
Demo: Ping - A customizable, open-source information filtering

system for textual data

Thanasis Chantzios, Lefteris Zervakis, Spiros Skiadopoulos, Christos Tryfonopoulos
University of the Peloponnese, Tripolis, Greece
{tchantzios,zervakis,spiros,trifon}@uop.gr

ABSTRACT

Information filtering has emerged as a prominent paradigm of
timely information delivery; in such a setup, users submit profiles
that express their information needs to a server which is responsible
for notifying them when information that matches their profiles
becomes available. Traditionally, information filtering research has
focused mainly on providing algorithmic solutions that enhance
the efficiency and effectiveness of the filtering process, and has
largely neglected the development of tools/systems that showcase
the usefulness of the paradigm. In this work, we put forward Ping, a
fully-functional content-based information filtering system aiming
(i) to showcase the realisability of information filtering and (ii) to
explore and test the suitability of the existing technological arsenal
for information filtering tasks. The proposed system is entirely
based upon open-source tools and components, is customisable
enough to be adapted for different textual information filtering
tasks, and puts emphasis in user profile expressivity, intuitive UIs,
and timely information delivery. To assess the customisability of
Ping, we deployed it in two distinct application scenarios, and
assessed its performance under both scenarios.

CCS CONCEPTS

• Information systems→ Information systems applications;
Document filtering; • Software and its engineering→ Publish-
subscribe / event-based architectures;

KEYWORDS

Information filtering, user profiles and alert services, document
filtering, interactive systems and tools
ACM Reference Format:

Thanasis Chantzios, Lefteris Zervakis, Spiros Skiadopoulos, Christos Try-
fonopoulos. 2019. Demo: Ping - A customizable, open-source informa-
tion filtering system for textual data. In DEBS ’19: The 13th ACM Inter-
national Conference on Distributed and Event-based Systems (DEBS ’19),
June 24–28, 2019, Darmstadt, Germany. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3328905.3332512

1 INTRODUCTION

In the modern digital era, the creation and availability of new in-
formation has increased exponentially. A plethora of information
sources, such as news delivery sites, weather reporting services,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’19, June 24–28, 2019, Darmstadt, Germany
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6794-3/19/06.
https://doi.org/10.1145/3328905.3332512

and digital libraries, constantly make new content available at an
overwhelming pace. To assist users in coping with the vast amount
of newly generated information and the cognitive overload associ-
ated with it, the Information Filtering (IF) paradigm was introduced.
In an IF scenario, users are asked to (implicitly or explicitly) express
their information needs through appropriate interfaces, tools and
languages and submit profiles (or continuous queries) to a system or
service. In this way, users create subscriptions that are continuously
matched (by the system/service) against newly published content,
and generate notifications whenever new content that matches
users’ information needs is published.

Over the past decades, IF research has mainly focused on provid-
ing efficient and effective algorithmic solutions [1, 3, 5, 7, 9–11, 13]
that worked well in the controlled research environment, but were
never actually used “in the battlefield” as components of a larger IF
system. This lack of IF tools that would integrate promising solu-
tions and allow developers to use them for building added-value
IF services over textual sources or streams, resulted in the lack
of prominent IF systems that would act as demonstrators for the
usefulness of the IF paradigm. Thus, currently, the only promi-
nent demonstrator of the potential of IF is Google Alerts [6], a
proprietary closed-source service built upon the Google ecosystem.
Although many users nowadays (mis-)use Google Alerts to monitor
the web for marketing (e.g., brand mentions), social listening (e.g.,
comment follow-up), or even citation counting purposes (e.g., in the
context of GoogleScholar), there is clearly a need for an extensible,
customisable open-source IF system that could be modified to fit
domain-specific IF tasks. Such a system, would act in favour of IF
research by (i) showcasing the usefulness of the IF paradigm to
end-users, (ii) providing a basis for developers to build added-value
IF services in a number of different domains, (iii) testing the cur-
rent technological arsenal in IF, and (iv) providing data (that are in
scarcity in the IF domain) regarding system usage or user profiling.

In this work, we present a full-fledged, customisable, open-source
IF system, coined Ping, that makes use of state-of-the-art tools and
web technologies; we concentrate on providing an operational sys-
tem that is designed and implemented on IF-specific requirements.
To this end, the presented system is equipped with profile adminis-
tration (e.g., creation, modification, submission), publication man-
agement capabilities (e.g., collection, filtering), different content
delivery options (e.g., email or on-site notifications), (interval- or
batch-based) monitoring of different types of textual data, and an
intuitive user interface. The front-end of the system is built upon
modern Internet technologies, while the back-end relies on the
well-established Apache Solr1 platform. Ping is designed with flex-
ibility and customisability in mind; developers may use it to easily
create textual IF engines for different domains, parameterise and
1http://lucene.apache.org/solr/

https://doi.org/10.1145/3328905.3332512
https://doi.org/10.1145/3328905.3332512


DEBS ’19, June 24–28, 2019, Darmstadt, Germany T. Chantzios, et al.

deploy it for IF-specific tasks over their own textual information
sources, or use it as a building block for added-value services. To
demonstrate the customisability of Ping, we deployed and experi-
mented (see Section 3) with it in two different textual IF scenarios:
the DBLP2 database for scientific publications and the textual part
of the DBpedia3 knowledge graph. Using Ping, we easily created
an IF system that allows users to express their information needs
and stay notified for new and interesting publications.

To this end, our contributions may be summarised as follows.
• We present Ping, a novel, fully-functioning IF system build
entirely upon open-source components; the proposed system
is able to support complex IF tasks in a variety of domains.
To the best of our knowledge, this is the first open-source
textual IF system that can (i) be deployed as a standalone
solution on different textual IF tasks and domains or (ii) be
used as a building block for other added-value services.

• We showcase the realisability of the developed system on two
different domains (textual IF on scientific publications and
crowd-sourced encyclopaedia articles), and experimentally
assess its performance.

More information about the project, along with a fully-functional
working deployment over DBLP publications may be found at:
http://195.251.39.222/pingsys. After publication we will provide the
source code of Ping under a GNU General Public License.

2 THE PING SYSTEM

The main idea behind Ping is to enable users to stay updated in
a timely fashion, with new and interesting content that satisfies
their needs. Ping achieves this objective by: (i) providing users with
profile submission, (ii) information filtering, and (iii) notification
delivery capabilities. In the following, we discuss the underlying
functionalities of Ping, overview the system architecture and im-
plementation details, and present how Ping may be deployed over
different sources along with the main parameterisation options.

Profile submission. Ping enables users to express their informa-
tion needs using several profiles. Each profile is formed by a set
of constraints involving terms (expressed in any attribute of the
incoming information) combined with textual operators. Profiles
are submitted using a simple and intuitive user interface. For ex-
ample in Figure 1(a) a user of Ping submits a profile expressing
her interest in receiving new content that contain in their title the
terms “retrieval” and “information” or “data” and “mining”. The
user may also specify additional constraints on the authors and
venue attributes. Before submitting the profile to Ping for indexing,
the user receives a projection of the average notifications that will
be produced (per month) based on the constraints presented in the
profile. This projection is an estimate from existing data and is used
to help users assess the generality of their profiles. If needed, the
user may refine the profile constraints; when, the profile submission
is finalised, Ping indexes the profile in the data store.

Information filtering. The information filtering process is trig-
gered every time new content becomes available by the monitored
repository. In order to locate the newly produced information, Ping

2https://dblp.uni-trier.de/
3https://wiki.dbpedia.org

resides on periodically monitoring the source and retrieving all new
published content that becomes available in XML format. When
new publications arise, the Ping system commences the filtering
process. At first, Ping retrieves and indexes all new content by
making use of the Apache Solr framework. Subsequently, Ping re-
trieves all user profiles from its profile store and prepares them for
execution under Solr. Finally, Ping executes each profile against the
Solr framework that indexes the newly available content, thus de-
termining which profiles match the new publication set. When the
information filtering process terminates, Ping sends appropriate
notifications to the users.

We chose to implement Ping’s information filtering functionality
over the Solr framework, which is primarily designed for informa-
tion retrieval tasks, as there are no publicly available frameworks
that natively support information filtering tasks. To this end, Ping
implements the information filtering functionality by executing
each profile separately against the newly published content that is
indexed by the Solr framework. This fact alone highlights the need
for and the importance of developing efficient IF-specific machinery
to facilitate higher-level IF systems.

Notification delivery. When a profile is satisfied by an incom-
ing publication, Ping delivers an appropriate notification to the
user, through the notification center (Figure 1(b)). In the notifica-
tion center, users may find notifications about information that
matched their profiles coupled with direct links to the correspond-
ing information. Finally, the notification center provides notifica-
tion management capabilities (e.g., storage, dismissal) and advanced
visualisation capabilities (e.g., notification timeline).

System architecture. The Ping system has been entirely designed
on and developed using open-source software; it employs the Linux,
Apache, MySQL and PHP (LAMP) stack as the back-end infras-
tructure, while the front-end modules have been developed using
HTML, CSS and JavaScript. The information filtering capabilities
of Ping are supported by the Apache Solr framework. Figure 1(c)
presents a high-level view of the Ping architecture and the different
modules that comprise the system.

The Source Monitoring module is responsible for extracting new
available content from information sources; this procedure is im-
plemented through either continuous or periodic (i.e., at predefined
intervals) monitoring by means of a wide range of data parsers that
are able to accommodate different types of data sources.

The Apache Solr search framework lies at the heart of the In-
formation Filtering module of Ping. This module receives all new
content and indexes it under the Solr server. Additionally, the mod-
ule retrieves all user profiles from the database and submits them
trough appropriate service calls (using a REST API) to the Solr
server for execution. Finally, this module receives the results from
the Solr server and generates the appropriate notifications which
are then handed over to the System Database module.

The System Database module is responsible for all the necessary
storage and retrieval operations at the system back-end; it stores and
manages all user account credentials, user profiles and associated
notifications, relevant publications and other user-related data.

The UI Controller module is responsible for coordinating the
operations of the Ping system and enabling a seamless communi-
cation between the UI and the underlying architectural elements.

http://195.251.39.222/pingsys


Demo: Ping - A customizable, open-source information filtering system for textual dataDEBS ’19, June 24–28, 2019, Darmstadt, Germany

(a) Profile submission (b) Notification center (c) System architecture

Figure 1: Ping usage and architecture

Thus, the UI Controller serves as a mediator that receives and passes
on data to various other modules. This module is also responsible
for visualising all user interactions including (i) user registration
and account management activities, (ii) profile creation, submission
and editing, and (iii) notification delivery and management.

Deployment over different sources. The Ping system offers a
variety of customisability options for its deployment over different
data sources. The system administrator may easily set several pa-
rameters. Such parameters include (i) the type of the monitored data
source, (ii) the source monitoring rate, (iii) the attributes that will
correspond to the monitored data, (iv) the data manipulation rules
(e.g., the employment of tokenisation or stemming) for the different
data types of interest, and (v) restrictions on the generated notifica-
tions and preferred delivery method. The deployed online version
of Ping (Figure 1) is setup to work with scientific publications from
DBLP, with the following parameter setup: (i) monolithic XML files,
(ii) a monitoring rate of 24 hours, (iii) attributes corresponding to
the title, authors, and venue type, (iv) tokenisation and stemming
enabled, and (v) on-site notifications only.
3 EXPERIMENTAL EVALUATION

In this section, we present a series of experiments that assess Ping
over two distinct deployment scenarios.

Data and profile sets. In order to evaluate the filtering perfor-
mance of Ping and demonstrate its real-world capabilities (and
ease of customisability), we designed and experimented with two
deployment scenarios. In the first scenario, we deploy Ping over
the DBLP database for scientific publications. Thus, we utilise the
DBLP corpus that contains all entries published during 2018 and
consists of 786K publications, with a vocabulary size of 162K unique
terms. As DBLP is a focused domain, we designed an additional
deployment scenario that assesses the performance of Ping under
a more general domain. To this end, we deployed and evaluated
Ping also over the textual part of DBpedia, which covers a wide
range of topics, with a total vocabulary of 3.2M unique terms.

Since no databases of profiles for neither scenarios were available
to us, we synthetically generated one for each deployment scenario
(similarly to [9, 11, 13]). These two profile databases are formed
by conjuncts of different terms; each term conjunct is selected
equiprobably among the multi-set of words forming DBLP and

DBpedia respectively. Finally, for each profile set we randomly
selected 50K publications and used them for the filtering task.

Technical configuration. A machine with Intel Xeon CPU E5-
2650 2.00GHz, 32GB RAM, and Ubuntu Linux 18.04 was used to
host the two deployment scenarios of Ping. The Apache Solr server
was assigned 2GB of main memory. Time measurement report wall-
clock time and the results of each experiment is averaged over 10
runs, to eliminate fluctuations in time measurements.

Evaluation results. Figure 2 presents the most interesting results
regarding the deployment and evaluation of Ping.

Figure 2(a) shows the throughput in KB/sec needed to filter 50K
incoming publications against a profile database of different sizes
for an average number of 5 terms in the profile (PL = 5), under
both deployment scenarios. We observe that the throughput of
Ping is consistent across the increasing profile databases for both
cases. Moreover, the lower throughput of Ping under the DBLP do-
main, is attributed to the restricted vocabulary (126K terms) of the
topic-specific domain. A restricted profile vocabulary increases the
probability to match a user profile against an incoming publication;
these matches increase filtering time and hence reduce throughput.

Figure 2(b) shows the time (in milliseconds) that Ping requires
to filter an incoming document in a database storing DBP = 3M
profiles, when the average number of terms PL varies. The perfor-
mance of the system (slightly) improves as the average profile size
increases since longer profiles (i.e., profiles with more constraints)
exhibit a lower probability to match an incoming publication (high
selectivity), and thus require less time to be evaluated by Ping.

Finally, Figure 2(c) presents the (primary and secondary) memory
requirements of Ping for different sizes of the profile database.
We observe that, in both deployment scenarios Ping exhibits low
memory requirements, while transitioning from a topic-specific to a
more general domain has minimum impact on memory needs. Ping
indexes solely the incoming publication set during filtering time
and executes each profile against it, while after the filtering phase
completes intermediate results and publications are discarded. This
approach allows Ping to exhibit constant memory requirements at
filtering time, and allows it to efficiently support both topic-specific
and general domains with low memory requirements.



DEBS ’19, June 24–28, 2019, Darmstadt, Germany T. Chantzios, et al.

(a) Filtering throughput for PL = 5 (b) Filtering time for DBP = 3M (c) Memory usage for PL = 5

Figure 2: Evaluation of Ping for the DBLP and DBpedia deployment scenarios

The performance evaluation results reported in Figure 2 suggest
that Ping may be utilised to efficiently support different textual IF
tasks with high throughput and a relatively small memory foot-
print. The demonstrated efficiency, alongside the inherent profile
expressivity delivered from the Solr engine, the different customi-
sation options, and the open-source nature of the system, make it a
promising solution for complex textual IF tasks in many domains.
4 RELATEDWORK

In the last decades, content-based IF research has focused on provid-
ing efficient solutions on semi-structured data. These approaches
utilised XPath as the (continuous) query language, and XML as the
standard for publication representation. The first work that adopted
the XPath/XML data model is presented in [1], where the XFilter
system is described. XFilter employed Finite State Machines (FSMs)
to represent each XPath query, while FSMs were utilized during
publication time to determine the queries satisfied by incoming
documents. In the same spirit YFilter [3] adopted a single Non-
deterministic Finite Automaton (NFA) to represent the query set
and share results between common parts of the XPath expressions.
Similarly, in [5], the authors adopt a message batch processing ap-
proach to enhance the filtering process of publish/subscribe systems.
Recently in [2], the authors adopt YFilter over a distributed compu-
tation environment, and implement YFilter’s NFA approach over
the Hadoop framework. In [8] the authors propose GPX-Matcher, a
novel algorithmic solution that employs encoding for XPath and
XML. GPX-Matcher exploits this encoding to capture commonali-
ties among XPath profiles and uses them during matching time.

In the context of systems, SIFT [12] was the first content-based
IF system that collected news and articles, and allowed users to
subscribe into updates through web-forms and email. In SIFT users
could utilise the Boolean or VSM models to express their infor-
mation needs; in order to support the high volume of profiles and
incoming publications, SIFT employed a tree-based solution [11] for
the Boolean model and inverted index data structures [10] for VSM
queries. Recently, [7] utilised graph structures to locate and index
the subsumption relationships between continuous VSM queries
and deliver the top-k most relevant notifications. InfoFilter [4] is
another content-based system that aims at pattern detection over
incoming text streams. In InfoFilter users can express their pro-
files through a pattern specific language, while the system created
pattern detection graphs that were utilised during filtering time.
Finally, the most widely used IF service to date is Google Alerts [6].
In Google Alerts, users can subscribe to new content by choosing

topics of their interest or submitting VSM queries, while they can
determine a wide range of parameters such as information delivery
rate and channels over which information is retrieved.

5 CONCLUSIONS AND OUTLOOK

In this paper, we presented Ping, a customizable textual IF system
built entirely over open source software, and experimentally as-
sessed its performance in two different deployment scenarios. Our
immediate plans involve extending the system by implementing a
version for multi-core and cluster environments, integrating more
formats for source monitoring, and incorporating non-textual IF
(e.g., structural or graph constraints). Apart from the source code
that will be released upon publication, we also plan to openly pro-
vide the research community with any (anonymised) profile dataset
that may be constructed by the end-usage of Ping, in an effort
towards realistic benchmarks for IF research.

ACKNOWLEDGMENTS

This work was supported in part by project ENIRISST from the Gen-
eral Secretary for ERDF & CF, under Operational Programme Com-
petitiveness, Entrepreneurship and Innovation 2014-2020 (EPAnEK)
of the Greek Ministry of Economy and Development.

REFERENCES

[1] M. Altinel and M.J. Franklin. 2000. Efficient Filtering of XML Documents for
Selective Dissemination of Information. VLDB.

[2] P. Antonellis, C. Makris, and G. Pispirigos. 2015. Distributed XML Filtering Using
HADOOP Framework. ALGOCLOUD.

[3] Y. Diao, M. Altinel, M.J. Franklin, H. Zhang, and P. Fischer. 2003. Path Sharing and
Predicate Evaluation for High-performance XML Filtering. ACM TODS (2003).

[4] L. Elkhalifa, R. Adaikkalavan, and S. Chakravarthy. 2005. InfoFilter: a system for
expressive pattern specification and detection over text streams. ACM SAC.

[5] P.M. Fischer and D. Kossmann. 2005. Batched Processing for Information Filters.
ICDE.

[6] Google Inc. 2019. Google Alerts. https://www.google.com/alerts. Accessed: 25
Feb. 2019.

[7] W. Rao, L. Chen, S. Chen, and S. Tarkoma. 2014. Evaluating continuous top-k
queries over document streams. World Wide Web (2014).

[8] M. Sadoghi, I. Burcea, and H.-A. Jacobsen. 2011. GPX-matcher: a generic boolean
predicate-based XPath expression matcher. EDBT.

[9] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas. 2009. Information filtering
and query indexing for an information retrieval model. ACM TOIS (2009).

[10] T.W. Yan and H. Garcia-Molina. 1994. Index Structures for Information Filtering
under the Vector Space Model. ICDE (1994).

[11] T.W. Yan andH. Garcia-Molina. 1994. Index Structures for Selective Dissemination
of Information Under the Boolean Model. ACM TODS (1994).

[12] T.W. Yan and H. Garcia-Molina. 1999. The SIFT Information Dissemination
System. ACM TODS (1999).

[13] L. Zervakis, C. Tryfonopoulos, S. Skiadopoulos, and M. Koubarakis. 2017. Query
Reorganization Algorithms for Efficient Boolean Information Filtering. IEEE
TKDE (2017).

https://www.google.com/alerts

	Abstract
	1 Introduction
	2 The Ping System
	3 Experimental evaluation
	4 Related Work
	5 Conclusions and Outlook
	Acknowledgments
	References

