Publish/Subscribe Functionalities for Future
Digital Libraries using Structured Overlay
Networks

Christos Tryfonopoulos Stratos Idreos Manolis Koubarakis

Dept. of Electronic & Computer Engineering
Technical University of Crete, 73100 Chania, Crete, Greece
{trifon, sidraios,manolis}@intelligence.tuc.gr

1 Introduction

We are interested in the problem of distributed resource sharing in future digital
libraries (DLs). We adopt a pure P2P architecture (illustrated in Figure 1), but
our ideas can be easily modified to work in the case of hierarchical P2P networks,
as in [3]. Information providers (DLs) and information consumers (users) are
both represented by peers participating in a peer-to-peer (P2P) overlay network.
There are two kinds of basic functionality that we expect this architecture to offer:
information retrieval (IR) and publish/subscribe (pub/sub). In an IR scenario a
user poses a query (e.g., “I am interested in papers on bio-informatics”) and the
system returns information about matching resources. In a pub/sub scenario (also
known as information filtering (IF) or selective dissemination of information
(SDI)) a user posts a subscription (or profile or continuous query) to the system
to receive notifications whenever certain events of interest take place (e.g., when
a paper on bio-informatics becomes available).

In this extended abstract we concentrate on the latter kind of functionality
(pub/sub) and sketch how to provide it by extending the distributed hash table
Chord [4]. Distributed Hash Tables (DHTs) are the second generation structured
P2P overlay networks devised as a remedy for the known limitations of earlier P2P
networks such as Napster and Gnutella. We present a set of protocols, collectively
called DHTrie, that extend the Chord protocols with pub/sub functionality.

We assume that resources are annotated using a well-understood attribute-
value model called AWPS in [2]. Thus publications and subscriptions will also
be expressed in AWPS. AWPS is based on named attributes with value free
text interpreted under the Boolean and vector space (VSM) models. The query
language of AWPS allows Boolean combinations of comparisons A op v, where A
is an attribute, v is a text value and op is one of the operators “equals”, “contains”
or “similar” (“equals” and “contains” are Boolean operators and “similar” is
interpreted using the VSM or LSI model). The following is an example of a
publication in AWPS:

{ (AUTHOR, “John Smith”), (TITLE, “Information dissemination in P2P ...”),
(ABSTRACT, “In this paper we show that ...”) }

The following is an example of a query:

AUTHOR = “John Smith”) AN (TITLE J P2P A (information <9 o alert)) A
= [0,0]
(ABSTRACT ~g.7 “P2P architectures have been...”)



user
publication continuous w
» . -------------- g R

Digital

Library
. Digital
__________ Library
q & —@Ca - @ e
" continuous publication ‘\@>
user query

Fig. 1. Distributed resource sharing in future DLs

This query requests resources that have John Smith as their author, and their
title contains the word P2P and a word pattern where the word information
is immediately followed by the word alert. Additionally, the resources should
have an abstract similar to the text value “P2P architectures have been ...” with
similarity greater than 0.7. The contributions of this abstract are the following.

The research presented in this abstract is a continuation of our previous work
on the DL information alert architecture DIAS [2] and the system P2P-DIET [1].
The main contribution of our current work is that our protocols are extensions of
DHTs and achieve much better scalability, robustness, fault-tolerance and load
balancing.

The rest of this extended abstract is as follows. Section 2 gives some details
of the DHTrie protocols and Section 3 discusses very briefly our experimental
evaluation of DHTrie.

2 The DHTrie Protocols

We implement pub/sub functionality by a set of protocols called the DHTrie
protocols (from the words DHT and trie). The DHTrie protocols use two levels
of indering to store queries submitted by clients. The first level corresponds to
the partitioning of the global query index to different nodes using DHTs as the
underlying infrastructure. Each node is responsible for a fraction of the submitted
user queries through a mapping of attribute values to node identifiers. The DHT
infrastructure is used to define the mapping scheme and also manages the routing
of messages between different nodes. We use an extension of the Chord DHT [4]
to implement our network. The set of protocols that regulate node interactions
are described in the next sections.

The second level of our indexing mechanism is managed locally by each node
and is used for indexing the user queries the node is responsible for. In this level,
each node uses a hash table to index all the atomic queries contained in a query
by using their attribute name as the key. For each atomic Boolean query the
hash table points to a trie-like structure that exploits common words and a hash
table that indexes text values in equalities as in [6]. Additionally for atomic VSM
queries an inverted index for the most “significant” query words is used as in [7].

In this abstract we will focus on the first level of indexing and present the sub-
scription, publication and notification protocols that regulate node interactions.
Protocols for query updating and removal are omitted due to space. The local



indexing algorithms we use and their experimental evaluation are thoroughly
discussed in [6, 7].

2.1 The Subscription Protocol
Let us assume that a node P wants to submit a query ¢ of the form:

k
i Ai =si A /\;L:m+1 Ai Jwpi A /\'L:n+1 A ~a; i

To do so, P randomly selects a single word w contained in any of the text values
S1y-+-sSm,Sntls--.,Sp or word patterns wpp,41,...,wp, and computes H(w)
to obtain the identifier of the node that will be responsible for query g. Then
P creates message FWDQUERY (id(P), IP(P), qid(q), q), where qid(q) is a unique
query identifier assigned to ¢ by P and I P(P) is the IP address of P. This message
is then forwarded in O(logN) steps to the node with identifier H(w) using the
routing infrastructure of the DHT. Notice that id(P) and I P(P) need to be sent
to the node that will store @ to facilitate notification delivery (see Section 2.3).

When a node P’ receives a message FWDQUERY containing g, it stores g using
the second level of our indexing mechanism. P’ uses a hash table to index all the
atomic queries of ¢, using as key the attributes A1, ..., Ax. To index each atomic
query, three different data structures are also used: (i) a hash table for text values
S1,---,8m, (ii) a trie-like structure that exploits common words in word patterns
WPm41, - - -, WPp, and (iii) an inverted index for the most “significant” words in
text values sp41,...,Sk. P’ utilises these data structures at filtering time to find
quickly all queries ¢ that match an incoming publication p. This is done using an
algorithm that combines algorithms BestFitTrie [6] and SQI [7].

2.2 The Publication Protocol

When a node P wants to publish a resource, it first constructs a publication
p = {(A1,81), (A2,82),...,(Ap, sn)} (the resource description). Let Dy,..., D,
be the sets of distinct words in sy, ..., S,. Then publication p is sent to all nodes
with identifiers in the list L = {H(w;) : w; € D1 U---U D,}. The subscription
protocol guarantees that L is a superset of the set of identifiers responsible for
queries that match p.

The propagation of publication p in the DHT proceeds as follows. P removes
duplicates from L and sorts it in ascending order clockwise starting from id(P).
This way we obtain less identifiers than the distinct words in D, U---U D,,, since
a node may be responsible for more than one words contained in the document.
Having obtained L, P creates a message FWDRESOURCE(id(P),pid(p),p, L),
where pid(p) is a unique metadata identifier assigned to p by P, and sends it
to node with identifier equal to head(L) (the first element of L). This forwarding
is done by the following recursive method: message FWDRESOURCE is sent to a
node P’ where id(P’) is the greatest identifier contained in the finger table of
P, for which id(P") < head(L) holds.

Upon reception of a message FWDRESOURCE by a node P, head(L) is checked.
If id(P) < head(L) then P just forwards the message as described in the previous
paragraph. If id(P) > head(L) then P makes a copy of the message, since this
means that P is one of the intended recipients contained in list L (in other



words P is responsible for key head(L)). Subsequently the publication part of
this message is matched with the node’s local query database using the algorithm
mentioned in Section 2.1 and the appropriate subscribers are notified (see Section
2.3). Additionally list L is modified to L’ in the following way. P deletes all
elements of L that are smaller than id(P) starting from head(L), since all these
elements have P as their intended recipient. In the new list L’ that results from
these deletions we have that id(P) < head(L’). This happens because in the
general case L may contain more than one node identifiers that are managed
by P (these identifiers are all located in ascending order at the beginning of L).
Finally, P forwards the message to node with identifier head(L').

2.3 The Notification Protocol

When a message FWDRESOURCE containing a publication p of a resource arrives
at anode P, the queries matching p are found by utilising its local index structures
and using the algorithms briefly described in Section 2.1.

Once all the matching queries have been retrieved from the database, P cre-
ates notification messages of the form QNOTIFICATION(I(r)) and contacts all the
nodes that their queries where matched against p using their IP address asso-
ciated with the query they submitted. If a node P’ is not online when P tries
to notify it about the published resource, the notification message is sent to
the successor(P’). In this way P’ will be notified the next time it logs on the
network. The modifications to the join and leave protocols of Chord to achieve
this functionality originally presented in the non-DHT system P2P-DIET [1] are
omitted due to space considerations. To utilise the network in a more efficient
way, notifications can also be batched and sent to the subscribers when traffic is
expected to be low.

2.4 Frequency Cache

In this section we introduce an additional routing table that is maintained in
each node. This table, called frequency cache (FCache), is used to reduce the cost
of publishing a resource by storing the IP addresses of the nodes responsible for
frequent words contained in published documents. FCache is a hash table used to
associate each word that appears in a published document with a node IP address.
FCache uses a word w as a key, and each FCache entry is a data structure that
holds an IP address. Thus, whenever P needs to contact another node P’ that is
responsible for queries containing w, it searches its FCache. If FCache contains
an entry for w, P can directly contact P’ using the IP stored in its FCache. If w
is not contained in FCache, P uses the standard DHT lookup protocol to locate
P’ and stores contact information in FCache for further reference. Using FCache
the cost of processing a published resource p is reduced to O(v + (h — v) log N),
where v is the number of words of p contained in FCache.

FCache entries are populated as follows. Each time a resource p is published
at a node P, P contacts the nodes responsible for storing queries with words
contained in p, as we described in Section 2.2. After this process is over, P knows
the contact information (namely the IP address) of those nodes, and stores it
to FCache along with the word each node is responsible for. After that, for



each publication taking place at P, P maintains this routing information for
the most frequent words contained in resources published to it. Notice that the
construction and maintenance of FCache is based only on local information and
that the only extra cost involved is FCache misses (which cost O(logN) and the
routing information discovered is also cached for further reference).

3 Brief Presentation of Experimental Results

We have evaluated DHTrie experimentally in a distributed digital library sce-
nario with hundreds of thousands of nodes and millions of user profiles. For our
experiments we used 10426 documents downloaded from CiteSeer and also used
in [6]. The documents are research papers in the area of Neural Networks and we
will refer to them as the NN corpus. Because no database of queries was available
to us, our queries are synthetically generated by exploiting 2000 documents of
the corpus. The remaining 8426 documents are used to generate publications.

Our experiments show that the DHTrie protocols are scalable: the number of
messages it takes to publish a document and notify interested subscribers remains
almost constant as the network grows. Moreover, the increase in message traffic
shows little sensitivity to increase in document size. We demonstrate that simple
data structures with only local information can make a big difference in a DHT
environment: the routing table FCache manages to reduce network traffic by a
factor of 4 in all the alternative methods we have studied.

Since probability distributions associated with publication and query elements
are expected to be skewed in typical pub/sub scenarios, achieving a balanced load
is an important problem. We have studied an important case of load balancing
for DHTrie and present a new algorithm which is also applicable to the standard
DHT look-up problem.

The details of our experiments appear in [5] and will be discussed in detail in
our workshop presentation.

References

1. S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET: An Extensible P2P
Service that Unifies Ad-hoc and Continuous Querying in Super-Peer Networks. In
Proc. of SIGMOD, 2004. Demo paper.

2. M. Koubarakis, T. Koutris, P. Raftopoulou, and C. Tryfonopoulos. Information
Alert in Distributed Digital Libraries: The Models, Languages and Architecture of
DIAS. In Proc. of ECDL, 2002.

3. J. Lu and J. Callan. Federated search of text-based digital libraries in hierarchical
peer-to-peer networks. In Proc. of ECIR, 2005. To appear.

4. 1. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proc. of ACM
SIGCOMM, 2001.

5. C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/Subscribe Functionality
in IR Environments using Structured Overlay Networks. Submitted to a conference.

6. C. Tryfonopoulos, M. Koubarakis, and Y. Drougas. Filtering Algorithms for Infor-
mation Retrieval Models with Named Attributes and Proximity Operators. In Proc.
of ACM SIGIR, 2004.

7. T.W. Yan and H. Garcia-Molina. The SIFT information dissemination system. ACM
TODS, 24(4):529-565, 1999.



