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Abstract. We present a digital library architecture based on distributed
hash tables. We discuss the main components of this architecture and
the protocols for offering information retrieval and information filtering
functionality. We present an experimental evaluation of our proposals.

1 Introduction

We present a digital library (DL) architecture based on ideas from traditional
distributed Information Retrieval and recent work on peer-to-peer (P2P) net-
works. Our architecture, called LibraRing (from the words library and ring), is
hierarchical like the ones in [12,9] but uses a distributed hash table (DHT) to
achieve robustness, fault-tolerance and scalability in its routing and meta-data
management layer. DHTs are the second generation structured P2P overlay net-
works devised as a remedy for the known limitations of earlier P2P networks
such as Napster and Gnutella [15].

There are two kinds of basic functionality that we expect this DL architec-
ture to offer: information retrieval (IR) and publish/subscribe (pub/sub). In an
IR scenario, a user can pose a query (e.g., “I am interested in papers on bio-
informatics”) and the system returns information about matching resources. In
a pub/sub scenario (also known as information filtering (IF) or selective dis-
semination of information (SDI)), a user posts a subscription (or profile or
continuous query) to the system to receive notifications whenever certain events
of interest take place (e.g., when a paper on bio-informatics becomes available).

We define the main components of our architecture: super-peers, clients and
providers. Providers are used to expose the content of information sources to the
network, while clients are used by information consumers. Super-peers form an
overlay network that offers a robust, fault-tolerant and scalable means for routing
messages and managing resource meta-data and queries. The main architectural
contribution of our work is the extension of the DHT Chord protocols [15] with
IR and pub/sub functionality in the context of a super-peer network.

Publications and subscriptions in our architecture could be expressed using
any appropriate language (e.g., XML and XPath). Whatever language is chosen
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will have a serious effect on the DHT protocols because the DHT is the layer in
which publications and subscriptions live (are indexed). In the rest of this paper,
we assume that publications and subscriptions will be expressed using a well-
understood attribute-value model, called AWPS in [10]. AWPS is based on
named attributes with value free text interpreted under the Boolean and vector
models VSM or LSI. The query language of AWPS allows Boolean combinations
of comparisons A op v, where A is an attribute, v is a text value and op is one
of the operators “equals”, “contains” or “similar” (“equals” and “contains” are
Boolean operators and “similar” is interpreted using the VSM or LSI model).

The research presented in this paper is a continuation of our previous work
on the DL information alert architecture DIAS [10] and the system P2P-DIET
[7]. The main difference of the current paper from [10,7] is the definition of
an architecture for DLs, brand new protocols that are extensions of DHTs and
performance results that illustrate the strengths and weaknesses of our approach.

The rest of this paper is as follows. Section 2 positions our paper with respect
to related work in the areas of IR, IF and P2P systems. Section 3 introduces the
model AWPS while Section 4 presents the Chord DHT. Section 5 discusses the
proposed DL architecture and an application scenario. Section 7 presents the
LibraRing protocols, while Section 8 summarizes our experimental evaluation.
Finally, Section 9 concludes the paper.

2 Related Work

The problem of IR and IF in DL architectures that utilize P2P networks has
recently received considerable attention. Here we only discuss papers that we
judge most relevant to our work (because they combine an emphasis on DLs,
models and languages based on IR, and techniques from P2P networks).

The hierarchical 2-tier architecture of LibraRing is similar to the ones of file
sharing systems currently deployed on the Internet, e.g., Kazaa, Gnutella2 and
Fast Track, and has also been studied by P2P researchers [2,13]. From these pro-
posals, only Edutella [13,4] uses a structured overlay network for its routing layer;
all other approaches rely on techniques from unstructured P2P networks. Some
recent proposals targeting DLs also rely on a similar architecture [12,11,7,4,9].
Papers coming from the IR community prefer to use the term hub node or direc-
tory node instead of super-peer or ultra-peer and the term leaf node instead of
client [12,11,9]. However in our case super-peers have more responsibilities that
just to provide directory services which is the case for hubs.

In [11] the problem of content-based retrieval in distributed DLs focusing
on resource selection and document retrieval is studied. A 2-tier hierarchical
P2P network is proposed, where DLs (represented by leaf nodes) cluster around
directory nodes that form an unstructured P2P network in the 2nd level of the
hierarchy. In a related paper [12], the authors define the concept of neighborhood
in hierarchical P2P networks and use this concept to devise a method for hub
selection and ranking. The PlanetP [5] system uses an unstructured P2P network
where nodes propagate Bloom filter summaries of their indices to the network
using a gossiping algorithm. Each peer uses a variation of tf/idf to decide what
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nodes to contact to answer a query. In pSearch [19] the authors propose to use
the CAN DHT protocol [14] and semantic document vectors (computed using
LSI) to efficiently distribute document indices in a P2P network. PIRS [24] uses
an unstructured P2P network and careful propagation of metadata information
to be able to answer queries in highly dynamic environments. Finally, OverCite
[17] is a recent proposal to build a distributed version of CiterSeer using DHTs.

Early work on IF includes SIFT [22,23] which uses the Boolean and VSM
models, and InRoute [3] which is based on inference networks. Both of these sys-
tems are centralised although some issues related to distribution have been stud-
ied in SIFT [23]. Recently, a new generation of IF systems has tried to address
the limitations imposed by centralized approaches by relying on ideas from P2P
networks. The system P2P-DIET [7], that builds on the earlier proposal DIAS
[10], is an IR and IF system that uses the model AWPS and is implemented as
an unstructured P2P network with routing techniques based on shortest paths
and minimum-weight spanning trees. pFilter [18] uses a hierarchical extension
of CAN to filter unstructured documents and relies on multi-cast trees to no-
tify subscribers. Architectural considerations regarding the development of an
IF system for DLs were first studied by Hermes [6].

None of the papers cited above provides a comprehensive architecture and
protocols for the support of both IR and IF functionality in DLs using DHTs.
This is the emphasis of our work which is presented in the forthcoming sections.

3 The Data Model AWPS
We will use a well-understood attribute-value model, called AWPS in [10]. A
(resource) publication is a set of attribute-value pairs (A, s), where A is a named
attribute, s is a text value and all attributes are distinct. The following is an
example of a publication:

{ (AUTHOR, “John Smith”), (TITLE,“Information dissemination in P2P ...”),
(ABSTRACT,“In this paper we show that ...”) }

The query language of AWPS offers equality, containment and similarity
operators on attribute values. The containment operator is interpreted under the
Boolean model and allows Boolean and word-proximity queries. The similarity
operator is defined as the cosine of the angle of two vectors corresponding to text
values from a publication and a query. Vector representations of text values can
be computed as usual using the VSM or LSI models (but only the VSM model
has been used in our implementation and experiments).

Formally, a query is a conjunction of atomic queries of the form A = s,
A � wp or A ∼k s, where A is an attribute, s is a text value, wp is a conjunction
of words and proximity formulas with only words as subformulas, and k is a sim-
ilarity threshold i.e., a real number in the interval [0, 1]. Thus, queries can have
two parts: a part interpreted under the Boolean model and a part interpreted
under the VSM or LSI model. The following is an example of a query:

(AUTHOR = “John Smith”) ∧ (TITLE � P2P ∧ (information ≺[0,0] alert)) ∧
(ABSTRACT ∼0.7 “P2P architectures have been...”)



28 C. Tryfonopoulos, S. Idreos, and M. Koubarakis

This query requests resources that have John Smith as their author, and their
title contains the word P2P and a word pattern where the word information is
immediately followed by the word alert. Additionally, the resources should have
an abstract similar to the text value “P2P architectures have been ...” with
similarity greater than 0.7.

4 Distributed Hash Tables

We use an extension of the Chord DHT [15] to implement our super-peer net-
work. Chord uses a variation of consistent hashing [8] to map keys to nodes. In
the consistent hashing scheme each node and data item is assigned a m-bit iden-
tifier where m should be large enough to avoid the possibility of different items
hashing to the same identifier (a cryptographic hashing function such as SHA-1
is used). The identifier of a node can be computed by hashing its IP address.
For data items, we first have to decide a key and then hash this key to obtain
an identifier. For example, in a file-sharing application the name of the file can
be the key (this is an application-specific decision). Identifiers are ordered in an
identifier circle (ring) modulo 2m i.e., from 0 to 2m − 1. Figure 1(b) shows an
example of an identifier circle with 64 identifiers (m = 6) and 10 nodes.

Keys are mapped to nodes in the identifier circle as follows. Let H be the
consistent hash function used. Key k is assigned to the first node which is equal
or follows H(k) clockwise in the identifier space. This node is called the successor
node of identifier H(k) and is denoted by successor(H(k)). We will often say
that this node is responsible for key k. For example in the network shown in
Figure 1(b), a key with identifier 30 would be stored at node N32. In fact node
N32 would be responsible for all keys with identifiers in the interval (21, 32].

If each node knows its successor, a query for locating the node responsible
for a key k can always be answered in O(N) steps where N is the number of
nodes in the network. To improve this bound, Chord maintains at each node a
routing table, called the finger table, with at most m entries. Each entry i in
the finger table of node n, points to the first node s on the identifier circle that
succeeds identifier H(n) + 2i−1. These nodes (i.e., successor(H(n) + 2i−1) for
1 ≤ i ≤ m) are called the fingers of node n. Since fingers point at repeatedly
doubling distances away from n, they can speed-up search for locating the node
responsible for a key k. If the finger tables have size O(log N), then finding a
successor of a node n can be done in O(log N) steps with high probability [15].

To simplify joins and leaves, each node n maintains a pointer to its predecessor
node i.e., the first node counter-clockwise in the identifier circle starting from
n. When a node n wants to join a Chord network, it finds a node n′ that is
already in the network using some out-of-band means, and then asks n′ to find
its position in the network by discovering n’s successor [16]. Every node n runs
a stabilization algorithm periodically to find nodes that have recently joined the
network by asking its successor for the successor’s predecessor p. If p has recently
joined the network then it might end-up becoming n’s successor. Each node n
periodically runs two additional algorithms to check that its finger table and
predecessor pointer is correct [16]. Stabilization operations may affect queries
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by rendering them slower or even incorrect. Assuming that successor pointers
are correct and the time it takes to correct finger tables is less than the time it
takes for the network to double in size, queries can still be answered correctly in
O(log N) steps with high probability [16].

To deal with node failures and increase robustness, each Chord node n main-
tains a successor list of size r which contains n’s first r successors. This list is
used when the successor of n has failed. In practice even small values of r are
enough to achieve robustness [16]. If a node chooses to leave a Chord network
voluntarily then it can inform its successor and predecessor so they can modify
their pointers and, additionally, it can transfer its keys to its successor. Any
node joining or leaving a Chord network can use O(log2 N) messages to make
all successor pointers, predecessor pointers and finger tables correct [15].

5 The LibraRing Architecture

A high-level view of the LibraRing architecture is shown in Figure 1(a). Nodes
can implement any of the following types of services: super-peer service, provider
service and client service.

Super-peer service. Nodes implementing the super-peer service (super-peers)
form the message routing layer of the network. Each super-peer is responsible
for serving a fraction of the clients by storing continuous queries and resource
publications, answering one-time queries, and creating notifications. The super-
peers run a DHT protocol which is an extension of Chord. The role of the DHT
in LibraRing is very important. First of all, it acts as a rendezvous point for in-
formation producers (providers) and information consumers (clients). Secondly,
it serves as a robust, fault-tolerant and scalable routing infrastructure. When
the number of super-peers is small, each node can easily locate others in a single
hop by maintaining a full routing table. When the super-peer network grows in
size, the DHT provides a scalable means of locating other nodes as we discussed
in Section 4. Finally, by serving as a global metadata index that is partitioned
among super-peers, the DHT facilitates building a distributed metadata reposi-
tory that can be queried efficiently.

Client service. Nodes implementing the client service are called clients. A
client connects to the network through a single super-peer node, which is its
access point. Clients can connect, disconnect or even leave the system silently
at any time. Clients are information consumers: they can pose one-time queries
and receive answers, subscribe to resource publications and receive notifications
about published resources that match their interests. If clients are not on-line,
notifications matching their interests are stored by their access points and deliv-
ered once clients reconnect. Resource requests are handled directly by the client
that is the owner of the resource.

Provider service. This service is implemented by information sources that
want to expose their contents to the clients of LibraRing. A node implementing
the provider service (provider) connects to the network through a super-peer
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Fig. 1. The architecture of LibraRing and an example of a lookup operation over a
Chord ring with m=6

which is its access point. To be able to implement this service, an information
source should creates meta-data for the resources it stores using data model
AWPS, and publish it to the rest of the network using its access point.

As an example of an application scenario let us consider a university with 3
geographically distributed campuses (Arts, Sciences and Medicine) and a local
digital library in each campus (see Figure 1(a)). Each campus maintains its
own super-peer, which provides an access point for the provider representing the
campus digital library, and the clients deployed by users. A university might
be interested in making available to its students and staff, in a timely way, the
content provided by other publishers (e.g., CiteSeer, ACM, Springer, Elsevier).
Figure 1(a) shows how our architecture can be used to fulfill this requirement.
An integration layer is used to unify different types of DLs. At this level, we also
expect to see observer modules (as in [6]) for information sources that do not
provide their own alerting service. This modules will query the sources for new
material in a scheduled manner and inform providers accordingly.

Questions of interoperability are not discussed in this paper. Figure 1(a) as-
sumes that some of them are solved at the level of providers with well-known
integration techniques, and leaves open the question of how to interoperate with
other P2P networks e.g., the DHT implementing OverCite [17]. The latter ques-
tion is currently under study in project Evergrow1 that is funding this work.

6 Extensions to the Chord API

To facilitate message sending between nodes we will use the function send(msg, I)
to send message msg from some node to node successor(I), where I is a node
identifier. Function send() is similar to Chord function lookup(I) [15], and costs
O(logN) overlay hops for a network of N nodes. When function send(msg, I)
is invoked by node S, it works as follows. S contacts S′, where id(S′) is the
greatest identifier contained in the finger table of S, for which id(S′) ≤ I holds.

1 http://www.evergrow.org/

http://www.evergrow.org/
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Upon reception of a send() message by a node S, I is compared with id(S). If
id(S) < I, then S just forwards the message by calling send(msg, I) itself. If
id(S) ≥ I, then S processes msg since it is the intended recipient.

Our protocols described in Section 7 also require that a node is capable of
sending the same message to a group of nodes. This group is created dynamically
each time a resource publication or a query submission takes place, so multicast
techniques for DHTs such as [1] are not applicable. The obvious way to handle
this over Chord is to create k different send() messages, where k is the number
of different nodes to be contacted, and then locate the recipients of the message
in an iterative fashion using O(k log N) messages. We have implemented this
algorithm for comparison purposes.

We have also designed and implemented function multiSend(msg, L), where
L is a list of k identifiers, that can be used to send message msg to the k
elements of L in a recursive way. When function multiSend() is invoked by node
S, it works as follows. Initially S sorts the identifiers in L in ascending order
clockwise starting from id(S). Subsequently S contacts S′, where id(S′) is the
greatest identifier contained in the finger table of S, for which id(S′) ≤ head(L)
holds, where head(L) is the first element of L. Upon reception of a multiSend()
message, by a node S, head(L) is compared with id(S). If id(S) < head(L), then
S just forwards msg by calling multiSend() again. If id(S) ≥ head(L), then S
processes msg since this means that it is one of the intended recipients contained
in list L (in other words, S is responsible for key head(L)). Then S creates a new
list L′ from L in the following way. S deletes all elements of L that are smaller or
equal to id(S), starting from head(L), since S is responsible for them. In the new
list L′ that results from these deletions, we have that id(S) < head(L′). Finally,
S forwards msg to node with identifier head(L′) by calling multiSend(msg, L′).
This procedure continues until all identifiers are deleted form L. The recursive
approach has in practice a significantly better performance than the iterative
method as we show in Section 8.

7 The LibraRing Protocols

In this section we describe in detail the way clients, providers and super-peers
join and leave the network. We also describe resource publication and query
submission protocols. We use functions key(n), ip(n) and id(n) to denote the
key, the IP address and the identifier of node n respectively.

7.1 Client Join

The first time that a client C wants to connect to the LibraRing network, it has to
follow the join protocol. C must find the IP address of a super-peer S using out-
of-band means (e.g., via a secure web site that contains IPs for the super-peers
that are currently online). C sends to S message NewClient(key(C), ip(C))
and S adds C in its clients table (CT ), which is a hash table used for identifying
the peers that use S as their access point. key(C) is used to index clients in
CT , while each CT slot stores contact information about the client, its status
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(connected/disconnected) and its stored notifications (see Section 7.6). Addi-
tionally, S sends to C an acknowledgement message AckNewClient(id(S)).
Once C has joined, it can use the connect/disconnect protocol (to be described
below) to connect and disconnect from the network.

Providers use a similar protocol to join a LibraRing network.

7.2 Client Connect/Disconnect

When a client C wants to connect to the network, it sends to its access point
S message ConnectClient(key(C), ip(C), id(S)). If key(C) exists in the CT
of S, C is marked as connected and stored notifications are forwarded to it. If
key(C) does not exist in CT , this means that S was not the access point of C
the last time that C connected (Section 7.7 discusses this case).

When a client C wants to disconnect, it sends to its access point S mes-
sage DisconnectClient(key(C), ip(C)). S marks C as disconnected in its CT
without removing information related to C, since this information will be used
to create stored notifications for C while C is not online (see Section 7.6).

Providers connect to and disconnect from the network in a similar way.

7.3 Resource Indexing

A resource is indexed in three steps. In the first step a provider P constructs a
publication p = {(A1, s1), (A2, s2), . . . , (An, sn)} (the resource description) and
sends message PubResource(key(P ), ip(P ), key(p), p) to its access point S.

In step two, S forwards p to the appropriate super-peers as follows. Let
D1, . . . , Dn be the sets of distinct words in s1, . . . , sn. Then p is sent to all nodes
with identifiers in the list L = {H(wj) : wj ∈ D1 ∪ · · · ∪ Dn}. The subscription
protocol guarantees that L is a superset of the set of identifiers responsible
for queries that match p. Subsequently S removes duplicates and sorts L in
ascending order clockwise starting from id(S). This way we obtain less identifiers
than the distinct words in D1∪· · ·∪Dn, since a super-peer may be responsible for
more than one words contained in the document. Having obtained L, S indexes
p by creating message msg =IndexResource(ip(P ), key(P ), ip(S), key(p), p),
and calling function multiSend(msg, L).

Finally in the third step, each super-peer S′ that receives this message stores
p in an inverted index that will facilitate matching against one-time queries that
will arrive later on at S′.

7.4 Submitting an One-Time Query

In this section we show how to answer one-time queries containing Boolean and
vector space parts (denoted as queries of type T1) or only vector space parts
(denoted as queries of type T2). The first type of queries is always indexed under
its Boolean part. Let us assume that a client C wants to submit a query q (of
type T1) of the form

∧m
i=1 Ai = si ∧

∧n
i=m+1 Ai � wpi ∧

∧k
i=n+1 Ai ∼ai si.

The following three steps take place. In step one, C sends to its access point
S message SubmitQ(key(C), ip(C), key(q), q).



LibraRing: An Architecture for Distributed Digital Libraries Based on DHTs 33

In the second step, S randomly selects a single word w contained in any of
the text values s1, . . . , sm or word patterns wpm+1, . . . , wpn and computes H(w)
to obtain the identifier of the super-peer storing publications that can match q.
Then it sends message msg =PoseQuery(ip(C), key(C), ip(S), key(q), q) by
calling function send(msg, H(w)).

If q is of the form An+1 ∼a1 s1 ∧ ... ∧ An ∼an sn (query type T2)
then step two is modified as follows. Let D1, . . . , Dn be the sets of distinct
words in s1, . . . , sn. q has to be sent to all super-peers with identifiers in the
list L = {H(wj) : wj ∈ D1 ∪ · · · ∪ Dn. To do so, S removes duplicates,
sorts L in ascending order clockwise starting from id(S) and sends message
msg =PoseQuery(ip(C), key(C), ip(S), key(q), q) by calling multiSend(msg,L).

In step three, each super-peer that receives an one-time query q, it matches
it against its local publication store to find out which providers have published
documents that match q and delivers answers as discussed in Section 7.6.

7.5 Pub/Sub Functionality

This section describes how to extend the protocols of Sections 7.4 and 7.3 to
provide pub/sub functionality. To index a continuous query cq the one-time query
submission protocol needs to be modified. The first two steps are identical, while
the third step is as follows. Each super-peer that receives cq, it stores cq in its
local continuous query data structures to match it against incoming publications.
A super-peer S uses a hash table to index all the atomic queries of cq, using as
key the attributes A1, . . . , Ak. To index each atomic query, three different data
structures are also used: (i) a hash table for text values s1, . . . , sm, (ii) a trie-like
structure that exploits common words in word patterns wpm+1, . . . , wpn, and (iii)
an inverted index for the most “significant” words in text values sn+1, . . . , sk.
S′ utilises these data structures at filtering time to find quickly all continuous
queries cq that match an incoming publication p. This is done using an algorithm
that combines algorithms BestFitTrie [21] and SQI [23].

To index a resource, the protocol of Section 7.3 needs to be extended. The
first two steps are identical, while in the third step, each super-peer that receives
p matches it against its local continuous query database using the algorithms
BestFitTrie and SQI.

7.6 Notification Delivery

Assume a super-peer S that has to deliver a notification n for a continuous query
cq to client C. It creates message msg =Notification(ip(P ), key(P ), pid(p), qid(cq)),
where P is the provider that published the matching resource and sends it to
C. If C is not online, then S sends msg to S′, where S′ is the access point of
C, using ip(S′) associated with cq. S′ stores msg, to deliver it to C upon re-
connection. If S′ is also off-line msg is sent to the successor(id(S′)), by calling
function send(msg, successor(id(S′))). Answers to one-time queries are han-
dled in a similar way. In case that more that one answers or notifications have
to be delivered, function multiSend() is used.
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7.7 Super-Peer Join/Leave

To join LibraRing network, a super-peer S must find the IP address of another
super-peer S′ using out-of-band means. S creates message NewSPeer(id(S),
ip(S)) and sends it to S′ which performs a lookup operation by calling lookup
(id(S)) to find Ssucc = successor(id(S)). S′ sends message AckNewSPeer

(id(Ssucc), ip(Ssucc)) to S and S updates its successor to Ssucc. S also contacts
Ssucc asking its predecessor and the data that should now be stored at S. Ssucc

updates its predecessor to S, and answers back with the contact information
of its previous predecessor, Spred, and all continuous queries and publications
that were indexed under key k, with id(S) ≤ k < id(Spred). S makes Spred its
predecessor and populates its index structures with the new data that arrived.
After that S populates its finger table entries by repeatedly performing lookup
operations on the desired keys.

When a super-peer S wants to leave LibraRing network, it constructs mes-
sage DisconnectSPeer(id(S), ip(S), id(Spred), ip(Spred), data), where data are
all the continuous queries, published resources and stored notifications of off-line
peers that S was responsible for. Subsequently, S sends the message to its suc-
cessor Ssucc and notifies Spred that its successor is now Ssucc. Clients that used
S as their access point connect to the network through another super-peer S′.
Stored notifications can be retrieved through successor(id(S)).

8 Experimental Evaluation

In [20] we present a detailed evaluation of DHTrie, a set of protocols that are
essentially the LibraRing protocols in the case that all nodes in the system are
equal DHT nodes (i.e., there are no super-peers). [20] deals only with the pub/sub
case and evaluates the DHTrie protocols only under queries of type T1. In this
section we continue this evaluation for the complete LibraRing protocols using
the same data and query set. As in [21,20], we use a corpus of 10426 documents
downloaded from CiteSeer and synthetically generated queries. In all graphs the
y-axes has been truncated to show clearly the best performing algorithms.

We have implemented and experimented with four variations of the LibraRing
protocols. The first one, named It, utilises the iterative method in the publication
protocol. The second algorithm, named ItC, utilises the iterative method and an
additional routing table called FCache. FCache is a routing table that stores the
IP addresses of super-peers responsible for frequent words and is exploited for
reaching nodes in a single hop. A detailed description and performance evaluation
for FCache is given in [20]. The third algorithm, named Re, utilises the recursive
method in the publication protocol. Finally, ReC uses the recursive method and
FCache and outperforms the rest of the algorithms.

Figure 2(a) shows the number of messages needed by each algorithm to index
a resource publication to the appropriate super-peers for different super-peer
network sizes. The algorithms remain relatively unaffected by network size since a
publication needs 5% more messages for a 5 times larger network. All algorithms
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Fig. 2. Average number of messages to index a publication (a,b) and a query (c)

show a similar increase rate, with ReC presenting the best performance, needing
400 messages to index an incoming publication to a network of 100K super-peers.

Publication size is an important parameter in the performance of our al-
gorithms. Figure 2(b) shows that for small publications the use of the recur-
sive method (contrary to FCache) does not improve performance, since algo-
rithms ItC and ReC perform similarly. For large publications though, the use
of the recursive method and FCache is shown to improve performance signif-
icantly.Additionally the increase in message cost is linear to the publication
size with algorithm ReC exhibiting the smallest increase rate, thus showing the
smallest sensitivity to publication size.

Finally Figure 2(c) shows the cost indexing a query to the network. Notice
that queries of type T2 are much more expensive to index needing about 60
messages to reach the responsible super-peers, while queries of type T1 can be
indexed in an average of 8 messages. Again algorithm ReC shows a significant
improvement in message cost.

9 Outlook

We are currently implementing LibraRing in the context of project Evergrow. We
are also moving to more expressive languages that combine hierarchical structure
and textual information (e.g., XQuery with full-text operators).
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