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Abstract. We present iClusterDL, a self-organising overlay network
that supports information retrieval and filtering functionality in a digital
library environment. iClusterDL is able to handle huge amounts of data
provided by digital libraries in a distributed and self-organising way. The
two-tier architecture and the use of semantic overlay networks provide an
infrastructure for creating large networks of digital libraries that require
minimum administration, yet offer a rich set of tools to the end-user.
We present the main components of our architecture, the protocols that
regulate peer interactions, and an experimental evaluation that shows the
efficiency, and the retrieval and filtering effectiveness of our approach.

1 Introduction

Research in the area of peer-to-peer (P2P) data management has lately given
considerable attention to Semantic Overlay Networks (SONs) [1,2,3]. In a SON,
peers that are semantically, thematically or socially close (i.e., peers sharing
similar interests or resources) are organised into groups to exploit similarities at
query time. SONs, while being highly flexible, improve query performance and
guarantee high degree of peer autonomy. This technology has proved useful not
only for distributed information sharing, but also as a natural distributed alter-
native to Web 2.0 application domains such as decentralised social networking in
the spirit of Flickr or del.ic.ious. Although SONs do not offer accurate location
mechanisms like structured overlays (e.g., Distributed Hash Tables-DHTs), they
are better suited for loose P2P architectures due to better support for semantics
and their natural emphasis on peer autonomy. Query processing in a SON is
achieved by identifying which cluster is better suited to answer the query and
routing the query towards a peer in that cluster. This peer is then responsible
for forwarding the query to the other members of the same cluster.

Currently, document collections are fragmented across different Digital Li-
braries (DLs) due to copyright issues that prevent the owners to share their
documents. To deal with this issue, a number of P2P architectures (most using
a DHT as the underlying routing infrastructure) that allow users to transparently
search these data collections have emerged as a natural decentralised solution. In
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this paper, we introduce iClusterDL, a novel P2P architecture supporting self-
organising SONs that demonstrates (i) the feasibility of supporting rich query
models without resorting to structured overlays, and (ii) the benefits derived
from a looser organisation of system components. iClusterDL relies on the
idea of organising peers into SONs, where clusters are linked by virtue of con-
taining similar information. Building upon a P2P model, iClusterDL consists
of three general types of peers, namely information providers (contributing docu-
ments to the network), information consumers (seeking for existing information),
and super-peers. Super-peers act as access points for clients and providers. They
self-organise into a SON to offer a robust, fault-tolerant and scalable means for
routing messages and managing queries. The description of each super-peer is de-
rived from the descriptions of the providers connected to it, allowing super-peers
to organise into clusters of similar content. In iClusterDL, both publications
and queries are processed using the vector space model (VSM).

iClusterDL is designed to support both information retrieval (IR) and in-
formation filtering (IF) functionality. In an IR scenario a user poses a one-time
query and the system returns all resources matching the query (e.g., all currently
available documents relevant to the query). In an IF scenario a user submits a
continuous query and waits to be notified about certain future events of interest
(i.e., about newly published documents relevant to the continuous query). With
today’s information explosion, IF becomes a necessary component for DLs since
it provides the tools to keep the users informed, while not imposing the effort
and cognitive overload of periodic one-time queries.

As an example of an application scenario for iClusterDL let us consider a
computer scientist, whose main field of expertise is information retrieval, and
is mainly interested in retrieving scientific publications on his topic of interest
and also follow the work of prominent researchers in the area. He regularly uses
the DL of his department and also other DLs to search for new papers in the
area. Even though searching for interesting papers this week turned up nothing,
a search next week may return new information. Clearly, a system that is able
to integrate a big number of relative sources and also capture his long-term
information need would be a valuable tool that would allow him to save both
time and effort.

In our example scenario, consider a university comprised of geographically dis-
tributed campuses that maintain their local DLs. In the context of iClusterDL,
each campus implements and maintains its own super-peer, which serves as an
access point for the provider representing the campus DL, and the clients de-
ployed by end-users (e.g., students or faculty). Other super-peers may also be
deployed by larger institutions, like research centers or content providers (e.g.,
CiteSeer, ACM, Springer), to provide access points for their employees and make
the contents of their DLs available in a timely way. iClusterDL offers an in-
frastructure, based on concepts of P2P systems, for organising the super-peers in
a scalable, efficient and self-organising architecture. This architecture (i) allows
for seamless integration of information sources, since different DLs and other
content providers offer the same querying interface through the iClusterDL
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system to the end-user, (ii) enhances fault tolerance, since it avoids centralised
components that introduce bottlenecks and single points of failure, and (iii) re-
quires no central administration authority, since each participant is responsible
for the administration and maintenance of its own (super-) peers.

To the best of our knowledge, iClusterDL is the first approach towards effi-
cient organisation of DLs in SONs that supports both IR and IF functionality. The
proposed architecture is automatic (requires no intervention and minimal admin-
istration), general (requires no previous knowledge of the DL contents and works
for any type of data model or content), adaptive (adjusts to changes of DL con-
tents), efficient (offers fast query processing) and accurate (achieves high recall).

In the following, we position our paper with respect to related work in Sec.
2. The iClusterDL architecture and protocols for supporting IR and IF func-
tionality are presented in Sec. 3 and Sec. 4 respectively. A critical evaluation of
the performance of iClusterDL is presented in Sec. 5, followed by issues for
further research in Sec. 6.

2 Related Work and Background

This section provides a brief survey of the technology related to data organisation
and retrieval in SONs, and related research in the context of IR and IF for the
DL domain.

2.1 Semantic Overlay Networks

Initial IR approaches implementing SON-like structures to support content
search in a distributed collection of peers include the work of Klampanos et
al. [4], where an architecture for IR-based clustering of peers is proposed. In this
architecture, a representative peer (hub) maintains information about all other
hubs and is responsible for query routing. The notion of peer clustering based on
similar interests rather than similar documents is introduced in the work of Spri-
panidkulchai et al. [5]. In a similar spirit, Parreira et al. [6] introduce the notion
of “peer-to-peer dating” that allows peers to decide which connections to create
and which to avoid based on various usefulness estimators. Additional work on
peer organisation using SONs is based on the idea of “small-world networks”.
Schmitz [7] assumes that peers share concepts from a common ontology, and this
information is used for organising peers into communities with similar concepts.
Along the same lines, Li et al. [8] propose creating a self-organising semantic
small world (SSW) network based on the semantics of data objects stored lo-
cally to peers. Other works include the embedding of metric spaces in the SON
paradigm, as in [9,10]. None of the works cited above examines the applicability
of SONs in the DL domain, while their focus lies on single-tier architectures.

To the best of our knowledge, DESENT [11] is the only work applying the
concept of SONs in a DL domain. In DESENT [11], SONs are organised as a hi-
erarchy of clusters. Each cluster is represented by the so called “cluster gateway”
(a single peer within the cluster). In turn, groups of clusters form super-clusters
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with their own gateways. Each cluster gateway maintains information about all
other clusters (and super-cluster) representatives. All communication within a
SON is propagated through gateways, thus creating communication bottlenecks
at these peers. Contrary, iClusterDL maintains a flat structure of clusters
with no representatives and the communication can be routed through any peer
within a cluster, thus avoiding the bottleneck problem. Moreover, iClusterDL

supports IF functionality (in addition to IR) at no extra communication cost.

2.2 IR and IF in Digital Libraries

Two-tier architectures is a natural solution for addressing architectural issues in
DL domains. Lu and Callan [12] study the problem of content-based retrieval
in distributed DLs focusing on resource selection and document retrieval. They
propose a two-level hierarchical P2P network where DLs are clients that connect
to super-peers, which form an unstructured P2P network in the second level of
the hierarchy. A recent contribution by the same authors [13] suggests organising
super-peers into neighborhoods to devise a method for super-peer selection and
ranking. Finally, OverCite [14] is proposed as a distributed alternative for the
scientific DL CiteSeer1, by utilising a DHT infrastructure to harness distributed
resources (storage, computational power, etc.).

To the best of our knowledge, P2P-DIET [15] and LibraRing [16] are the
first approaches that try to support both IR and IF functionality in a single
unifying framework. P2P-DIET utilises an expressive query language based on
IR concepts and is implemented as an unstructured P2P network with routing
techniques based on shortest paths and minimum weight spanning trees. LibraR-
ing [16] provides protocols to support both IR and IF functionality in DLs using
DHTs. The DHT is used to make sure that queries meet the matching documents
(in the IR scenario) or that published documents meet the indexed continuous
queries (in the IF scenario). Contrary to LibraRing, MinervaDL [17] suggests us-
ing Chord DHT to disseminate and store statistics about the document providers
rather than the documents themselves. iClusterDL is the first comprehensive
architecture that exploits SONs to provide a framework for self-organised and
self-managed DLs that can offer a rich quiver of tools to end-users. The work
presented in this paper extends the iCluster protocols [3] to support both IR
and IF functionality in the DL domain, by focusing on a two-tier architecture.

3 iClusterDL Architecture

Figure 1 illustrates an overview of the iClusterDL architecture, composed of
three main components: super-peers, providers and clients.

Super-peers represent the message routing layer of the network. Super-
peers are nodes with more capabilities than provider or client peers (e.g., more
cpu power and bandwidth), are responsible for serving information producers
(providers) and information consumers (clients), and act as their access points to
1 http://citeseer.ist.psu.edu/
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Fig. 1. A high-level view of the iClusterDL architecture

iClusterDL network. Super-peers run the peer organisation protocol and form
clusters based on their likelihood to contain similar content. Each super-peer is
characterised by the information content of the providers that use it as an access
point, and maintains a routing index holding information for short- and long-
range links to other super-peers: short-range links correspond to intra-cluster
information (i.e., links to super-peers with similar interests), and long-range
links correspond to inter-cluster information (i.e., links to super-peers having
different interests). In the iClusterDL architecture, the role of super-peers is
multi-fold: they act as the glue between information producers and information
consumers, build a distributed self-organising repository that can be queried ef-
ficiently, store continuous queries submitted by information consumers to match
them against newly published documents, and serve as a robust, fault-tolerant
and scalable routing infrastructure.

Provider peers stand for information sources exposing their contents to the
clients of iClusterDL. A provider connects to the network through a super-peer
(its access point). Providers store locally their documents and answer one-time
queries. Each document is represented by a vector of terms in the spirit of VSM,
which may be either automatically (by text analysis) or manually assigned to
each document (e.g., tags or index terms). To identify its interests, a provider
categorises its documents (each document may belong in multiple categories)
using an external reference system (e.g., the ACM categorisation system), an
ontology, or unsupervised clustering methods [18]. Since documents are repre-
sented by term vectors, naturally a provider’s interest is also represented by the
centroid (i.e., the mean vector of the vector representations of the documents it
contains). The interests of a provider are then used to determine the interests of
the super-peer that acts as an access point for the provider.

Client peers provide an interface to end-users searching or subscribing for
data. Clients can pose one-time queries and receive answers, or subscribe to
resource publications and receive notifications about published resources that
match their interests. A client connects to the network through a single super-
peer (its access point). Clients can connect, disconnect or even leave the system
at any time. If clients are not on-line, notifications matching their interests are
stored by their access points and delivered once clients reconnect.
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4 The iClusterDL Protocols

The main idea behind iClusterDL is to let super-peers self-organise into SONs,
and then, address (or monitor) the most promising cluster of super-peers with
respect to an one-time (or continuous) query. In this section, we discuss the
protocols that specify how peers join and leave the network, how super-peers self-
organise into clusters, and how query processing for both one-time or continuous
query, and document publication are carried out.

4.1 Provider and Client Join

The first time a provider pi wants to connect to the iClusterDL network, it
has to follow the join protocol. Initially, pi categorises its documents and stores
its interests in interest list int(pi). To join the network, pi finds the IP address
of a super-peer sj using out-of-band means (e.g., via a secure web site that
contains IP addresses for the super-peers that are currently online), and sends
to sj a NewP= (id(pi), ip(pi), int(pi)) message, where id(pi) is the identifier
of pi created when the provider bootstraps and is used to support dynamic IP
addressing, and ip(pi) is the IP address of pi. Subsequently, sj adds pi in its
provider table (PTj), which is a table used for identifying the providers that use
sj as their access point. PTj is used to associate the id() of a provider with
its last known IP address, and also stores information such as the status of pi

(connected/disconnected). Finally, sj sends to pi an acknowledgement message
AckP= (id(sj), ip(sj)). Once pi has joined, it can use the connect/disconnect
protocol described next to connect to and disconnect from the network.

Clients use a similar protocol to join the iClusterDL network. When a client
ci wants to connect for the first time, it sends a NewC= (id(ci), ip(ci)) message
to its access point sj , and is subsequently added to the client table (CTj) of sj .
Similarly, CTj is used to store contact and status information for ci, along with
non-delivered notifications (e.g., due to ci being offline).

4.2 Provider and Client Connect/Disconnect

A provider pi connects to the network by addressing a ConnectP=
(id(pi), ip(pi)) message to its access point sj . If id(pi) exists in PTj then pi

is marked as connected, otherwise this means that sj is not the access point of
pi, and that pi wants to migrate to another super-peer. In this case, the connec-
tion request is rejected and the provider pi has to run the join protocol described
in the previous section. When a provider pi wants to disconnect, it sends to its
access point sj a DisconnectP= (id(pi), ip(pi)) message and sj marks pi as
disconnected in its PTj. Clients connect or disconnect from the network in a
similar way, but sj has also to make sure that a disconnected client ci will not
miss notifications about resources of interest while not online. Thus, notifica-
tions for ci are stored in the client table CTj of sj and wait to be delivered upon
reconnection of ci.
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4.3 Super-Peer Join

To join the iClusterDL network, a super-peer si must compute the list of its
interests int(si) as

⋃
∀pj∈PTi

int(pj) in order to identify itself in the network. For
each distinct interest intik in int(si), si maintains an individual routing index
RIik, which contains short-range links that point to super-peers with similar
interests, and long-range links that point to super-peers with different interests.
During the joining procedure of si, the routing index is initialised as follows: si

collects in RIik the IP addresses of λ randomly selected super-peers or routing
index entries of neighboring super-peers. These links will be refined according
to the interest intik of si, using the super-peer organisation protocol described
in the next section.

4.4 Super-Peer Organisation

Super-peer organisation proceeds by establishing new connections and by dis-
carding old ones, producing this way clusters of super-peers with similar in-
terests. Each super-peer si periodically initiates a rewiring procedure. For each
interest intik, si computes the intra-cluster similarity NSik (as a measure of
cluster cohesion) as:

NSik =
1

|RIik| ·
∑

∀sj∈RIik

Simintik
ij , (1)

where |RIik| is the number of short-range links (super-peers in the neighbor-
hood of si) with respect to interest intik. If NSik is greater than a threshold
θ, then si does not need to take any further action, since it is surrounded by
similar super-peers. Otherwise, si initiates a cluster refinement process by issu-
ing FindPeers= (id(si), ip(si), intik, P, tF ) message, where P is a list initially
empty and tF is the time-to-live (TTL) of the message. Notice that both θ and
tF are system parameters that are tuned upon system bootstrapping. A super-
peer sj receiving the message computes the similarity between its interest intjy

with interest intik in FindPeers() message, appends to P the interest resulted
in the maximum similarity value, reduces tF by 1 and forwards FindPeers()
message to its neighboring super-peers. When tF = 0, the FindPeers() message
is sent back to the message initiator si. During the message forwarding proce-
dure, a message recipient sj chooses to forward FindPeers() message to a set
of m randomly chosen super-peers contained in sj ’s routing index. To further
clarify the rewiring procedure, Fig. 2(a) presents the pseudocode for super-peer
organisation.

A super-peer sj receiving FindPeers() message may also collect informa-
tion about new super-peers with similar interests by examining the interests of
previous message recipients. This new information may then be used to update
the routing index RIjκ of sj by replacing old short-range links corresponding
to super-peers with less similar interests with new links corresponding to super-
peers with more similar interests.



Information Retrieval and Filtering over Self-organising Digital Libraries 327

Procedure Rewiring(si, intik, tF , θ, m)
A procedure initiated by a super-peer si

whenever its neighborhood similarity NSik

drops below a predefined threshold θ.

input: super-peer si with interest intik

and routing index RIik

output: updated routing indexes

1: compute
NSik = 1

|RIik| · ∑
∀sj∈RIik

Sim
intik
ij

2: if NSik < θ then
3: P ← { }
4: create FindPeers() message
5: send FindPeers() to

m random neighbors of si

6: let sj be a neighbor of si receiving
FindPeers() and intjκ the interest
of sj that is most similar to intik

7: update Rjκ with information from P
8: P ← P :: 〈(id(sj), ip(sj), intjκ)〉
9: tF ← tF − 1
10: do the same for the neighbors of sj

11: repeat until tF = 0
12: return list P to si

13: update Rik with information from P

(a) The self-organisation protocol

Procedure CQuery Routing(cq, si, tq, θ, m)
A super-peer si compares the continuous
query cq towards its interests, decides
whether to store it in its local continuous
query data structures and forwards cq to
the super-peer network.

input: query q issued by super-peer si and
threshold θ
output: updated continuous query
data structures

1: compare cq against interests intin,
where 1 ≤ n ≤ l, and select intik

that is the interest of si most
similar to cq

2: initiate message CQUERY()
3: if sim(cq, intik) ≥ θ then
4: store cq in local data structures
5: forward CQUERY() to all short-range

links in RIik

7: else
forward CQUERY() to m neighbors
of si that are the most similar to cq

8: tcq ← tcq − 1
9: do the same for the neighbors of si

10: repeat until tcq = 0

(b) The continuous query routing protocol

Fig. 2. Pseudocode for the super-peer protocols

4.5 IR: Processing One-Time Queries

Let us assume that a client ci wants to submit a query q, where q is a term
vector. Initially, ci sends a SubmitQ= (id(ci), ip(ci), q) message to its ac-
cess point sj . Upon receival of a SubmitQ() message, sj compares q against
its interests intjn, 1 ≤ n ≤ �, and selects the interest intjk for which
intjk = max(sim(q, intjn)) holds (i.e., the most similar interest to the query). If
sim(q, intjk) ≥ θ, then sj creates a Query= (id(sj), ip(sj), id(ci), ip(ci), q, tq)
message, where tq is the query TTL, and forwards it to all its short-range links
in RIjk, thus broadcasting the message to its neighborhood. This broadcasting
happens because sj has identified that the query is close to its interests and
thus, also close to the interests of its neighbors.

If sim(q, intjk) < θ, sj forwards the Query() message to the m super-peers
with interests most similar to q. In this case m is usually small, and this query
forwarding technique is referred as fixed forwarding, since the query is forwarded
through a limited number of paths until it finds a similar cluster. All forwarding
super-peers execute the aforementioned protocol and reduce tq by one at each
step of the forwarding procedure. Notice that the value of tq in the case of
broadcasting is not the same with that of fixed forwarding; typically tq is smaller
when broadcasting (since we need to reach super-peers only a few hops away)
and larger when performing a fixed forwarding (since we need to explore regions
of the network that are possibly far away from the initiating super-peer).
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Apart from query forwarding, each super-peer sk, for which sim(q, sk) ≥ θ
holds, applies the following procedure for retrieving documents similar to q. It
constructs a FindRes= (id(sj), ip(sj), q) message and sends it to all providers
with interests similar to q, by examining its provider table PTk. Once a provider
peer pl receives a FindRes() message, it matches q against its local document
collection to retrieve all documents matching q. The provider peer ranks the
local results according to their relevance to the query, creates a result list rl

of the form 〈d, m(d), Sim(q, d)〉, where d is a pointer to a document, m(d) are
metadata about d and Sim(q, d) is the similarity between q and d, and sends a
RetRes= (id(pl), ip(pl), rl) message to sj (notice that sj is the super-peer that
initiated the querying procedure on behalf of client ci). In this way, sj collects the
local result lists of the relevant providers contacted and uses them to compute
a final result list R that is sent to the client peer ci and presented to the user.

4.6 IF: Processing Continuous Queries

In the following, the protocols of Sect. 4.5 above are adjusted appropriately to
support IF functionality.

Subscribing with a Continuous Query: Let us assume that a client ci

wants to submit a continuous query cq. Initially, ci sends a SubmitCQ=
(id(ci), ip(ci), cq) message to its access point sj , and sj initiates a CQuery=
(id(sj), ip(sj), id(ci), ip(ci), cq, tq) message. The message is forwarded in the
super-peer network following the mechanism described in Sect. 4.5. A super-peer
sk that receives a continuous query cq similar to its interests (i.e., sim(cq, sk) ≥
θ), stores cq in its local continuous query data structures to match it against fu-
ture publications. Super-peer sk will utilise these data structures at publication
time to find quickly all continuous queries that match a publication. This can be
done using an appropriate local filtering algorithm such as SQI [19]. Figure 2(b)
presents the pseudocode for continuous query routing.

Publishing a New Document: Publications in iClusterDL are kept locally
at each provider in the spirit of [17]. This lack of publication dissemination
mechanism is a design decision that avoids document-granularity dissemination
(e.g., as in [17]) and offers increased scalability by trading recall. Thus, only the
corresponding super-peers (i.e., those indexing a continuous query cq) can notify
a client ci, although provider peers using other super-peers as access points may
also publish relevant documents. When a provider peer pj wants to publish a
new document d to the network, it sends the document to its access point sk and
then, the super-peer sk is responsible for matching d against its local continuous
query database to decide which continuous queries match d and thus, which
clients should be notified.

At pre-specified intervals or when the document collection of a provider peer
pj has changed significantly, pj recomputes its interests and informs its corre-
sponding access point by sending a RefreshInt= (id(pj), ip(pj), int(pj)) mes-
sage. Subsequently, the super-peer that acts as the access point of pj changes
the respective record in its PT and refreshes the list of pj ’s interests.
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Notification Delivery: Let us assume that super-peer si has to deliver a
notification for a continuous query cq to client cj . It creates a Notify=
(id(pl), ip(pl), d, m(d), cq) message, where d is a pointer to the document match-
ing cq, m(d) are metadata about d and pl is the provider that published d, and
sends it to cj . If cj is not online, then si sends the message to the access point
sk of cj , using ip(sk) associated with cq. Super-peer sk is then responsible for
storing the message in CTk and delivering it to cj upon reconnection.

4.7 Discussion

iClusterDL is highly dynamic as it allows for random insertions or deletions
of all peer types, as well as for insertions or deletions of new documents. All peer
insertions/deletions are performed in a local manner (affecting only entries in
local super-peer data structures in the case of provider or client peers, and super-
peer routing indexes in the case of super-peers), and the network self-organises
to a new stable state after a few iterations of the rewiring protocol. In this
way, iClusterDL is based solely on local interactions, requiring no previous
knowledge of the network structure or of the overall content in the network.
The messaging cost to maintain the network clustered is dampened at query
time by the fast and efficient search mechanism. To further improve the search
mechanism, iClusterDL maintains a fixed number of long-range links (i.e.,
links to other clusters) in the routing indexes of the super-peers. These links
provide shortcuts to other clusters and prevent them from forming disconnected
communities that are inaccessible by others.

Notice that methods assuming one interest per super-peer [20,7] (specialisa-
tion assumption) will not perform well under a DL setting: the description of
a super-peer would either reflect the contents of its strongest interest (i.e., the
interest of the provider with the largest document collection) ignoring all other
interests, or result in a single category representing the averaging over the docu-
ment collections of the super-peer’s providers. This would result in poor retrieval
performance as queries (even very specific ones) would be addressing highly in-
coherent clusters of super-peers. To avoid this, in iClusterDL providers and
super-peers use multiple interests obtained by document categorisation.

5 Evaluation

In this section, we evaluate the proposed protocols using two real-life corpora
with medical and web data, and compare them against a baseline flooding ap-
proach. The first corpus is a subset of the OHSUMED TREC2 document collec-
tion that contains more than 30,000 medical articles categorised in 10 different
categories. The second dataset contains over 556,000 documents from the TREC-
63 collection, categorised in 100 categories. Notice that the second dataset has
been previously used by [21] to evaluate IR algorithms over distributed document
collections for scenarios similar to the ones of the DL domain. In our setting, each
2 http://trec.nist.gov/data/t9 filtering.html
3 http://boston.lti.cs.cmu.edu/callan/Data/
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Fig. 3. Evaluation of retrieval and filtering effectiveness

provider is mainly specialised in one category, while we pose no restrictions on
which providers connect to a super-peer. Thus, a super-peer may have providers
with different interests, and be subsequently part of many different clusters. The
one-time and continuous queries that were employed are strong representatives
of document categories. The size of the network is 2,000 super-peers.

Each super-peer periodically tries to find better neighbors by initiating the
rewiring procedure. The base unit for time used is the period t. The start of the
rewiring procedure for each super-peer is randomly chosen from the time interval
[0, 4K · t] and its periodicity is randomly selected from a normal distribution of
2K · t. We start recording the network activity at time 4K · t, when all super-
peers have initiated at least once the rewiring procedure. The network traffic is
measured by recording the number of messages exchanged by the super-peers
during rewiring or querying. Finally, the IR (respectively IF) effectiveness is
evaluated using recall as the percentage of qualifying answers retrieved with
respect to the total number of qualifying answers in the network (respectively
the percentage of total number of notifications received with respect to the total
number of published documents matching a subscription in a time window).

We experimented with different values of similarity threshold θ, message for-
warding TTL tF and query forwarding TTL tq. We consider that a given param-
eter value is better than another if it results in better clustering and retrieval
for less communication load. The baseline parameter values used for this set of
experiments are θ = 0.9, tF = 4 and tq = 8.

Retrieval and filtering effectiveness. Figure 3(a) illustrates the performance
of iClusterDL as a function of time for both datasets. Due to the similar query
routing protocol, recall for both IR and IF scenarios has similar behavior. When
the super-peer network is not yet fully organised into clusters of similar super-
peers (i.e., moment 4K) the queries cannot be routed towards the appropriate
super-peers, thus reaching low recall values (around 20% for the OHSUMED cor-
pus). When the network becomes organised into cohesive clusters (i.e., moment
6K), iClusterDL achieves high values of recall (over 60%) for all examined
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Fig. 4. Message costs for different corpora

scenarios. Figure 3(b) illustrates a comparison of the performance of
iClusterDL against the flooding approach limited to the same number of mes-
sages, for different sizes of the network using the TREC-6 corpus (the results are
similar for the OHSUMED dataset). iClusterDL demonstrates significant per-
formance improvement over flooding, which increases with network size reaching
up to 8 times better recall. In fact, iClusterDL scales up well for large networks
(only 20% decrease of recall for 400% increase in network size).

Message costs. Figure 4(a) shows the number of messages needed over time for
the self-organisation of the super-peers. Initially, the network presents a message
overhead in terms of organisation messages, which is greatly reduced after the
network organises into coherent clusters. The organisation messages for TREC-6
are higher due to the higher number of clusters created, which in turn is an effect
of the higher number of document categories. However, after the organisation of
the super-peers, the rewiring protocol is able to maintain an effective super-peer
organisation at a small communication cost. Figure 4(b) shows the number of
messages per (continuous) query over time. When the network is not yet organ-
ised into coherent neighborhoods (left-most points in the x-axis), iClusterDL

needs high number of search messages to achieve the recall shown in Fig. 3(a).
However, this message overhead is decreased (over 12% decrease for OHSUMED
and 100% decrease for TREC-6) as the super-peers get organised into clusters
with similar interests (right-most points in the x-axis). The search messages for
OHSUMED are higher due to the higher number of peers per cluster.

Figures 4(b) and 3(a) demonstrate that iClusterDL manages to effectively
organise the network, as IR and IF performance improves for much less commu-
nication overhead.

6 Outlook

We are currently investigating the effect of different system parameters on the
clustering and retrieval performance of iClusterDL: the size of the routing
index, the number of short/long-range links, and the clustering quality measures.
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