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Problem statement & Method

Particulate matter (PM) pollution poses a major health concern worldwide, with PM2.5 (aerodynamic diam‐
eter less than 2.5 μm) being one of the most detrimental ones to human health. Within urban agglomer‐
ations, the landscape induces extra complexity, such as roads between high buildings (the so‐called street
canyons), where thermal phenomena also come into play [1]. As the human‐generated emissions vary sig‐
nificantly both in time and space and influential meteorological conditions such as wind speed and relative
humidity are extremely time‐dependent, modelling and forecasting PM pollution at urban environments
is a rather challenging problem. Various methods that utilize algorithms belonging in the broader field of
Machine Learning (ML) have been developed in the literature, e.g. [2, 3].

The novelty of our approach lies in using a modified Long Short‐Term Memory (LSTM) Neural Network that
employs an attention‐based mechanism to provide a level of interpretability for the final results, without
compromising on forecasting accuracy [4]. The latter alleviates the main problematic regarding ML algo‐
rithms in Physics, namely their black‐box approach which does not allow for insight in their output. Our
method is quite general and is applicable to any set of measuring sensors.

Dataset compilation, Cleaning & Feature Selection

Figure 1. Locations of meteorological (blue) and particulate
matter (red) measurement stations in Patras city, Greece.

Figure 2. Comparison of the two channels for three PA ‐ II
sensors.

Our dataset consists of publicly available PM2.5 measurements from 21 PurpleAir PA ‐ II sensors (10 min
resolution) and meteorological data from local stations (see Fig. 1). Each PM2.5 measurement, i, is taken
equal to the mean of the sensor’s two channels [5], A and B, if

|PM2.5A,i − PM2.5B,i|
PM2.5A,i + PM2.5B,i

< 10%,

otherwise the data point is dropped.

We use the following features: UV high, Solar Radiation High, Wind Gust Average, AverageWind Direction,
Average Wind Speed, Average Temperature, Mean Floor Area Ratio [6], Dew point Average, Mean Popu‐
lation Density, Pressure, Precipitation Rate and Average Relative Humidity. In total, there are N = 253546
data points, spanning the period from 2018‐12‐01 to 2022‐06‐19.

The prediction window used is 1h, taking into account the values of PM2.5 from the previous 24h, however
we can make predictions for arbitrary time ranges by considering each predicted point as a new data point.
The PM2.5 measurements utilized for the prediction of a new PM2.5 value are labelled as “Auto‐regressive”
and correspond to our last feature.

Scaling, Training and Evaluation

The logarithm of PM2.5 values is taken in order to reduce the influence of possible outliers and then min‐
max scaling is applied for all features. The modified LSTM of [4] is trained on our dataset using an early
stopping mechanism. We split the dataset into 50% training data, 20% validation data and 30% test data.

Figure 3. Testing of the trained model for a time period of 10 days ≡ 240 hours.

The evaluation results on (part of) the test data are shown in Fig. 3. For a set of 50 runs, the Root Mean
Square Error on the test set is 15.42 ± 0.30, while the Mean Absolute Error is 4.53 ± 0.27. This value
corresponds to a maximum error similar to 15 μg/m3, which is comparable to the sensor’s accuracy.

Feature Importance: Insight into the Physics

Figure 4. Feature importance variability over training epochs.

The most important features in terms of their contribution to the predictions are Auto‐regressive
(14.39%), Mean Floor Area Ratio (14.39%), Wind Direction Average (14.39%), Wind Gust Average
(14.39%), Temperature Average (14.39%) and Dew Point Average (14.39%). The importance of “Auto‐
regressive” is obvious: past values of PM2.5 measurements highly impact present ones. The importance
of “Wind Gust Average” stems from the fact that pollutants can efficiently cross the urban canopy layer
and then be removed via diffusion, mostly through coherent structures of gust wind [7]. Wind Direction
Average is connected to the generation and disruption of turbulent structures, as well as transported pol‐
lution. Mean Floor Ratio is also related to emergent turbulent structures, as a measure of building volume.
Temperature is known to be closely correlated to PM2.5 concentrations [8]. Importantly, from training
epoch ∼ 30 onwards, each feature’s importance practically converges to constant values, thus indicating a
robustness in our interpretations (see Fig. 4).
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Figure 5. Temporal variability of each time‐series point’s feature importance. The horizontal lines sum to 1, with each element,
aij, corresponding to the percentage of importance for feature i on time step j.

It is of interest to assess the contribution of each time step for a given data point (time‐series) in the
prediction. In Fig. 5, one observes that the most critical time‐steps are from 24 to almost 22 hours before
the the prediction. This could possibly be attributed to the periodicity of the phenomenon.

Summary

Particulate matter pollution is a major concern, due to its adverse effects on human health worldwide.
Towards undertaking mitigation measures, an accurate and efficient forecasting service is imperative. We
construct a general framework for PM forecasting, employing publicly available PM measurements from
low cost sensors and open meteorological data with the aid of state‐of‐the‐art machine learning algorithms.
Specifically, we use a LSTMNeural Network that provides a level of interpretability. The spatial dependence
of the phenomenon due to the complex urban agglomeration is taken into account using features such as
population density and mean floor area ratio, for the first time in this field. The method is applicable to any
type of sensors. As a case study, we apply our method to Patras, a previously unstudied Greek port‐city,
for the particular case of PM2.5 concentrations. It is found that the model shows a forecasting accuracy
that is comparable to the sensors’ resolution, combined with meaningful interpretations of its results.
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