
Towards Publish/Subscribe Functionality on Graphs

Lefteris Zervakis1 Christos Tryfonopoulos1 Vinay Setty2

Stephan Seufert2 Spiros Skiadopoulos1

1 University of the Peloponnese, Tripolis, Greece
2 Max Planck Institute, Saarbrücken, Germany

{zervakis,trifon,spiros}@uop.gr {vsetty,sseufert}@mpi-inf.mpg.de

ABSTRACT
In this work, we introduce the publish/subscribe paradigm
to support continuous query processing over evolving graphs
and motivate it for a number of applications and a variety of
possible continuous queries. To the best of our knowledge,
this is the first work in the literature that considers sup-
porting publish/subscribe in graphs; we focus specifically on
massive and dynamically evolving graphs due to the nature
of the problem and the type of targeted applications. To
this end, we design a proof-of-concept filtering algorithm for
supporting structural matching of continuous graph queries
against updates in the evolving graph and demonstrate the
need for efficient filtering by experimentally comparing our
algorithm against a baseline approach.

1. INTRODUCTION
In the modern digital era, graphs are ubiquitous and ever-

present as they model a vast number of different problems,
including social networks, knowledge bases, information and
communication networks, distributed systems, biological in-
teractions, and hyper-linked web-pages. Moreover, in many
of these problems, graphs are not the reasonably-sized, static
snapshots that data scientists are commonly assuming. Con-
trary, in typical applications graphs are massive in scale,
evolving at varying rates (depending on the nature of the
problem modelled), and often naturally distributed among
different machines. Thus, the typical computational para-
digm of posing a graph-related query (e.g., aiming at struc-
tural matching or certain graph properties) to the system
and waiting to receive an answer seems insufficient at envi-
ronments with such scale and dynamicity.

To address the aforementioned issues, researchers have
shifted their attention towards less static modelling of graphs
by adopting paradigms such as evolving graphs or graph
streams. In these scenarios, a graph is considered as a stream
of modifications (i.e., node and edge additions/deletions/
updates) that trigger the (incremental) re-computation of
some graph properties (e.g., density), cumulative measures
(e.g., diameter), or subgraph matching/mining. Thus, the
graph itself is considered to be dynamic, but the actual

c©2016, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2016 Joint Conference (March 15, 2016, Bor-
deaux, France) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

queries (i.e., computations) on the streaming input are typ-
ically static and cannot be modified. Moreover, the efficient
evaluation of such computations is heavily dependent on the
algorithm chosen for the task and evaluating more query
types (let alone more than one queries) at once against the
evolving graph is currently not supported. This happens
because the adopted model focuses on mining the evolving
graph and proves insufficient to address the challenges posed
by applications that require the filtering of graph changes
against a set of (user) queries.

In our work, we adopt the publish/subscribe (pub/sub)
paradigm to evaluate continuous queries against an evolv-
ing graph. In this context, users (or services that act on
users’ behalf) pose continuous queries containing sub-graph,
path, and structural/attribute constraints. In this model,
continuous queries are appropriately indexed and efficiently
evaluated against graph updates, avoiding the matching of
the entire query database against every change in the graph
stream. In this way, the matching queries are identified and
the appropriate users are notified accordingly. This compu-
tational model allows us to offer functionality beyond any-
thing supported by the current state-of-the-art and enables
us to provide useful tools that allow users to subscribe to
graph changes of interest. In the next section, we outline
possible applications that may benefit from graph pub/sub
and identify useful query classes for each application.

To this end, our contributions are summarised as follows.
Initially, we advocate the application of the pub/sub par-
adigm in an evolving graph domain and highlight possible
applications and useful queries; to the best of our knowl-
edge this is the first work in the literature that deviates
from the typical mining of evolving graphs to offer con-
tinuous query functionality to the end-user. Additionally,
we highlight the problem of indexing the continuous query
database to achieve efficient filtering of graph updates and
demonstrate the necessity of effective indexing structures to
support pub/sub in dynamically evolving graphs. Finally,
we develop a proof-of-concept filtering algorithm that sup-
ports structural matching of continuous graph queries and
experimentally demonstrate that it accelerates filtering by
four orders of magnitude compared to a baseline approach.

2. APPLICATIONS AND OPEN ISSUES
To demonstrate the wide applicability of the proposed

graph pub/sub paradigm we identify representative appli-
cations and useful query classes for these applications.

2.1 Applications for graph pub/sub
In this section, we discuss the application of graph pub/sub

in different domains.



Pub/sub on social graphs. Advertising in social net-
works is becoming a major source of revenue for large cor-
porations such as Facebook and Twitter. Social networks
attract advertisers as they can target users by leveraging
on publicly available user profiles/demographics. Prompt
identification of influential users, active monitoring of their
evolving interests over time, and fast adaptation to social
graph changes could increase the effectiveness of advertise-
ments and provide an advantage over the competition. To
realise the above requirements, there is a need for a pub/sub
tool that will allow advertisers to subscribe to evolving so-
cial graphs for subgraphs with given properties and notify
them in real time whenever a match occurs.

Moreover, identifying communities of users with similar
interests in a network of user purchases (such as Amazon)
may provide a valuable extension for (social) recommenda-
tion systems. In such a scenario, given the explicit or im-
plicit preferences of a given user, the challenge lies in identi-
fying a community with similar interests and using their pur-
chases to provide useful recommendations to the user. Given
that such communities are dynamic in nature, there is a need
for a pub/sub tool that will process continuous queries tar-
geted to real-time community identification and/or group
formation detection incrementally as the graph evolves.

Pub/sub in protein interaction graphs. Protein-protein
interactions (PPIs) are particularly useful in biology re-
search and are typically modelled as graphs, with proteins
as nodes and identified interactions between them as edges,
stored in central repositories. In this setup, the resulting
PPI graph for an organism is continuously evolving by (i)
the addition of new nodes/edges through the identification
of new proteins/interactions, (ii) the deletion of edges due
to false positives in the interaction identifications methods,
and (iii) the modification of edge weights though the veri-
fication (or invalidation) of already discovered interactions.
Moreover, bias in the PPI identification method may lead to
differences between the actual and observed PPI network,
which means that the graph may continuously change.

In such a setting, scientists that want to stay informed
about newly discovered interactions, their relation and in-
terplay with existing ones, and the important properties
that may be inferred from such discoveries have to repeat-
edly resort to querying tools that are unable to capture the
evolution of the graph. Thus, there is a clear need for a
pub/sub solution that provides continuous querying func-
tionality over the PPI networks; such a service would notify
subscribed users whenever a graph structure of interest or of
certain properties is identified/registered in the repository.

Pub/sub in other graphs. Other interesting graph pub/
sub applications include curation and pattern identification
in knowledge graphs, monitoring of traffic networks, and in-
trusion detection in communication networks.

2.2 Useful continuous query classes
In this section, we briefly discuss useful query classes that

could be supported in the context of graph pub/sub.

Structural and attribute matching. In our model, users
will be able to subscribe to specific subgraphs or motifs (sub-
graphs with a fixed number of nodes found often in a graph)
that match given attribute-value predicates and get notified
when the evolving graphs matches their queries. This would
allow user/product monitoring in social graphs, clique/k-
motif identification for certain proteins in PPIs, and quality
control for monitored entities in knowledge graphs.

Clustering coefficient. Continuous queries that specify a
clustering coefficient (or any similar) measure will be use-
ful to identify communities for targeted advertising, pre-
dict/validate PPI interactions, and track trending entities/
items in knowledge graphs.

Shortest path. Shortest path continuous queries are es-
pecially useful on PPI graphs as they enable biologists to
perform functional correlations and structural annotations
between (closely located) proteins. In this scenario biolo-
gists want to get notified when the shortest path between
two given proteins drops below a provided threshold; track-
ing shortest paths between nodes can be beneficial for several
other continuous queries such as betweenness centrality and
Steiner tree computation discussed below.

Clique and motif enumeration. Continuous queries that
are used to subscribe for certain thresholds or top-K style
statistics for given cliques and motifs are particularly useful
in PPI graphs for detecting functionally related proteins and
protein complexes. In this scenario, a user would like to be
notified when a given clique or motif becomes frequent (i.e.,
its number of instances exceeds a predefined threshold or is
within the top-k most frequent patterns) in the PPI graph.

Betweenness centrality. Betweenness centrality is de-
fined as the fraction of shortest paths passing through a
node. Intuitively, nodes with higher betweenness centrality
in social graphs have higher visibility and injecting promoted
content at those nodes would increase the advertising effect.
Similarly, betweenness centrality is a key measure for iden-
tifying important proteins in a PPI network since proteins
that demonstrate high betweenness centrality are more likely
to be essential proteins with interesting functional and dy-
namic properties. Betweenness centrality may be used as an
additional constraint in continuous queries once a subgraph
of interest (e.g., a subgraph with specific attribute values or
above a certain clustering coefficient) is identified.

Node degree. Even though node degree is a simple met-
ric, together with betweenness centrality constitute the two
key characteristics for identifying important proteins in PPI
graphs, while continuous queries with node degree constraints
could be used (in conjunction with other metrics) to notify
knowledge graph curators of new/trending entities/items.

Dense subgraph. Trending story/topic detection is an im-
portant area where dense subgraphs are known to be of ben-
efit [2]. Contrary to [2], where the focus is on identifying the
top-k densest subgraphs in a social media stream, our focus
is on providing dense subgraph as a thresholded constraint in
continuous queries (in conjunction with attribute/structural
matching) to allow monitoring of developing stories/users in
social graphs or trending items/entities in knowledge graphs.

Steiner tree. In knowledge graphs, continuous queries
could be used to notify graph curators when a new Steiner
tree is formed between given entities consisting of specifically
labeled edges, in the spirit of [7] but modified for pub/sub in
evolving graphs. Subscription to Steiner tree formation be-
tween nodes (or to Steiner points) could be used to monitor
knowledge graph quality or emergence of interesting links.

3. ALGORITHMS AND EVALUATION
In this section, we outline two proof-of-concept filtering

algorithms that match continuous queries against graph up-
dates and present a concise experimental evaluation of their
performance that highlights the need for efficient filtering.



3.1 Overview of filtering algorithms
In the context of our proof-of-concept implementation, we

developed two algorithms that are able to filter continuous
queries aiming at structural properties of the evolving graph.
In our setup, continuous queries were arbitrary graphs that
express user interests and are appropriately indexed depend-
ing on the filtering algorithm at hand. The evolving graph
(against which the continuous queries are constantly, i.e., in
every update, evaluated) is also indexed to allow for faster
matching against the query database.

The first algorithm we developed has no query indexing
strategy and scans the query database sequentially in a brute
force manner (hence the name BF) on every graph update
to determine matching queries. The BF algorithm stores
the full query database in a linked list using an appropri-
ate representation that allows it to match (at publication
time) each continuous query against the indexed (evolving)
graph. BF was implemented to serve as a simple baseline
that would demonstrate the necessity of appropriate query
indexing structures that will enhance the filtering process.

The second algorithm we designed decomposes the con-
tinuous query to the vertex pairs that form the query graph
and uses these pairs as keys to store the query identifier
at an inverted index (hence the name INV). In this way, a
continuous query graph with k edges is decomposed into k
vertex pairs and its identifier is stored at k different hash ta-
ble buckets, one for each pair. An auxiliary table T is used
to store the number of vertex pairs that are contained in
each continuous query and the number of already matched
pairs. When a new graph update is published, the vertexes
that are involved in the update are used to locate all affected
continuous queries in the inverted index and appropriately
update T . Subsequently, T is scanned to determine whether
any newly matching queries have arisen as a result of the
new update. If so, the appropriate notifications are created
and sent to the subscribed users.

As we show in the next section, employing even a simple
indexing solution such as INV leads in significant improve-
ments in filtering time over an exhaustive method.

3.2 Experimental evaluation
In this section, we present a series of experiments that

compare the performance of algorithms BF and INV.

Evolving graph. We utilised the Wikipedia Pagelinks graph
obtained from the DBpedia website as our evolving graph;
the initial Wikipedia Pagelinks graph contains more than
19M unique pages (graph nodes) and over 158M links be-
tween these pages. To simulate the graph evolution, we ob-
tained a snapshot of the original graph that contained 1M
triples and simulated the graph evolution by adding those
triples to an (initially empty) graph. The publication events
(graph updates) resulted to a directed graph with more than
1.2M pages (vertices) connected by 1M links (edges).

Continuous query database. Since no database of con-
tinuous (graph) queries was available to us, we used the fi-
nal graph to artificially generate realistic query databases of
varying sizes and characteristics. The generated continuous
queries belonged to three different query classes that capture
different information needs, i.e., chains, stars, and arbitrary
graphs, and each query class was chosen equiprobably. For
our evaluation we generated query databases of varying (i)
sizes –namely qDB = {10K, 30K, 50K} queries, (ii) average
query length –namely qL = {4, 5, 6} triples/query, and (iii)
matching percentage –namely qPer = {5%, 10%, 15%} of all
queries matched the final graph.

Technical configuration. All algorithms were implemen-
ted in Java. For the indexing of the graph the JGraphT
graph library was used. A PC with a Core Xeon 2.0GHz
and 10GB RAM running Ubuntu Linux 14.04 was used. The
time shown in the graphs is wall-clock time and the results
of each experiment are averaged over 10 executions to elim-
inate any fluctuations in time measurements.

Evaluation results. Figure 1 presents the results from
the evaluation of the algorithms INV and BF. Specifically,
Figure 1(a) shows the time in nanoseconds required to in-
sert 50K continuous queries with qPer = 5% when varying
the query length qL and the query database size qDB is
increasing. We observe that the insertion time of all algo-
rithms remains the same as the qDB size increases, while
insertion time increases with the average query length. Al-
gorithm BF is 9 times faster to index a continuous query
with qL = 6 compared to Algorithm INV. This happens due
to the nature of each algorithm; BF simply inserts the con-
tinuous query at the end of a linked list, whereas INV needs
to decompose the query into triples, access the involved in-
verted index buckets, and update table T . Figure 1(b) shows
the time in nanoseconds required to match a graph update
against a database of stored queries when varying the query
database size qDB, while qL = 5 and qPer = 5%. We
observe that the filtering time of all algorithms increases
with the query database size; algorithm INV is more than
four orders of magnitude, i.e., 45000 times, faster in filter-
ing an update against a database of 50K continuous queries
compared to BF. In Figure 1(c) the filtering performance
of the two algorithms when varying the query length qL,
while qDB = 50K and qPer = 5%, is presented. The same
performance is demonstrated from both algorithms; INV is
again more than four orders of magnitude faster than BF.
Finally, Figure 1(d) shows the filtering performance of the
two algorithms when varying the matching percentage qPer,
while qDB = 50K and qL = 5; similarly INV outperforms
BF by more than four orders of magnitude.

Summing up. In summary, for a query database of 50K
queries, algorithm INV is able to support a throughput of
more than 2M updates/sec in contrast to BF that supports
around 500 updates/sec. This significant difference in the
performance of the two algorithms demonstrates the need
for efficient query indexing structures that will enable us to
support real-life dynamically evolving graphs.

4. RELATED WORK
Structural graph pattern search using graph isomorphism

has been studied in the literature before [11, 6]. However, all
existing techniques are designed for static graphs and are not
suitable for processing continuous graph queries on evolving
graphs. The problem of continuous sub-graph matching has
been considered in [13] but the authors (i) assume a static
set of sub-graphs to be matched against update events, (ii)
use approximate methods that generate false positives, and
(iii) apply the solutions on small (evolving) graphs.

Pub/sub is a widely used communication paradigm to pro-
cess continuous queries on dynamic data. Several classes of
pub/sub systems and subscription languages have been pro-
posed in the literature [5]. Pub/sub solutions on ontology
graphs are proposed in [10, 14], but they are limited to the
RDF graphs and RDF specific subscriptions. Distributed
pub/sub middleware for graphs has recently been proposed
in [4], but the authors do not consider graph structure (they
limit subscriptions to node attributes and node distance con-
straints). Finally, in [3] the problem of evaluating graph



102

103

104

10 20 30 40 50

Q
ue
ry

in
de
xi
ng

(n
se
c/
qu

er
y)

Query DB size (x1000)

INV qL = 4
INV qL = 5
INV qL = 6

BF qL = 4
BF qL = 5
BF qL = 6

(a)

102

103

200 400 600 800 1000

106

107

108

320 580 820 1000 1200

F
ilt
er
in
g
ti
m
e
(n
se
c/
up

da
te
)

Edges in graph (x1000)

INV qDB = 10K
INV qDB = 30K
INV qDB = 50K

Vertices in graph (x1000)

BF qDB = 10K
BF qDB = 30K
BF qDB = 50K

(b)

102

103

200 300 400 500 600 700 800 900 1000

107

108
320 580 820 1000 1200

F
ilt
er
in
g
ti
m
e
(n
se
c/
up

da
te
)

Edges in graph (x1000)

INV qL = 4
INV qL = 5
INV qL = 6

Vertices in graph (x1000)

BF qL = 4
BF qL = 5
BF qL = 6

(c)

102

103

200 300 400 500 600 700 800 900 1000

107

108
320 580 820 1000 1200

F
ilt
er
in
g
ti
m
e
(n
se
c/
up

da
te
)

Edges in graph (x1000)

INV qPer = 5%
INV qPer = 10%
INV qPer = 15%

Vertices in graph (x1000)

BF qPer = 5%
BF qPer = 10%
BF qPer = 15%

(d)

Figure 1: Experimental evaluation of algorithms BF and INV under different scenarios (semi-log plots).

constraints between publishers and subscribers is presented
and applied to a distributed Web advertising scenario.

Another relevant area of research is graph streams; in [8,
9], algorithms to identify correlated graphs from a graph
stream, by using a sliding window that covers a number of
consecutive batches of stream data records, are proposed.
This is different from our setting, as they aim at identifying
subgraphs from a streaming graph that have Pearson cor-
relation coefficients higher than a given threshold without
considering the existing graph.

Sub-graph properties such as clustering coefficient and
density have been considered with respect to evolving graphs
before (e.g., top-k densest sub-graph maintenance [2] and
dynamic community detection based on clustering coeffi-
cient [12]), but not in a pub/sub setup. Contrary to these
graph mining approaches that focus on a specific property,
we envision a pub/sub service that will support a rich set of
continuous queries containing sub-graph, path, and struc-
tural/attribute constraints specified over evolving graphs.
Finally, graph pub/sub relates to evolutionary network anal-
ysis [1], but in pub/sub the focus is not on maintenance/
analysis of the (evolving) graph.

5. OUTLOOK
We plan to investigate more sophisticated query indexing

solutions that utilise statistical information on graph up-
dates and commonalities between queries to achieve faster
filtering. We also plan to extend our solutions to additional
query classes (as identified in Section 2). Finally, we plan to
develop a distributed solution for graph pub/sub that will
fit naturally distributed evolving graphs and will be able to
scale to massive amounts of data.

6. REFERENCES
[1] C. Aggarwal and K. Subbian. Evolutionary Network

Analysis: A Survey. ACM CSUR ’14.

[2] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava.
Dense subgraph maintenance under streaming edge
weight updates for real-time story identification.
VLDB Endowment ’12.

[3] A. Broder, S. Das, M. Fontoura, B. Ghosh,
V. Josifovski, J. Shanmugasundaram, and
S. Vassilvitskii. Efficiently Evaluating Graph
Constraints in Content-Based Publish/Subscribe.
WWW ’11.

[4] C. Canas, E. Pacheco, B. Kemme, J. Kienzle, and
H.-A. Jacobsen. GraPS: A Graph Publish/Subscribe
Middleware. Middleware ’15.

[5] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM CSUR ’03.

[6] H. He and A. Singh. Closure-tree: An index structure
for graph queries. ICDE, ’06.

[7] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek,
and G. Weikum. STAR: Steiner-Tree Approximation
in Relationship Graphs. ICDE ’09.

[8] S. Pan and X. Zhu. CGStream: continuous correlated
graph query for data streams. CIKM ’12.

[9] S. Pan and X. Zhu. Continuous top-k Query for Graph
Streams. CIKM ’12.

[10] M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS -
fast filtering of graph-based metadata. WWW ’05.

[11] D. Shasha, J. Wang, and R. Giugno. Algorithmics and
Applications of Tree and Graph Searching. PODS ’02.

[12] C. Tantipathananandh, T. Berger-Wolf, and
D. Kempe. A framework for community identification
in dynamic social networks. ACM KDD ’07.

[13] C. Wang and L. Chen. Continuous Subgraph Pattern
Search over Graph Streams. ICDE ’09.

[14] J. Wang, B. Jin, and J. Li. An Ontology-Based
Publish/Subscribe System. Middleware ’04.


