accurate location mechanisms
(e.g., [21, 26]), SONs are better suited for loose P2P architectures, which assume
neither a specific network structure nor total control over the location of the data.
Additionally, SONSs offer better support of semantics due to their ability to provide
mechanisms for approximate, range, or text queries, and emphasise peer autonomy.

Peer organisation in a SON is achieved through a rewiring protocol that is (period-
ically) executed by each peer. The purpose of this protocol is to establish connections
among similar peers. This is achieved by creating new connections to similar peers
and by discarding connections that are outdated or pointing to dissimilar peers. The
goal of a rewiring protocol is to create clusters of peers with similar interests. Queries
can then be resolved by routing the query towards clusters based on their likelihood
to match the query.

The management of large volumes of data in P2P networks has generated addi-
tional interest in methods for effective network organisation based on peer contents
and consequently, in methods supporting information retrieval (IR) over SONs (e.g.,
[8, 9]). Most of these research proposals assume a standard rewiring procedure for
creating SONs and search the network by exploiting certain architectural [8, 27, 28]
or modelling [1, 24, 25] aspects of this organisation. The effectiveness of IR methods,
supporting content-based retrievals over SONs, depends on the type of content stored

1 http://www.gnu.org/.
2http://freenetproject.org/.
3 http://www.flickr.com/.

4http://www.del‘icio.us‘com/.

@ Springer

http://www.gnu.org/
http://freenetproject.org/
http://www.flickr.com/
http://www.del.icio.us.com/

Distrib Parallel Databases (2009) 26: 181-205 183

by the peers, on the type of queries allowed and most importantly, on the rewiring
procedure applied and on the efficiency of the query forwarding procedure imple-
mented.

The present work goes one step further and suggests that the retrieval performance
depends on the rewiring strategy applied. To show proof of concept, we adopt a
generic P2P architecture that utilises widely adopted techniques from SONSs, such
as characterisation of peers by content, peer clustering and link rewiring. In our SON
architecture, peers are characterised by documents in the spirit of [8, 10, 13, 14, 20,
23, 25]. Each peer in the network maintains links to other peers with similar content
to form clusters. This is achieved through a rewiring protocol which runs indepen-
dently on each peer as in [4, 12, 14, 20, 23, 25]. The methods referred to above use the
peer organisation, emerging from the execution of the rewiring protocol, to efficiently
route queries to the clusters of peers that are more likely to answer the query. In our
setting, a number of choices in designing a rewiring strategy are considered and all
are implemented and evaluated (in terms of network load and retrieval efficiency)
using real-world data and queries.

This work aims at providing a better understanding on the functional issues related
to the design and performance of any rewiring protocol by answering the following
fundamental questions: (i) what is an appropriate forwarding strategy for rewiring
messages within a SON, (ii) what information should be used to update peer connec-
tions, (iii) should peer connections be bi-directional or just one-directional, (iv) how
coherent and well-connected should a cluster of similar peers be? Based on insight
acquired by answering these questions, we propose optimisations to the rewiring pro-
tocol. The optimal rewiring strategy is designed based on experimental results and on
the analysis of these results.

The remainder of the paper is organised as follows. Section 2 presents proposals
that implement SON-like structures to support IR functionality, while Sect. 3 dis-
cusses a generic SON architecture and the related protocols. Section 4 presents the
proposed rewiring strategies that aim at better peer organisation. The experimental
evaluation of the strategies is presented in Sect. 5, followed by conclusions and is-
sues for further research in Sect. 6.

2 Related work

Issues related to effective network organisation and to IR approaches implement-
ing SON-like structures have been previously raised by many researchers. In the
following, we present those focusing on architectural issues (i.e., overlay topology,
along with the corresponding protocols) and those exploiting certain modelling as-
pects (e.g., models describing peer similarity).

Dealing with architectural issues, Merugu et al. [14] show that constructing small-
world-like overlay topologies improves retrieval performance. Loser et al. [12] in-
troduce the concept of semantic overlay clusters for super-peer networks. This work
aims at clustering peers that store complex heterogeneous schemes by using a super-
peer architecture. In [13], Lu et al. propose a two-tier architecture, according to which
a peer provides content-based information about neighbouring peers and determines

@ Springer

184 Distrib Parallel Databases (2009) 26: 181-205

how to route queries in the network. Along the same lines, Klampanos et al. [8] pro-
pose an architecture for IR-based clustering of peers, where a representative peer
(hub) maintains information about all other hubs and is responsible for query rout-
ing. Loser et al. [11] propose a three-layer organisation of peers (based both on peer
content and usefulness estimators) and suggest combining information from all lay-
ers for routing queries. In a similar spirit, Hidayanto et al. [4] propose self-organising
peers into communities based on their content (expert network), the issued queries
(interest groups), or both the content and the queries (hybrid groups).

Emphasising on protocols, Voulgaris et al. [29] propose an epidemic protocol®
that implicitly clusters peers with similar content. In [18], Penzo et al. propose a
strategy for incremental clustering of semantically related peers. Along the same
lines, Schmitz [23] assumes that peers share concepts from a common ontology
and proposes strategies for organising peers into communities with similar con-
cepts. iCLUSTER [20] extends these protocols by allowing peers with multiple in-
terests to form clusters. Jelasity and Montresor [6] observe that aggregation (i.e.,
global network information as average load) may reveal useful information while
self-organising in large-scale networks, and present epidemic protocols capable of
exploiting this information.

Focusing on modelling issues, Schmitz and Loser [24] present a rewiring model
along with evaluation metrics commonly used in SONs. In [25], Spripanidkulchai
et al. introduce the notion of peer clustering based on similar interests rather than
similar content. According to this work, peers are organised on the top of the existing
Gnutella network to improve retrieval performance. In a similar spirit, Li et al. [10]
propose creating a self-organising network based on the semantics of data objects
stored locally to peers. Aberer at al. [1] introduce a decentralised process that, relying
on pair-wise local interactions, incrementally develops global agreement and obtains
semantic interoperability among data sources. Parreira et al. [17] introduce the notion
of “peer-to-peer dating” that allows peers to decide which connections to create and
which to avoid based on various usefulness estimators. Koloniari et al. [9] model
peer clustering as a game, where peers try to maximise the recall for their local query
workload by joining the appropriate clusters.

All the works referred to above aim at providing architectural or modelling solu-
tions to support IR over SONS. In this work, rewiring is treated as an important system
component that needs to be further investigated and optimised. We adopt a simple and
general rewiring model and identify possible rewiring alternatives, the combination
of which make up a range of possible rewiring strategies worth exploring. We com-
pare rewiring alternatives in terms of efficiency and retrieval effectiveness and show
the benefit resulting from optimising the rewiring mechanism.

3 Overview

SON-based systems apply a periodic rewiring protocol to cluster peers with simi-
lar interests [10, 29] and a fireworks-like technique [16, 27] is used to route queries

5Epidemic protocols exploit randomness to disseminate information across peers.

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 185

within the network. Peer interests may vary from descriptions of document collec-
tions [13, 20], to topics in a hierarchy [8], schema synopses [7], or ontology concepts
[23]. In iCluster [20], the interests of a peer are identified by using its local document
collection, and a single peer has a tunable and dynamic number of interests depending
on its capabilities, collection size and content diversity. iCluster was the first system
to overcome the specialisation assumption [15] (i.e., each peer has only one interest)
common in SONSs.

3.1 Architecture

We consider a P2P network, where peers are responsible for serving both users
searching for information and users contributing information to the network. The
peers run the rewiring protocol and form clusters based on their likelihood to contain
similar content. Each peer is characterised by its information content, i.e. its docu-
ment collection, which may be either automatically (by text analysis) or manually
assigned to each document (e.g., tags or index terms). To identify its interests, a peer
categorises its documents using an external reference system, i.e. an ontology as in
[23] or a taxonomy such as the ACM categorisation system, or by clustering [3].
A peer may be assigned more than one interests. Each peer maintains a routing index
holding information for short-range and long-range links to other peers. Short-range
links correspond to intra-cluster information (i.e., links to peers with similar inter-
ests), while long-range links correspond to infer-cluster information (i.e., links to
peers having different interests).

Our architecture is general enough to cover fundamental design aspects of existing
semantic overlays: as typically assumed in the literature peers are categorised by their
content [8, 10, 13, 14, 20, 23, 25] and links to other peers involve not only similar
peers, but also dissimilar ones to support the connectivity between different clusters
as in [14, 20, 23, 25]. The rewiring procedure is executed locally by each peer and
aims at clustering peers with similar content, while queries are forwarded to peer
clusters that are similar to the issued query.

3.2 Basic protocols

The main idea behind SONS is to let peers self-organise into clusters with semanti-
cally similar content. Then, query execution is performed by identifying the cluster of
peers with similar content and by addressing a peer within this cluster. In this section,
we present the basic protocols that specify how peers join a SON and self-organise
into clusters and how queries are processed.

3.2.1 Joining protocol

When a peer p; connects to the network, it has to follow the join protocol. Initially,
pi categorises its documents into one or more categories. Consequently, p; may have
more than one interests [;,, with k¥ denoting the number of p;’s interests, stored in
its interest list I (p;). A peer interest is represented by the corresponding index terms
(if an external reference system has been used) or by a centroid vector (if documents
have been categorised by clustering).

@ Springer

186 Distrib Parallel Databases (2009) 26: 181-205

For each distinct interest [;;, peer p; maintains a separate routing index RI;,,
which contains short-range and long-range links. Entries in the routing index are of
the form (ip(p;), 1), where ip(p;) is the IP address of peer p; and I is the k-th
interest of p;. The amount of memory required to store the necessary information in
each peer is a few hundred bytes per routing index entry: a typical entry occupies 4
bytes for the IPv4 address of a node and 2 bytes for the port number, in addition to the
description of a peer interest (i.e., a vector of content terms). The number of routing
indexes maintained by a peer equals the number of its interests. Peers may merge or
split their routing indexes by merging or splitting their interests reliant to changes in
their content. A routing index is initialised (when a peer is joining the network, or
upon the bootstrapping) as follows: peer p; collects in R, the IP addresses of s + [
randomly selected peers. These links will be refined according to the interest [;;, of
pi using the rewiring protocol described in the next section. The computational cost
to update the index is O(s +), where s is the number of short-range links and [/ is the
number of long-range links.

In the following, for simplicity of the presentation, we assume that each peer p;
has only one interest /;. The same discussion applies for multiple interests, since
peers maintain one routing index per interest and the rewiring strategy is applied
independently for each peer interest.

3.2.2 Rewiring protocol

Peer organisation proceeds by establishing new connections (to similar peers) and by
discarding old ones. Each peer p; periodically (e.g., when its interests have changed)
initiates a rewiring procedure (independently for each interest) by computing the
intra-cluster similarity (or neighbourhood similarity)

1 .
NS; =~ > sim(I 1)), (1)

Vp_/'ERI,'

where s is the number of short-range links of p; (according to interest I;), I; is the
interest of peer p;, p; is a peer contained in R/;, and sim() can be any appropriate
similarity function. The neighbourhood similarity NS; is used here as a measure of
cluster cohesion. If NS; is greater than a threshold 6, then p; does not need to take
any further action since it is surrounded by similar peers. Otherwise, p; issues a
FINDPEERS(ip(p;), I;, L, Tg) message, where L is a list and tx is the time-to-live
(TTL) of the message. List L is initially empty and will be used to store tuples of the
form (ip(p;), 1;), containing the IP address and interests of peers discovered while
the message traverses the network. System parameters 6 and tg need to be known
upon bootstrapping.

A peer p; receiving the FINDPEERS () message appends its IP address ip(p;) and
its interest /; to L (or the interest most similar to /; if p; has multiple interests),
reduces Tg by one and forwards the message to the m neighbour peers (m < s) with
interests most similar to 7;. This message forwarding technique is referred to in the
literature as gradient walk (GW) [22, 23]. When tg = 0, the FINDPEERS () message
is sent back to the message initiator p; by using the contact information contained in
the message. Figure 1 illustrates the above rewiring procedure in algorithmic steps.

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 187

Procedure Rewiring(p;, I;, Tr, 8, m)
Initiated by p; when neighborhood similarity NS; drops below 6.

input: peer p; with interest I; and routing index RI;
output: updated routing index RI;

compute NS; = 1 . Z sim(1;, I)

if NS; < 6 then
L~ {}
create FINDPEERS()
Pk < Di
repeat

send FINDPEERS() to

m neighbours of py with interests most similar to I;

8: let p; be a neighbour of py receiving FINDPEERS()
9: L« L:{ip(p;),1;)
10: py < every p; receiving FINDPEERS()
11: TR «— Tr — 1
12: until 7 =0
13: return list L to p;
14: update RI; with information from L

ijERIi

RN e S

Fig. 1 The rewiring protocol

When the message initiator p; receives the FINDPEERS () message back, it utilises
the information contained in L to update its routing index RI; by replacing old short-
range links corresponding to peers with less similar interests with new links corre-
sponding to peers with more similar interests. Remark that for the linkage of the peers
the rewiring protocol takes into account peers’ interests, which stand for the content
(and not the number) of their documents.

Peers store long-range links in their routing indexes, which stand as short paths
to dissimilar clusters. For the update of the long-range links, peer p; uses a random
walk in the network to discover peers with dissimilar interests.

3.2.3 Query processing protocol

Let us assume that a user issues a query ¢ through peer p;. Initially, p; compares g
against its interest 7;.° If sim(q, I;) > 6, where sim() can be any appropriate similarity
function between a query and a peer interest and 0 is the similarity threshold, then p;
creates a message of the form QUERY (ip(p;), ¢, T»), Where 15, is the query TTL, and
forwards it to all its neighbours using the short-range links in R/;. This forwarding
technique is referred to as query broadcasting (or query explosion) [23]: the query is
broadcasted to the neighbours of p;, which (due to clustering) are similar to p; and
will (most likely) be able to answer ¢.

If sim(q, I;) <6, peer p; forwards a QUERY (ip(p;), q, Tr) message with query
TTL 7 to m peers connected to p; (using the short-range and the long-range links
in RI;) with interests most similar to ¢. The query message is thus, forwarded through

o1f pi has multiple interests then it compares ¢ independently against each interest.

@ Springer

188 Distrib Parallel Databases (2009) 26: 181-205

Procedure Query_Processing(q, p;, 75, 7o, 0, m)
Compares query q against the document collection of p;, retrieves
matching documents, and forwards g to the network.

input: query q issued by peer p; and threshold 6
output: list R of documents similar to ¢

if sim(q, I;) > 6 then
compare g against p;’s local document collection
if sim(q,d) > 0 then
R — R :: (p(d), m(d), sim(q, d))
send message RETRES(ip(p;), R) to p;
T < Tp — 1
forward QUERY () to all short-range links in RI;
else
forward QUERY () to m neighbours of p; with interests
most similar to ¢
10: Tf < Tf — 1
11: repeat the above procedure for p;’s neighbours
12: until 7y =0 or 7, =0

©CRASNE W

Fig. 2 The query processing protocol

distinct paths from peer to peer until a peer p; similar to the query is reached. Then,
q is broadcasted in the neighbourhood of this peer as described in the previous para-
graph. This query forwarding technique is referred to as fixed forwarding [23], since
forwarding proceeds until g reaches a cluster of similar peers. All forwarding peers
execute the aforementioned protocol and reduce 7, by one at each step of the for-
warding procedure. The combination of the two parts of query routing (i.e., fixed
forwarding and broadcasting) is referred to in the literature as fireworks technique
[16, 27].

Notice that the value of the broadcasting TTL t; is different from the value of
the fixed forwarding TTL tz. Typically, 7, is smaller than 77 since in broadcasting
the QUERY () message needs to reach peers only a few hops away (i.e., in the same
cluster of the message recipient). In the case of fixed forwarding the message needs
to explore regions of the network that are possibly far away from the query initiator.
Figure 2 presents the query processing protocol.

3.2.4 Document retrieval protocol

Let us assume a peer p; similar to the query g is reached. Apart from the forwarding
protocol, p; also applies the following procedure for retrieving documents similar
to g. Query g is matched against p;’s local document collection and all documents d
with sim(q, d) > 0, where sim() can be any appropriate similarity function between
a query and a document and 6 is the similarity threshold, are retrieved and ordered
by similarity to ¢. Subsequently, p; creates a result list R containing tuples of the
form (p(d), m(d), sim(q, d)) for each relevant document d, where p(d) is a pointer
to d and m(d) are metadata describing d (e.g., document title, author and an excerpt
of the document’s text in the style of search engine result presentation). The resulting
list is placed in a message of the form RETRES= (ip(p;), R) and is returned to the

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 189

peer that initiated the query using the contact information contained in the QUERY ()
message. In this way, query initiator p; accumulates the results obtained by different
peers, merges the different lists in a single list that contains unique entries sorted by
descending similarity and presents the results to the user.

4 Proposed rewiring strategies

In the following, several variants to the basic rewiring protocol are proposed cor-
responding to modifications in (i) the routing technique used by peers to forward
rewiring messages, (ii) the amount of information available to peers for updating
their short-range links, (iii) the technique for establishing links, and (iv) the strategy
used by peers to update their long-range links.

4.1 Forwarding of rewiring messages

A very important component of the rewiring protocol is the routing technique used
by the peers to forward the rewiring messages. We introduce four different message
forwarding techniques for the FINDPEERS () message and elaborate on the peer clus-
tering performance.

4.1.1 The Gradient Walk strategy

This strategy is used in the basic rewiring protocol, where a message recipient p;
forwards the FINDPEERS() message to the set of m peers stored in its routing index
RI ; with interests most similar to /;.

The idea behind the Gradient Walk (GW) strategy is to forward the rewiring mes-
sage to peers which are likely to be similar to /;, collect information about these
peers, use this information to update p;’s short-range links and eventually position
pi among similar peers. A drawback of this strategy is encountered for the case where
clusters of similar peers cannot be reached or have not yet been formed. This is usu-
ally the case at system bootstrapping and also, at periods of high churn, where peers
that initiate a rewiring process have low probability to discover other similar peers
clustered together. In such cases, GW is expected to lead to poor peer clustering.

4.1.2 The Random Walk strategy

Under the Random Walk (RW) strategy, a message recipient p; forwards the FIND-
PEERS() message to a set of m randomly chosen peers stored in RI;. This is imple-
mented by modifying the line 7 of Fig. 1 as follows:

send FINDPEERS() to m random neighbours of pg

The idea behind the RW strategy is to explore the network for peers with interests
similar to /; (the interest of the message initiator p;), by making no assumption on
the clustering of the network. In this way, at periods where the network is not well-
clustered, a random exploration will increase the probability of finding peers with

@ Springer

190 Distrib Parallel Databases (2009) 26: 181-205

interests similar to I;. Compared to the GW strategy, RW is expected to converge to
a clustered network faster. Since peer clustering is used to support IR functionality,
the RW strategy is also expected to present better retrieval performance than the GW
strategy.

4.1.3 The combined strategy

In the combined (GW+RW) strategy, a message recipient p; forwards the FIND-
PEERS() message with equal probability either to (i) a set of m randomly chosen
peers, or (ii) the set of m peers with interests most similar to the interest /; of the ini-
tiator peer p;. This is implemented by modifying the line 7 of Fig. 1. The GW+RW
strategy presented here resembles the strategy used in [23]. This strategy aims at
combining the benefits from the RW and GW strategies, as the RW strategy can be
applied in unclustered networks for reaching similar peers which are far apart from
each other, while the GW strategy can be applied for exploring neighbourhoods of
similar peers.

The rationale of applying both forwarding solutions at the same time is not only
to connect p; to similar peers discovered by forwarding the message to similar peer
clusters, but also by enabling propagation of the forwarding message to other similar
peers through non-similar peers. However, the GW+RW strategy combines the two
components in a naive way by invoking each component based on a random decision.

4.1.4 The informed strategy

Under the informed (inf-GWRW) strategy, a message recipient p; forwards the
FINDPEERS() message either to (i) a set of m randomly chosen peers, or (ii) the
set of m peers with interests most similar to the interest /; of the initiator peer p;, re-
lying on how well the network is clustered. This strategy goes one step further from
the GW+RW strategy, since it invokes each component based on an informed (rather
than random) decision. In inf-GWRW, p; takes into account how well the network is
organised and decides whether to use gradient or random walk for message forward-
ing. This is implemented by modifying line 7 of the pseudocode shown in Fig. 1 as
follows:
if NSy > 6 then
send FINDPEERS() to
m neighbours of pywith interests most similar to[;
else
send FINDPEERS() to m random neighbours of pi

Contrary to the GW+RW strategy, inf-GWRW puts emphasis on peer autonomy and
peer perception of network organisation.

4.2 Updating short-range links
In the basic organisation protocol, only the initiator of a FINDPEERS() message may

utilise the message contents to collect information about peers with similar interests
and update its routing index. In what follows, we examine the idea of letting also

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 191

peers along the forwarding path to utilise the information collected by the message.
In this way, other peers, aside from the initiator peer, may exploit this information to
update their routing indexes and improve clustering without incurring extra message
traffic.

To achieve this, we utilise a new system-wide parameter coined refinement prob-
ability o and let peers decide whether to exploit or not the information contained in
FINDPEERS () message they received. This decision is taken non-deterministically by
each peer in a fully decentralised way. Parameter o takes values in the interval [0, 1]
and is used as follows: every peer receiving a FINDPEERS() message may utilise the
information contained in it (i.e., the interests of previous message recipients) with
probability 0. When o = 0, no peer apart from the message initiator use the contents
of FINDPEERS() message, while when ¢ = 1, all peers participating in the forward-
ing of the FINDPEERS() message exploit the information contained in it to update
their routing indexes. When 0 < ¢ < 1, a peer p; receiving a FINDPEERS () message
exploits the information contained in it to update its routing index with probability
0. Notice that, when o = 0 this protocol is reduced to the basic protocol. System pa-
rameter o needs to be known upon bootstrapping. The use of g is implemented by
modifying the line 8 of Fig. 1 as follows:

let p; be a neighbour of p; receiving FINDPEERS()
pj generates a random number x € [0, 1]
if x > ¢ then updateRlj with information fromL

If peer p; receiving a FINDPEERS() message decides to utilise the information
in it, then p; updates its routing index RI; by replacing short-range links that are
outdated or pointing to peers with dissimilar interests with links found in the message.
It follows that, the initiator peer p; of FINDPEERS() message always explores the
information contained in the message to update its short-range links, since this peer
initiated the rewiring process.

Example I Let us assume a network where each peer can store only 2 links to other
similar peers (s = 2), rewiring TTL is tg = 2, and that some arbitrary peers pi, p2
and p3 that belong to the network are all interested in the same topic. Assume also,
that these peers are initially connected to each other as shown in Fig. 3(a). In the
following we demonstrate how peer organisation is affected by different values of o.

— 0 = 0. When peer p; decides to initialise a rewiring procedure, it sends a FIND-
PEERS() message with its interest to peer p2. Remember that (by definition) when
o = 0 no peer apart from the message initiator use the contents of the message.
Thus, p> just appends its own interest to it and forwards it to peer p3. Similarly,
p3 appends its interest to the message and sends it back to the initiator peer p;
(since T has reached 0). Subsequently, p; uses the information in the message
and connects to p3 since they have similar interests. The resulting (rewired) links
are shown in Fig. 3(b).

— o = 1. In this case, all forwarding peers exploit the information contained in the
FINDPEERS() message to refine their short-range links. When p; decides to ini-
tialise a rewiring procedure it contacts p;. Since ¢ = 1, p; uses the information

@ Springer

192 Distrib Parallel Databases (2009) 26: 181-205

(a) Initial connections between peers (b) Rewired peer connections for p = 0
p1,p2 and p3

OO OO O

(c) Rewired peer connections for o = 1 (d) A possible rewiring of connections
for0<po<1

Fig. 3 An example illustrating the usage of the refinement probability o

contained in the message and creates a link to p; as they have similar interests (re-
member that the message contains also the interest of the message initiator). Next,
p2 appends its interest to the message and forwards it to peer p3, which also uses
the information contained in the message and connects to both p; and p>. Simi-
larly, p3 appends its interest to the message and sends it back to pj that in turn,
updates its routing index. The resulting links are shown in Fig. 3(c).

Notice that, p1, p2 and p3 have all their short-range links occupied with peers
that have similar interests simply by using the rewiring message that p; initiated.
To achieve this when o = 0 would require more rewiring messages, since p, and
p3 would need to initiate their own rewiring procedure to collect information about
similar peers and refine their links. In our example setting, 0 = 1 seems to achieve
a good result by organising p1, p» and p3 in a fully-connected cluster. However,
this cluster (Fig. 3(c)) is isolated from the rest of the similar peers that may exist
in the network, since there is no free short-range link to connect to other similar
peers (remember that s = 2). Creating isolated peer clusters has a negative effect
in recall, as a query might not reach all relevant clusters in the network.

Remark that allowing peers to store more short-range links in their routing in-
dexes could also eliminate the isolated peer clustering problem. However, there
is a trade-off related to the size of the routing index. Increasing the number of the
short-range links eliminates the probability to create isolated peer clusters, but also
results in increasing the number of peers belonging in a neighbourhood, which in
turn entails more ambiguous peer clusters. However, the idea of peer rewiring is
to cluster similar peers together, rather than let each peer has a vast knowledge
of the network, and based on this clustering achieve good retrieval performance.
In addition, increasing the number of short-range links stored by each peer results
in increasing the message traffic in the network, since a query, according to the
query processing protocol, is broadcasted in the neighbourhoods of similar peers.
Consequently, the number of short-range links stored by a peer must be kept low
compared to the number of peers in the network.

— 0 < o < 1. To avoid generating excess message traffic during rewiring (as with
o = 0) and also creating isolated peer clusters (as with o = 1), ¢ should be appro-

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 193

_r - .*;..
T & b ! *.,':‘ -
i - -
T A '
b
- =® o i N
” L - \ . .,
- -
- - -
(a) initial network (b) o=0 (c)o=1
topology

Fig. 4 An example illustrating network organisation when using different values of o

priately tuned to a value between 0 and 1. Figure 3(d) shows a possible network
organisation when O < ¢ < 1 (in this case only peer p» utilised the information in
the rewiring message initiated by peer pp).

Figure 4 illustrates how o affects peer clustering. The initial peer connections
are shown in Fig. 4(a). Dark-coloured nodes represent peers of the same category,
whereas light-coloured nodes represent peers from other categories that the former
are connected to. Notice that, when ¢ = 0 most of the similar peers are clustered
together, but there are also peers that are hard to reach (dark-coloured peers in the
lower right part in Fig. 4(b)). When ¢ = 1 peers of the same category have formed
two well-connected but disjoint neighbourhoods (Fig. 4(c)). This reveals an inherent
weakness of rewiring: similar peers are not always clustered together, since they may
form more than one clusters. Notice that this will also affect retrieval performance
since queries are not always capable of locating all disjoint clusters in the network.

To recap, refinement probability o can be used to tune the number of peers that
update their links by exploiting the rewiring messages initiated by other peers. In
general, when o > O the network will converge faster to a clustered peer organisa-
tion, while with o < 1 peers are discouraged from using the same information to
refine their short-range links. This results in creating clusters where at least one path
connecting all similar peers exist, which in turn increases retrieval effectiveness.

4.3 Introducing symmetric links

In the basic organisation protocol, when a peer p; discovers that its interest is similar
to that of a peer pj, it is not entailed that p; is aware of this similarity. We modify
the basic protocol to facilitate symmetric links (SL) among peers. Under this strategy,
if a peer p; discovers another similar peer p; through a FINDPEERS() message, p;
updates its routing index RI; and sends a SIMPEER(ip(p;), I;) message to p; to
inform it that they share similar interests. This is implemented by modifying the line
14 of Fig. 1 as follows:

update Rl; with information from L
send SIMPEER(ip(p;), ;) to pj: pj € L, sim(1;,1;) >0

@ Springer

194 Distrib Parallel Databases (2009) 26: 181-205

When p; receives a SIMPEER() message, it uses the information in it to decide
whether to refine or not its short-range links with a link to p;. Notice that p; may
decide not to update its routing index RI; if it is already connected to similar peers,
i.e. sim(1}, Iy) > sim(I;, I;) for all interests I in R ;.

Notice that this symmetry in link creation is not enforced by any way underlining
peer autonomy. Notice also, that the SIMPEER() message is sent only when p; up-
dates its routing index. The only cost associated with this modification is one extra
message for each RI; update.

The idea behind this strategy is to exploit information discovered through the
rewiring procedure of a peer to update links of other peers. This in turn, decreases
the time required to create a clustered network. However, creating clusters of similar
peers with the SL strategy can result in highly coherent peer neighbourhoods, that in
turn increase the probability to create isolated cliques of similar peers (similarly to
the case of p = 1).

4.4 Updating the long-range links

Long-range links in a SON are exploited to facilitate long jumps in the network and
allow reaching distant peer neighbourhoods with small communication overhead. The
only requirement that needs to be met for the long-range links of a peer p; is to point
to peers that are not similar to p;. We present two strategies that can be used by peers
to obtain and maintain such links.

4.4.1 The Random Sampling strategy

According to the Random Sampling (RS) strategy which is used in the basic proto-
col, a peer p; creates a FINDDISPEERS(ip(p;), I;, Tr) message and forwards it in
the overlay to search for peers with dissimilar interests. The message is forwarded in
the network using a random walk strategy until message TTL tg reaches zero. Then,
peer p; that received the message compares its interest /; against /; contained in the
message, if sim(/;, I;) < 6 p; appends its IP address ip(p;) and its interest /; to
the message and sends it back to p;. Otherwise, p; sends an appropriate message to
notify p; that they share similar interests. A peer p; that receives a FINDDISPEERS()
message back checks whether it already has a long-range link to a peer py for which
sim(1, Iy) > 6. 1f so, p; disregards the message and re-initiates the procedure, since
it already stores a short path towards the cluster that both p; and p; belong. Other-
wise, p; updates the long-range links of RI; with a pointer to p;.

4.4.2 The Biased Sampling strategy

The idea behind the Biased Sampling (BS) strategy is to use the rewiring protocol and
the corresponding rewiring messages to collect information about non-similar peers.
Under this strategy, a peer p; that receives a FINDPEERS() message uses the infor-
mation contained in it to update its long-range links as follows. It randomly selects
a peer p; contained in the message, for which sim(l;, I;) < 6 and sim({;, I;) <0
holds, for all its long-range links py. In this way, the long-range links of p; contain

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 195

(i) peers with interests dissimilar to /; and (ii) peers with dissimilar interests between
each other.

Notice that peers do not have to explicitly initiate a rewiring procedure and the
network is not loaded with extra messages. However, peers that belong in the same
neighbourhood will tend to have high overlap in their long-range links, since they use
the same messages to acquire these links. This biased sampling of the network may
reduce retrieval effectiveness, since queries will follow similar routes and thus, leave
parts of the network unexplored.

4.5 Combining all together

All the modifications to the basic rewiring protocol discussed above can be combined
to increase the retrieval effectiveness and reduce the message overhead of any SON-
based system. Summarising, the different rewiring strategies presented earlier are the
following: (i) GW, RW, GW+RW, or inf-GWRW, (ii) ¢ taking values in the inter-
val [0, 1], (iii)) SL or non-SL, and (iv) RS or BS. Since the proposed strategies can
be utilised independently of each other, this creates a large space of possible com-
binations. Notice that different (combinations of) rewiring strategies may emphasise
recall, while others may be efficient in terms of network traffic. In the next section,
we show how each individual strategy affects the performance of the basic protocol
and also, identify interesting strategy combinations that can further improve system
performance.

5 Experimental evaluation

In this section, we present our evaluation of the proposed rewiring protocols using
two real-world datasets with web and medical documents.

Datasets. The first dataset contains over 556,000 web documents from the TREC-
6’ collection belonging in 100 categories and has been previously used to evaluate
IR algorithms over distributed document collections (e.g., [30]). The second dataset
is a subset of the OHSUMED TREC8 document collection that contains over 30,000
medical articles from 10 different categories. The queries employed in the evaluation
of both corpora are strong representatives of document categories and are issued from
random peers in the network. Notice that this setting is a stress test for a SON, since
we do not assume a query distribution that follows peers’ interests.

Setup. 'We consider N loosely-connected peers, each of which contributes docu-
ments in the network from a single category. At the bootstrapping, peers are con-
nected as described in Sect. 3.2.1. The base unit for time used in the experiments is
the period ¢. The start of the rewiring procedure for each peer is randomly chosen
from the interval [0,4K -] and its periodicity is randomly selected from a normal

7http://boston.lti.cs.cmu.edu/callan/Data/ .
8http://trec‘nist. gov/data/t9_filtering.html.

@ Springer

http://boston.lti.cs.cmu.edu/callan/Data/
http://trec.nist.gov/data/t9_filtering.html

196 Distrib Parallel Databases (2009) 26: 181-205

Table 1 Baseline parameter values

System parameter Symbol Value Routing parameter Symbol Value
peers N 2,000 rewiring TTL TR 4
short-range links s 8 fixed forwarding TTL Tf 6
long-range links I 4 broadcast TTL T 2
similarity threshold 0 0.9 message fanout m 2

distribution of 2K - ¢, in the spirit of [20, 23]. Therefore, each peer starts (and goes
over again) independently the rewiring process. We start recording the network activ-
ity at time 4K - ¢, when all peers have initiated the rewiring procedure at least once.
We used a network size of 2,000 peers and our results were averaged over 25 runs (5
random initial network topologies and 5 runs for each topology). The average number
of peers per class for the TREC-6 (resp. OHSUMED) corpus was 20 (resp. 200), with
standard deviation 4.42 (resp. 68.8). The simulator used to evaluate the rewiring pro-
tocols and their modifications was implemented in C/C++ and all experiments were
run on a Linux machine. The baseline parameter values used for the experiments are
summarised in Table 1.

Determining the size of the routing index is an important task since it affects both
retrieval effectiveness and network traffic. Small routing tables may result in a poorly
organised network (and thus low retrieval performance), while large routing indexes
cause high traffic at query time due to excessive broadcasting. In this work, the size
of the routing index is determined by experimentation. A study that discusses how to
set (some of) the parameters of Table 1 can be found in [20]. More elaborate methods
for finding the appropriate size of the routing index is an important issue for future
research.

Performance measures. As it is typical in the evaluation of P2P IR systems, per-
formance is measured in terms of network traffic and IR effectiveness. The network
traffic is measured by recording the number of rewiring (resp. search) messages sent
over the network during rewiring (resp. querying). The IR effectiveness is evaluated
using recall, i.e. the number of relevant documents retrieved over the total number of
relevant documents in the network. Additionally, recall/(search) message is used to
quantify a benefit/cost metric. Notice that precision is always 100% in our approach,
since only relevant documents are retrieved. Our evaluation is goal-oriented: we are
interested in measuring the system performance directly, without resorting to cluster-
ing quality measures (e.g., [5]) that might give misleading results [19]. One strategy
is better than another if it presents high recall for less network traffic.

Document distribution. In the following, we examine the dependence of the system
performance on the distribution of the documents over the peers. Thus, for a given
rewiring strategy we measure both retrieval performance and network traffic for three
different real-life document distributions. Figure 5 illustrates retrieval performance,
in terms of recall and search messages, as a function of time for the RW strategy when
the documents are distributed to the peers (i) uniformly, (ii) using a heavy-tailed dis-
tribution (i.e., zipf) and (iii) using the normal distribution. As shown in Fig. 5(a),

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 197

0.7 — .
uniform —&— N i 280
0.65 normii —o— Pt s N
06 - s L
: T g %
0.55 m’zfjcﬁ % 240 e
=l g 2 m&a&e
5 05 2 20
2 g "R
0.45 = 200
04 §
U e re—— S5
0.35) ‘7",’{ x
03 160l tomil —e— i
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
time units x 1000 time units x 1000
(a) Recall (b) Search messages per query

Fig. 5 Performance under different document distributions for the RW strategy (TREC-6)

07 ‘aw —a— T 07 OHggé%DEgE
0.65F owity - al 17 R—— -
06 T e R e]
/igd MW ;
. 055 L e
S //f = 04 §
3 0.5 §
= 045 " 03r ke]
04 02f]
£
0.3 0.1F 4
0.3
4 6 g§ 10 12 14 16 18 20 0 i i
time units x 1000 GW RW GW+RW inf-GWRW
(a) Recall (TREC-6) (b) Recall for the 2 corpora

Fig. 6 Retrieval effectiveness for different forwarding strategies

recall is marginally affected by the document distribution. In terms of network traf-
fic, Fig. 5(b) illustrates that the number of search messages is not affected by the
document distribution. In the rest of this section, we use the uniform distribution to
assign documents to peers.

5.1 Using different forwarding strategies

Figure 6(a) illustrates the retrieval effectiveness of the network as a function of
time for different forwarding strategies. At the beginning of the rewiring procedure
(t = 4K) peers are still randomly connected, the network is not yet organised into
clusters of peers with similar interests and the values for recall are low (around 35%).
After some time, when all peers have executed the rewiring protocol more than once
(t = 8K), we can observe the effect of the different forwarding strategies to peer
organisation and consequently, to retrieval effectiveness. The GW strategy improves
recall only by 3%, which can be attributed to poor network organisation. The RW
strategy demonstrated the best retrieval performance overall achieving up to 12%
better recall than GW+RW and up to 8% better recall than inf-GWRW. In turn, the
inf-GWRW strategy outperforms GW+RW achieving up to 5% better recall.

@ Springer

198 Distrib Parallel Databases (2009) 26: 181-205

The fact that the RW strategy results in the best retrieval performance and also
converges faster towards a clustered organisation of peers is attributed to the way
it organises the network. The RW strategy explores the network in a random fash-
ion increasing the probability to discover peers with similar interests, since peers
are initially randomly connected. Even when similar peers start to get organised into
clusters, using the RW strategy proves efficient in discovering isolated peers. The
GW strategy explores peers’ neighbourhoods to discover peers with similar interests
and yields poor results, since in an unclustered (random) network peers are not al-
ways connected to other similar peers. The GW+RW strategy performs a random
selection of a forwarding strategy at each invocation and is thus, limited by the bad
performance of the GW strategy. The inf-GWRW strategy initially performs at least
as good as the RW strategy. However, as the network converges towards a stable
network, peers tend to choose the gradient walk for the forwarding of the rewiring
messages reducing the probability to discover isolated peers.

Figure 6(b) shows the recall for TREC-6 and OHSUMED corpora when the net-
work is organised using different forwarding strategies. The values of recall presented
in the figure correspond to an organised network (+ = 20K). The RW strategy proves
to be the best for both corpora in terms of recall.

The lower values of recall in the case of OHSUMED corpus are due to the different
number of peers per class. Specifically, there are 200 peers per class when using the
OHSUMED corpus, whereas there are 20 peers per class in the case of TREC-6
corpus. This difference in the number of peers per class affects retrieval performance
in two ways: (i) The rewiring process tries to collect all similar peers in the same
neighbourhood. Naturally, the smaller the number of peers per class is, the easier and
the faster all similar peers are clustered together. When using the TREC-6 corpus the
rewiring task is easier compared to when the OHSUMED corpus is used. (ii) Recall
depends (among others) on the broadcasting TTL 7, and on the number of short-
range links s stored by each peer. Even though all similar peers are gathered together
in the same neighbourhood (no matter their number), there is the case that a query
may not reach all peers within the cluster if the diameter of the corresponding peer
neighbourhood is bigger than s™. We choose to use small values for s and 75, since
peer clusters are more cohesive and network traffic is kept low.

Figure 7 presents network traffic (rewiring and search messages) for the four
strategies over time. In terms of rewiring messages (Fig. 7(a)), the network initially
presents a high message overhead, which is greatly reduced (over 200%) for the RW,
the GW+RW and the inf-GWRW strategies when the network starts to get organ-
ised into clusters (¢ > 8K). Apparently, the GW strategy does not manage to reach
an effective peer organisation and peers continue executing the rewiring protocol to
discover peers with similar interests, which leads to high message traffic. The other
three strategies manage to efficiently and quickly organise the network and main-
tain an effective peer organisation at a small communication cost. All strategies need
high number of search messages (Fig. 7(b)) when the network is not yet organised
into coherent neighbourhoods (left-most points in the x-axis). However, this message
overhead is decreased (65% decrease) for RW, GW+RW and inf-GWRW as the peers
get organised into clusters with similar interests (right-most points in the x-axis). The
GW strategy does not improve network traffic, as it does not manage to efficiently or-

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 199

5 600 > 300
2 ?/ g o
5 50044 A A A 5 20
a \m/ L ¥ \/ o}
@ [=¥
£ 400 % 260 %x\
<
2 \‘k 2 240
€ 300 s 8 R
£ RW —%— 2 220
50 X, x GW+RW —%— =) TR
E 200y inf-GWRW —o— - = 200 ‘x&ﬂ
2 é@@g% . § ’ng%;xxx
£ 100 Va =, L, i - R
2 S g0 Lmoiy —— e
** 4 6 § 10 12 14 16 18 20 4 6 8§ 10 12 14 16 18 20
time units x 1000 time units x 1000
(a) Rewiring messages (TREC-6) (b) Search messages per query (TREC-6)

Fig. 7 Network traffic (rewiring and search messages) for different forwarding strategies

0.75 e 0.75
0.7 - 0.7 fgxesxx ool
0.65 e e 065 P sae ==
. p=1.00 --&---] . o e
£r
0.6 0.6 H/ Tzzz*fzzzk
= - : o
= 0.55 = 0.55 o
Q Q 2{2
S 05t epsssk 2 05
045" 0457}
0.4 04 o0~
0.35 0.35 -
03 03 p=1.00 —o-
Y4 6 8 10 12 14 16 18 20 406 8§ 10 12 14 16 18 20
time units x 1000 time units x 1000
(a) Recall when using GW strategy (b) Recall when using RW strategy

Fig. 8 Retrieval effectiveness for different values of ¢ (TREC-6)

ganise the network. Notice that the inf-GWRW and GW+RW strategies performs
slightly better in terms of overall network traffic compared to the RW strategy.

5.2 Varying the refinement probability

Figure 8 illustrates retrieval effectiveness for various values of o as a function of
time for two forwarding strategies: (i) GW used in our basic protocol and (ii) RW
exhibiting better retrieval performance than its competitors.

Figure 8(a) illustrates the way o affects retrieval performance when the GW strat-
egy is used. When the network is unorganised (+ = 4K) the queries cannot be routed
efficiently resulting in low recall (approximately 35%). When the network starts to
organise (¢ = 6K), higher values of recall are achieved. The retrieval performance of
GW strategy improves 50% for ¢ > 0, which is attributed to the fact that more peers
update their short-range links by exploiting the rewiring messages.

Figure 8(b) presents recall over time when using the RW strategy. When g is low
(i.e., <0.5), the network is clustered at a slow rate since more peers need to initiate the
rewiring process. As o increases, the network converges faster to organised clusters
of peers. When g is high (i.e., > 0.5), network organisation and recall have converged

@ Springer

200 Distrib Parallel Databases (2009) 26: 181-205

Table 2 Performance for RW

when the network is organised @ OHSUMED TREC-6
(t =20K) for both corpora recall search recall/msg recall search recall/msg
msgs (><10*3) msgs (><10*3)
0.00 0.53 282 1.88 0.69 172 4.01
025 0.68 282 2.41 0.68 142 4.79
050 0.55 232 2.37 0.72 140 5.14
075 0.54 238 2.31 0.66 141 4.68
1.00 0.58 261 222 0.67 140 4.79

to a stable state fast and remain unchanged. In these cases, the relatively low values of
recall imply the existence of isolated peers. The higher value of recall is achieved for
o0 = 0.5, i.e. when half of the forwarding peers use FINDPEERS() message to update
their short-range links.

In general, when ¢ > 0 the network converges faster to a clustered peer organi-
sation by using less messages, and when o < 1 peers are discouraged from creating
isolated clusters. The ideal value for o is the one resulting in connected clusters (i.e.,
there is a path connecting all similar peers), while using minimum number of rewiring
messages. Table 2 presents recall, search cost and recall/message for the RW strat-
egy, for varying o and over both corpora in an organised network (f = 20K). When
o0 = 0, RW presents the lowest recall/message for both corpora. When o = 0.50, RW
presents a good performance for both corpora (lowest message traffic, highest and
second highest recall/message and a high recall value). The best value of ¢ in terms
of recall is 0.25 when using OHSUMED corpus and 0.5 when using TREC-6 corpus.

The different effect of o on system performance across different corpora is at-
tributed to the different number of peers per class. Remember that increasing the
value of o, the probability of creating fully-connected peer clusters is also increased.
Given that the number of short-range links is much smaller than the number of peers
per class, in the case of OHSUMED corpus increasing the value of o turns similar
peers to create many isolated clusters thus, resulting in bad retrieval performance.
Conclusively, the higher the number of peers per class is, the lower the value of o
should be. In this way, more rewiring messages may be generated, getting though an
efficient peer clustering.

Figure 9(a) shows the number of messages per query for o = 0 (i.e., the value
used in the basic rewiring protocol) and 0.5 (i.e., the value that resulted in the best
retrieval performance) for the GW and RW strategies. When the network is not yet
organised a higher number of search messages is needed. This message overhead is
decreased (65% decrease for RW) when o = 0.5 as peers get organised. When o =0,
the network converges slowly to organised peer neighbourhoods and the message
overhead decreases with a slower rate.

In terms of rewiring messages, the network initially presents a high message over-
head, which is greatly reduced (by a factor of 15) when the network organises into
coherent clusters (around moment 6K) for o > 0. When o = 0, the network does
not manage to quickly reach an effective peer organisation and peers keep executing
the rewiring protocol presenting higher message overhead and slower decrease rate

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 201

E‘ 300 E 300 hon-gt, b:g.% -
S =(). —%
S 2ke 2.280%w non S po0'50 -8
= Bg. o ’\:\S\S* SL. p=0.50 -
g 260 N awpsior —5=1 8,260 e
7] o] ' GW, pfu_su — w i
gﬂ 240 lx HE’E\ Ex gﬁgg s gﬂ 240 ! ;\ B\&&f
2 2200 2 220 b
5] H . * o \‘(“S\&f
£ 2000 Sa £ 200 e
S ‘: Tug, S &\ Ssgo
i 8. i
o fme
:E 140 - KKK KK :i 140 > - R
4 6 8 10 12 14 16 18 20 4 6 § 10 12 14 16 18 20
time units x 1000 time units x 1000
(a) Number of search messages per query (b) Number of search messages per query
when using GW or RW strategy, for o = 0 when using RW strategy, for SL and non-SL
and 0.5 for p = 0 and 0.5

Fig. 9 Search cost for different rewiring strategies (TREC-6)

0.75 E—
07 m"'%;g;gigg 4*19* | 0.75 R KKK AT KRR
o o 07| gatiassiies sssbaTEIEE)
‘ 0.65% 58t
06 ool A rzzzﬂz’%
% 0.55 = 0.55 mzz
Q 8 . H j)z
L 05 L S 05](=
0.45 ;f 0.45 f
04 0.4 non-SL, p=0.00 —&—
0.35 0.35 m"—gt? g:§;§§ e
3 . L g0 %
0 4 6 § 10 12 14 16 18 20 034 6 & 10 12 14 16 18 20
time units x 1000 time units x 1000
(a) Recall when using GW strategy (b) Recall when using RW strategy

Fig. 10 Retrieval effectiveness for SL and non-SL corresponding to o = 0 and 0.5 for different forwarding
strategies (TREC-6)

when compared to the case where o > 0. The corresponding graphs are omitted due
to space constraints.

5.3 Symmetric links

Figures 10(a) and (b) show the effect of symmetric versus non-symmetric links in the
retrieval performance over time for two different forwarding strategies and for two
different values of o. The data set used in this set of experiments is TREC-6. The
SL strategy, when used with the GW strategy, achieves better retrieval performance
(about 7%) compared to the basic rewiring protocol (Fig. 10(a)). The effect of the SL
strategy on the retrieval performance is small in the case of o = 0.50, since some of
the links introduced by SL are also created due to ¢ (forwarding peers have already
updated their links to point to previous message recipients and thus, SL has no ad-
ditional effect on clustering). The effect of creating symmetric links is higher in the
case of the RW strategy, since more similar peers per rewiring process are discov-
ered (Fig. 10(b)). The SL strategy improves retrieval performance by 10% for both

@ Springer

202 Distrib Parallel Databases (2009) 26: 181-205

Table 3 Recall for RW when

the network is organised @ OHSUMED TREC-6

(t =20K) for both corpora non-SL SL non-SL SL
0.00 0.53 0.64 0.69 0.73
0.25 0.68 0.57 0.68 0.75
0.50 0.55 0.56 0.72 0.75
0.75 0.54 0.54 0.66 0.76
1.00 0.58 0.54 0.67 0.74

values of o and facilitates network converge towards organised peer clusters. Notice
that when using the SL strategy along with o = 0.5, the network organises faster than
when using the SL strategy or o = 0.5 alone. Consequently, creating symmetric links
has a positive effect in retrieval performance.

Table 3 presents recall in an organised network (¢ = 20K) for both corpora and for
different values of p. Notice that when ¢ > 0, SL does not always improve recall on
the OHSUMED corpus. When the OHSUMED corpus is used, there are many peers
per category and, even though similar peers are all clustered together, the retrieval
performance is also affected by other parameters, as the number of short-range links
s and the broadcasting TTL 1.

Figure 9(b) illustrates on the number of messages per query for the RW strategy
and for two values of o as a function of time. When o = 0, the SL strategy decreases
network traffic by 18% when compared to the case of non-symmetric links between
peers. The effect of the SL strategy in network load is smaller when o = 0.50. By
cross examining the results presented in Figs. 10(b) and 9(b), we conclude that the
SL strategy manages to efficiently organise peers and thus, improve retrieval effec-
tiveness and search costs.

The SL strategy achieves better network organisation and thus, better retrieval
performance with low communication cost in terms of rewiring messages. Notice
that this strategy was expected to impose extra message traffic, due to the additional
messages sent for supporting the symmetric links. In fact, the SL strategy decreases
message traffic as it exploits existing traffic to rewire the links of the peers. In terms
of rewiring, our experiments show that the SL strategy requires in general 10% less
messages to organise the network and also, results in a faster clustering when com-
pared to the non-SL strategy.

5.4 Updating long-range links

The RS and BS strategies are used for updating the long-range links. Notice that,
we do not explore o or SL at the same time since they do not affect the long-range
links. The retrieval performance of RS shows an average improvement of about 5%
over BS. In terms of message overhead, the RS strategy imposes around 15% more
rewiring messages as it uses extra message traffic to discover peers with dissimilar in-
terests and presents almost the same number of search messages per query compared
to the BS strategy. From this set of experiments, we conclude that the update strat-
egy for the long-range links has small impact on the performance, since both strate-
gies perform similarly, with RS presenting slightly better retrieval but also higher

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 203

08 2 300
0.7 [ropeaed R S, 2s0bx
¥ ek o !
ol R0 -
= e 5,240, . e ot S T
S 04fyx 7o %
- 1 ..
03 basic rewiring & g 200 T
composite rewirin g - 5 i o
02 message-bounded ﬂti-ihrr:glz) f g 180 X Hox —_—
0.1 < 160 e
)
04 6 8 10 12 14 16 18 20 * 14'(14 6 8 10 12 14 16 18 20
time units x 1000 time units x 1000
(a) Recall (b) Number of search messages

Fig. 11 Comparison of different rewiring protocols (TREC-6)

message traffic during rewiring. The corresponding graphs are omitted due to space
constraints.

5.5 Composite rewiring

In the following, we combine the best strategies identified above. The correspond-
ing strategy is called composite rewiring and its performance is compared against (i)
the basic rewiring protocol presented in Sect. 3.2.2, (ii) the clustering approach of
Schmitz [23], modified for an IR task and using the parameter values of Table 1 to
obtain results comparable to our setting, and (iii) a message-bounded flooding algo-
rithm, i.e. a modified flooding strategy that terminates when reaching a predetermined
number of messages (in our case the number of messages of the most efficient strat-
egy). Message-bounded flooding was implemented to serve as a baseline for the rest
of the strategies.

Composite rewiring strategy uses the best strategies as identified in the previous
sections: (i) comparing the different forwarding strategies, the RW strategy presented
the best performance, (ii) experimenting with different values for o, o = 0.5 resulted
in the best retrieval performance, (iii) showing the effect of symmetric links, the
SL strategy achieved better retrieval performance with low communication cost, and
(iv) experimenting on strategies for updating the long-range links, the RS strategy
performed slightly better than its competitor. Therefore, composite rewiring consists
of utilising the RW forwarding strategy, o = 0.5, the SL strategy for creating short-
range links, and the RS strategy for updating long-range links. This combination is
expected, according to the results presented earlier, to perform well in terms of recall,
while imposing lower message costs than competitors.

Figures 11(a) and (b) illustrate the retrieval performance and communication load
as a function of time for the different rewiring protocols. The data set used in this
set of experiments is TREC-6. In Fig. 11(a), we observe that composite rewiring
achieves a 97% increase in recall when compared to the basic rewiring and about
21% increase when compared to the approach of [23]. In Fig. 11(b) we observe that
the composite strategy is the most efficient in terms of message traffic (remember
that flooding is message-bounded). Similar results have been also obtained for the
OHSUMED corpus.

@ Springer

204 Distrib Parallel Databases (2009) 26: 181-205

5.6 Discussion

The different rewiring components (as identified in Sect. 4) are: (i) GW, RW,
GW+RW, or inf-GWRW strategy, (ii) o taking values in the interval [0, 1], (iii) SL
or non-SL strategy, and (iv) RS or BS strategy. There are many choices to combine
making up a range of possibilities worth exploring. Notice that different combina-
tions of rewiring strategies may emphasise recall and behave slightly worse in terms
of message costs and vice versa.

When message traffic is in question, the inf-GWRW strategy performs better while
achieving reasonably high recall values (Fig. 6). The RW strategy emphasises recall
for a small increase in message traffic (Fig. 6). Setting o = 0 leads to increased traffic
and moderate retrieval performance, while a value of 0.25 < ¢ < 0.75, achieves a
good trade-off between traffic and retrieval effectiveness (Fig. 8). The SL strategy
improves the overall system performance (Fig. 10), contrary to the updating strategy
of long-range links that shows no significant performance differences.

6 Conclusion

We presented a comprehensive study of both existing and innovative strategies for
rewiring protocols and showed how performance (in terms of retrieval effectiveness
and communication overhead) depends on each component of the rewiring protocol.
Subsequently, we have identified a combination of components that outperforms ex-
isting rewiring protocols. We are currently working on a rewiring protocol for highly
dynamic settings, where peer churn and data dynamicity follow appropriate models
that exist in the literature. We study the way churn affects the system performance
and try to identify the rewiring protocol that performs well under dynamic networks.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: The Chatty web: Emergent semantics through gossip-
ping. In: WWW (2003)

2. Garcia-Molina, H., Yang, B.: Efficient search in peer-to-peer networks. In: ICDCS (2002)

3. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, Cluster Analysis. Academic Press
(2001)

4. Hidayanto, A., Bressan, S.: Towards a society of peers: Expert and interest groups in peer-to-peer
systems. In: OTM Workshops (2007)

5. Hui, K., Lui, J., Yau, D.: Small-world overlay P2P networks: Construction, management and handling
of dynamic flash crowds. Computer Networks (2006)

6. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay networks. In:
ICDCS (2004)

7. Kantere, V., Tsoumakos, D., T.K.S.: Semantic grouping of social networks in P2P database settings.
In: DEXA (2007)

8. Klampanos, 1., Jose, J.: An architecture for information retrieval over semi-collaborating peer-to-peer
networks. In: ACM SAC (2004)

@ Springer

Distrib Parallel Databases (2009) 26: 181-205 205

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. Koloniari, G., Pitoura, E.: Recall-based cluster reformulation by selfish peers. In: NetDB (2008)
. Li, M., Lee, W.C., Sivasubramaniam, A.: Semantic small world: An overlay network for peer-to-peer

search. In: ICNP (2004)

Loser, A., Tempich, C.: On ranking peers in semantic overlay networks. In: WM (2005)

Loser, A., Wolpers, M., Siberski, W., Nejdl, W.: Semantic overlay clusters within super-peer networks.
In: DBISP2P (2003)

Lu, J., Callan, J.: Content-based retrieval in hybrid peer-to-peer networks. In: CIKM (2003)

Merugu, S., Srinivasan, S., Zegura, E.: Adding structure to unstructured peer-to-peer networks: The
use of small-world graphs. Parallel Distributed Comput. 65(2), 142-153 (2005)

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmer, M., Risch, T.:
EDUTELLA: A P2P networking infrastructure based on RDF. In: WWW (2002)

Ng, C.H., Sia, K.C., Chang, C.H.: Advanced peer clustering and firework query model in the peer-to-
peer network. In: WWW (2002)

Parreira, J.X., Michel, S., Weikum, G.: p2pDating: Real life inspired semantic overlay networks for
web search. Information Processing and Management (2007)

Penzo, W., Lodi, S., Mandreoli, F., Martoglia, R., Sassatelli, S.: Semantic peer, here are the neighbors
you want! In: EDBT (2008)

Raftopoulou, P., Petrakis, E.: A measure for cluster cohesion in semantic overlay networks. In: LSDS-
IR (2008)

Raftopoulou, P., Petrakis, E.: iCluster: A self-organising overlay network for P2P information re-
trieval. In: ECIR (2008)

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable net-
work. In: ACM SIGCOMM (2001)

Sacha, J., Dowling, J., Cunningham, R., Meier, R.: Discovery of stable peers in a self-organising
peer-to-peer gradient topology. In: DAIS (2006)

Schmitz, C.: Self-organization of a small world by topic. In: P2PKM (2004)

Schmitz, C., Loser, A.: How to model semantic peer-to-peer overlays? In: P2PIR (2006)
Spripanidkulchai, K., Maggs, B., Zhang, H.: Efficient content location using interest-based locality in
peer-to-peer systems. In: INFOCOM (2003)

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Trans. Netw.
11(1) (2003)

Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing semantic
overlay networks. In: SIGCOMM (2003)

Triantafillou, P., Xiruhaki, C., Koubarakis, M., Ntarmos, N.: Towards high performance peer-to-peer
content and resource sharing systems. In: CIDR (2003)

Voulgaris, S., van Steen, M., Iwanicki, K.: Proactive gossip-based management of semantic overlay
networks. Concurr. Comput.: Pract. Experience 19(17) (2007)

Xu, J., Croft, W.: Cluster-based language models for distributed retrieval. In: ACM SIGIR (1999)

@ Springer

	Rewiring strategies for semantic overlay networks
	Abstract
	Introduction
	Related work
	Overview
	Architecture
	Basic protocols
	Joining protocol
	Rewiring protocol
	Query processing protocol
	Document retrieval protocol

	Proposed rewiring strategies
	Forwarding of rewiring messages
	The Gradient Walk strategy
	The Random Walk strategy
	The combined strategy
	The informed strategy

	Updating short-range links
	Introducing symmetric links
	Updating the long-range links
	The Random Sampling strategy
	The Biased Sampling strategy

	Combining all together

	Experimental evaluation
	Datasets.
	Setup.
	Performance measures.
	Document distribution.
	Using different forwarding strategies
	Varying the refinement probability
	Symmetric links
	Updating long-range links
	Composite rewiring
	Discussion

	Conclusion
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

