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Abstract — In the information filtering (or publish/ subscribe) 
paradigm, clients subscribe to a server with continuous queries 
that express their information needs while information sources 
publish documents to servers. Whenever a document is 
published, the continuous queries satisfying this document are 
found and notifications are sent to appropriate subscribed 
clients. Although information filtering has been in the research 
agenda for about half a century, there is a huge paradox when 
it comes to benchmarking the performance of such systems. 
There is a striking lack of a benchmarking mechanism (in the 
form of a large-scale standarised test collection of continuous 
queries and the relevant document publications) specifically 
created for evaluating filtering tasks. This work aims at filling 
this gap by proposing a methodology for automatically 
creating massive continuous query datasets from available 
document collections. We intend to publicly release all related 
material (including the software accompanying the proposed 
methodology) to the research community after publication. 

continuous queries; dataset construction; information 
filtering; publish/subscribe; information dissemination; profiles; 

I.  INTRODUCTION 
In recent years, content-based information filtering (or 

publish/subscribe) applications, such as news or digital 
library alerts, have gained popularity to help users cope with 
the information avalanche problem on the Web. In the 
information filtering paradigm, users -or services that act on 
users’ behalf- subscribe to a server with continuous queries 
(or profiles) that are expressed in some well-defined 
language and capture their information needs. When a 
document is published on the server, the continuous queries 
satisfying the document are found and notifications are sent 
to appropriate clients. Publishers may be news feeds, digital 
libraries, or users who post new blog items. Notice that 
information filtering is very different from information 
retrieval (as in search engines), in which a user poses a (one-
time) query and the search engine executes it only once to 
retrieve the currently matching documents.  

Since a server may handle millions of clients and 
continuous queries, the filtering problem needs to be solved 
efficiently by each server. To this end, a number of systems 
and algorithms that try to solve the filtering problem 
efficiently for different data models and query languages 
have been proposed [1, 6, 10, 17, 11, 12, 16, 18, 19, 20]. 
However, despite all the research in the area, there is an 
apparent lack of a benchmarking mechanism (in the form of 
a large-scale standarised test collection of continuous 
queries and the relevant document publications) specifically 
created for evaluating filtering tasks. From our point of view 

there exist two major problems to be addressed when trying 
to experimentally evaluate a filtering algorithm: (i) the 
document corpus to be used as publications and (ii) the set of 
continuous queries relative to that corpus. It may not be 
difficult to collect data to be used as publications since there 
is a wide collection of document corpora available. It is 
however, extremely difficult to find continuous queries 
relevant to a specific corpus except by obtaining proprietary 
data (e.g., from Google Alerts or CNN’s news alert system). 
Notice also that one-time queries, such as those obtained 
from public releases of major search engines’ query logs 
(like Google BigQuery, Zeitgeist, or the AOL query set) are 
inappropriate for filtering tasks as they typically express a 
one-time information need, contrary to continuous queries 
that are used to express recurrent and long-standing 
information needs. Finally, other efforts, such as the TREC 
Filtering Track, are insufficient as they contain only a few 
dozens of manually created and curated continuous queries, 
and cannot live up to the need of modern benchmarking that 
is in the order of millions (e.g., as in [12, 16, 18, 19, 20]).  

Given the above, it becomes clear that the only viable 
alternative to this lack of standarised benchmarks is to 
artificially generate sets of continuous queries related to the 
corpus to be used for the evaluation. To the best of our 
knowledge this is the first approach in the literature to 
provide a general-purpose methodology for artificially 
generating realistic continuous query datasets from actual 
document corpora for benchmarking purposes. To this end, 
our contributions are the following:  
• We formally define the query language and data model 

named AWP supported by our methodology.  
• We introduce a new corpus of research papers to be used 

as publications in the filtering tasks. Notice however, 
that our methodology is general enough to be used with 
any (attribute tagged) document corpus; here the new 
corpus is only used as a proof-of-concept for our 
continuous query creation process. 

• We propose a new methodology for creating synthetic 
user profiles using words and technical terms extracted 
automatically from the document corpus. To do so we 
use the corpus at hand to create realistic continuous 
queries under query language AWP. It should, however, 
be stressed out that our methodology can be applied to 
any corpus and any query language similar to AWP. 

The rest of the paper is organised as follows. Section II 
gives a brief overview of related work and Section III hints 
on the model AWP, which is used for specifying profiles and 
documents. Section IV presents the NN corpus, whereas 
Section V presents our methodology for the creation of 



continuous queries. Finally, Section VI concludes the paper 
by providing future research directions. 

II. RELATED WORK 
 Our work relates (at a higher level) to the general area of 

information filtering efficiency as expressed by a number of 
systems and algorithms that try to provide scalable 
information filtering solutions for different data models and 
query languages. Some of these approaches include the 
systems XFilter [1], YFilter [6], DFA [10], the Boolean 
version of SIFT [17], and the agent-based DIAS [11]. Other 
approaches focus more on the algorithmic aspect by 
providing efficient tree-based data structures such as [12, 16, 
18, 19, 20] for dealing with documents that are free text and 
profiles that are conjunctions of keywords. To the best of our 
knowledge the only work that is somewhat relevant to ours is 
[15], where a corpus of documents (but no continuous 
queries) is built for adaptive filtering tasks. 

Interestingly the evaluation of the XFilter [1] and SIFT 
[17] is based on a synthetic corpus of documents; XFilter 
creates them using IBM’s XML generator [7] and NITF 
DTD [5], whereas the creation of continuous queries is also 
synthetic. Contrary, [10] uses Deterministic Finite Automata 
to parse a corpus of XML documents and the XPath 
generator used in YFilter [6] to generate the user profiles. 
However, the main problem with all these approaches is that 
they are (i) aimed at a single evaluation and cannot be 
reused, (ii) based in artificial (and not real document) 
corpora, and (iii) not freely available to use. Contrary, our 
approach is general enough to cover many filtering tasks, is 
based on actual documents to create the continuous query 
dataset, and will be freely available for use after publication. 

III. THE DATA MODEL AWP 
In [11] we present the data model AWP for specifying 

continuous queries and textual resource metadata in 
information filtering systems. AWP is based on the concept 
of named attributes with values of type text. The query 
language of AWP offers Boolean and proximity operators on 
attribute values as in the work of [4], which is based on the 
Boolean model of information retrieval. 

Syntax. Let Σ be a finite alphabet. A word is a finite 
non-empty sequence of letters from Σ. Let V be a (finite or 
infinite) set of words called the vocabulary. A text value s of 
length n over vocabulary V is a total function 
s:{1,2,...,n}→V.  

Let I be a set of (distance) intervals I={[l,u]: l,u ∈ N, l ≥ 
0 and l ≤  u} ∪ {[l,∞): l ∈ N and l ≥ 0}. A proximity formula 
is an expression of the form w1≺i_1 ··· ≺i_n−1 wn where 
w1,...,wn are words of V and i1,...,in are intervals of I. 
Operators ≺i are called proximity operators and are 
generalizations of the traditional information retrieval 
operators kW and kN [4]. Proximity operators are used to 
capture the concepts of order and distance between words in 
a text document. The proximity word pattern w1 ≺[l,u] w2 
stands for “word w1 is before w2 and is separated by w2 by at 
least l and at most u words”. The interpretation of proximity 
word patterns with more than one operator ≺i is similar. A 

word pattern over vocabulary V is a conjunction of words 
and proximity formulas. An example of a word pattern is 
applications ∧ efficient ≺[0,0] data ≺[0,3] fusion.  

Let Å be a countably infinite set of attributes called the 
attribute universe. In practice attributes will come from 
namespaces appropriate for the application at hand e.g., from 
the set of Dublin Core Metadata Elements [21].  

A document d is a set of attribute-value pairs (A,s) where 
A ∈ Å, s is a text value over V, and all attributes are distinct. 
The following set of pairs is an example document:  

{ (AUTHOR, “Christos Tryfonopoulos”), 
(TITLE, “Distributed information filtering is ...”), 

(ABSTRACT, “In this paper we show that ...”) } 
A query is a conjunction of the form  

A1 = s1 ∧...∧ An = sn  ∧ B1 ⊒ wp1 ∧...∧ Bm ⊒ wpm 
where each Ai,Bi ∈ Å, each si is a text value and each wpi is a 
word pattern. The following formula is an example query:  

AUTHOR = “Christos Tryfonopoulos” ∧  
TITLE ⊒ (distributed ≺[0,3] filtering) ∧ information 

Semantics. The semantics of AWP have been defined in 
[11] and will not be presented here in detail. It is 
straightforward to define when a document d satisfies an 
atomic formula of the form A = s or B ⊒ wp, and then use 
this notion to define when d satisfies a query [11]. The 
example document given above satisfies the example query.  

IV. THE NEURAL NETWORK CORPUS  
The proof-of-concept corpus we use (called NN corpus) 

consists of a fraction of research papers from ResearchIndex 
[14,13] having Neural Networks as a subject. ResearchIndex, 
formerly known as Citeseer, is a digital library that targets 
the improvement in the dissemination of scientific literature. 
ResearchIndex indexes research articles in various formats 
and provides a variety of free services, such as full-text and 
citation indexing as well as paper statistics.  

TABLE I.  SOME CHARACTERISTICS OF THE NN CORPUS 

Description Value 

Number of documents 10,426 

Document vocabulary size 641,242 

Maximum document size (words) 110,452 

Minimum/maximum word size 1/35 

 
The NN corpus consists of 10,426 scientific papers in 

English. Some important values for this corpus are 
summarised in Table I above. The documents were 
downloaded from the ResearchIndex site as postscript files 
and were converted to text files. Then all references and 
equations were removed and each word in the document was 
assigned a grammatical tag (e.g. noun, verb etc.) using a 
simple rule-based part of speech (POS) tagger [3]. This 
processing was necessary as a first step for the extraction of 
multi-word terms by the C-value/NC-value method 
described briefly in Section V.A and also in [9]. To use the 
corpus for our continuous query creation we also utilised the 
full citation graph of ResearchIndex. 



Initially, we removed all the POS tags from all the 
documents. We then used the information from the full 
citation graph of ResearchIndex to extract the title, authors, 
abstract, and year of the publication. This information was 
not extracted from the actual corpus since the flat form of the 
documents contained considerable noise even after several 
rule-based filters were applied to it. The next step was to 
process the abstracts as POS-tagged text files, extracted from 
the original postscript files. After processing the abstracts we 
were able to identify the body of the document by excluding 
the information we already had in hand. When the 
processing phase was completed, we merged the different 
attributes extracted, along with the appropriate attribute tags. 
We then had at our disposal an attribute-tagged corpus with 
five fields: title, authors, abstract, body and year.  

At this point we have to stress out that the information 
obtained from the citation graph was incomplete, resulting in 
documents without all the attribute fields filled in. This is 
actually not a problem in an experimental setting since in an 
information dissemination scenario users may post 
documents with only some of the attributes filled in. Table II 
gives some interesting measures of the fraction of documents 
out of the document corpus that contain each attribute, and 
summarises the fraction of documents that contain a specific 
number of attributes.  

TABLE II.  ATTRIBUTE STATISTICS 

Attribute % fraction of  
documents 

 Number of 
attributes 

% fraction of  
documents 

title 63%  1 7.4% 

authors 58%  2 28.0% 

abstract 88%  3 1.9% 

body 86%  4 16.0% 

year 63%  5 45.0% 

V. CONTINUOUS QUERY GENERATION METHODOLOGY 
The main construct in our profile creation process is that 

of a unit. Units in our context represent different entities that 
can be used to create a profile. The first two unit sets consist 
of proximity formulas created from multi-word terms, that 
were extracted from the NN corpus using the C-value/NC-
value method described below. The third one is the set of all 
the nouns extracted from document abstracts, and the fourth 
one is the set of all author last names in the NN corpus 
documents. Combining units from these four sets in a well-
defined way, allows us to create realistic profile databases in 
order to conduct our experiments.  

A. Automatic Term Extraction  
The multi-word terms used in the profiles for our 

experiments are extracted from the NN corpus using the C-
value/NC-value approach of [9]. The process of 
identification of terms or technical terms or terminological 
phrases from a collection of documents belongs to the 
research area called automatic term recognition. The C-
value/NC-value approach of [9] specifies the “termhood” of 
a candidate multi-word term as the probability (co-location 

value) to be a real term. The C-value of a term is an 
enhancement of the common statistical measure of frequency 
of occurrence, incorporating information about nested terms, 
whereas NC-value embodies information form words that 
appear in the vicinity of terms in texts. Both methods have 
been shown to perform better than the classical frequency of 
occurrence measure in terms of precision and recall [8]. For 
details on the method the reader is invited to see [9, 8].  

B. Creation of the Different Unit Sets  
The creation of the first two unit sets was based on the 
extraction of multi-word terms from the corpus. To create 
these sets, a ranked list of multi-word terms was extracted 
from the corpus documents. We then, excluded from this list 
all terms that contained more than five words since they 
were noise produced by the C-/NC-value methods. 
Additionally, we specified an upper and lower NC-value 
cut-off threshold for the terms remaining in the list. These 
cut-off thresholds were used to increase the discriminating 
power of the set of terms. The upper cut-off threshold was 
used to exclude top ranked terms, that is terms that appear 
very often in corpus documents. Such an example is the 2-
word term “neural networks” that is contained in most of 
our documents. Moreover the bottom ranked terms are also 
excluded from the list of the useful terms since they are 
mostly noise created from the procedure of transforming the 
original postscript files to simple text files. This processing 
resulted in a list containing 2-, 3-, 4- and 5-word terms, 
which was then used to create two different sets as follows.  
Let a1a2...an, where each ai is a word, be a multi-word term 
from the aforementioned list, containing n words. A 
proximity formula is created out of this term in the 
following two ways:  
1. a1 ≺[0,0] a2 ≺[0,0] ... ≺[0,0] an. For each multi-word term 

in the list we introduce the proximity operator ≺[0,0] 
between the words of the multi-word term in order to 
create proximity formulas that represent strings. All the 
proximity formulas that are created this way form the 
first set of units named PF0, which stands for proximity 
formulas with word distance zero. The number of 
operands in these proximity formulas varies according 
to the number of words contained in the multi-word 
terms. The minimum number of words in a multi-word 
term is obviously two, whereas the maximum is five. 
An example of a unit in this set, which was produced 
from the term “inverse dynamic function”, is inverse 
≺[0,0] dynamic ≺[0,0] function.  

2. a1 ≺[0,k] an, where 1 ≤ k ≤ 10. From each term in the list 
of multi-word terms we create proximity formulas with 
exactly two operands. These proximity formulas are 
created as follows. We replace all the middle words of 
the 3-, 4-, 5-word terms with the proximity operator 
≺[0,k], specifying k to be a natural number drawn 
uniformly between 1 and 10. The choice of using a 
relatively small upper bound in the distance between 
two operands is inspired by the implementation of 



operator ‘*’ and ‘NEAR’ in Google and Yahoo! 
respectively. All the proximity formulas created this 
way form the second set of units named PFk, since they 
are proximity formulas with word distance k. An 
example of a unit in this set could be rbf ≺[0,6] networks, 
which could be created from the term “rbf dynamic 
decay adjustment networks”.  

The second set of units used in the creation of our 
profiles database is the set of nouns that were extracted from 
document abstracts. The choice of nouns taken from 
document abstracts as opposed to the whole document can be 
justified by the argument that the abstracts are expected to be 
a brief description of the work carried out in the paper thus, 
very appropriate to describe the content of a paper. The 
procedure of creating the set of nouns is as follows. First, we 
identified all the nouns in singular and plural form using the 
POS-tagged abstracts that were available to us. After that, we 
created a frequency-ranked list of these words and specified 
an upper/lower cut-off threshold to cut the most/least 
frequent words. The set of units that resulted from this 
procedure is denoted by NS, which stands for nouns.  

The last set of units created is that of the authors’ last 
names. We extracted all the names of the authors that were 
available to us from the corpus documents to obtain an 
author vocabulary Vauthor of 8,833 last names. Please notice 
that using this author vocabulary to uniformly draw author 
names for continuous queries is not a good choice, since 
authors that are more active or produce more important 
papers than others are expected to be used heavier in 
continuous queries. The criterion for identifying the more 
important authors is how many citations they get from papers 
written by other researchers. In the citation graph of the NN 
corpus this is captured by the in-degree of the papers as 
explained in [2]. The highest the in-degree for the papers of a 
specific author, the highest the probability for this author to 
appear in a profile. We define Na to be the number of papers 
in the corpus that refer to at least one document of author a, 
and Vauthor the author vocabulary. Na can easily be extracted 
from the full citation graph, and the author vocabulary is 
available to us from the NN corpus documents. Thus, the 
probability of author a to be used in a continuous query is:  

 
The above formula associates an author with the popularity 
of his writings and thus, with a probability of another 
researcher being interested in his work. To capture the 
probability distribution of the author surnames, we used a 
multi-set that contains an author surname Na times, and 
presents a power-law distribution (Figure 1). This can be 
explained by taking into account the general observation 
that in every scientific domain there exist a few heavily 
cited authors, while the rest receive less visibility (in terms 
of citations of their work). The unit multi-set described 
above is denoted by AS (author surnames). 
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Figure 1.  Distribution of citations among authors 

C. Details 
In this section, we provide details of how all the above 

extracted information is combined to create realistic 
continuous queries. A continuous query under the subset of 
query language AWP consists of a conjunction of atomic 
queries. These atomic queries can only be of the form A ⊒ 
wp, where A is an attribute and wp is a conjunction of words 
and proximity formulas. In the rest of this section we will 
examine the different types of atomic queries that can be 
created according to the attributes that are available to us.  

TABLE III.  SPECIFICS FOR THE CREATION OF ATOMIC FORMULAS 

Attribute Participating 
unit sets 

Indicatory value 
of σ 

title 
PF0 
PFk 
NS 

0.4 
0.4 
0.2 

abstract 
PF0 
PFk 
NS 

0.4 
0.4 
0.2 

body 
PF0 
PFk 
NS 

0.4 
0.4 
0.2 

author AS 1.0 

 
In our context, creating a continuous query can be 

viewed as the problem of choosing with a probability 
distribution between units contained in different sets. Not all 
the sets of units participate in the creation of an atomic 
formula of a specific attribute. Moreover, different unit sets 
that participate in an atomic formula may have different 
selection probabilities (σ) in being chosen to participate in a 
profile. The unit sets that participate in the creation of an 
atomic formula, along with an indicatory value for the σ of 
each unit are summarised in Table III. Notice that these 
values may vary depending on the properties of the 
continuous query database to be generated.  

In general, a creation of an atomic query is a 3-step 
process that can be described as follows:  
1. Choose the number of units (or the size of an atomic 

query) S. This value is drawn uniformly from [1,Smax], 
where Smax is the maximum number of units in an atomic 
query. Smax is defined to be 2 for atomic formulas of 
author and title attributes, whereas it is set to 3 for the 
abstract and body attributes. This differentiation in Smax 



is due to the different number of words contained 
typically in the different attributes of a document. 

2. Taking into account the units that may participate in a 
specific atomic formula, we pick S units from these sets 
according to the selection probabilities summarised in 
Table III. 

3. Having chosen these units, we take their conjunction to 
create the atomic formula. 

Thus, an atomic formula for the title attribute may be: 
title ⊒ (rbf ≺[0,6] networks) ∧ java 

which contains two units (remember that this is the 
maximum number of  units allowed for the title attribute): 
unit (rbf ≺[0,6] networks) drawn from unit set PFk and unit 
java drawn from unit set NS. Modifiying σ in the different 
unit sets results in controlling how often units of a specific 
set will appear in atomic queries of the corresponding 
attribute. Thus, other possible atomic formulas could be:  

title ⊒ implementation ∧ (dynamic ≺[0,0] functions) 
title ⊒ real ≺[0,0] world ≺[0,0] application 

title ⊒ algorithm ∧ implementation 
Atomic queries for abstract and body attributes are 

created in a similar way. The only differentiation between 
atomic formulas of different attributes is the value of σ for 
the unit sets and the maximum atomic query sizes.  

At the same time creating atomic queries for attribute 
author is somewhat different since it may contain either one 
unit or a conjunction of two units from AS. Note that for the 
case of an atomic query for the author attribute using more 
words in conjunction would make the profile very specific, 
thus not suitable for an information alert setting. Note also, 
that proximity operations may also be used in these atomic 
queries (e.g., John ≺[0,0] Brown). However, the authors’ first 
names were not available from the corpus documents so this 
option was not adopted. Some examples of such atomic 
queries are author ⊒ Brown or author ⊒ Smith ∧ Johnson. 

Finally, to decide which atomic queries will be 
introduced as conjuncts in each continuous query we assign 
selection probabilities to each one of the four types of atomic 
queries and according to this selection probabilities we 
include or exclude atomic queries. Each type of atomic query 
is (or is not) included in a profile independently of the rest of 
the types. For example, for a specific profile generation 
scenario if the selection probability of all four types of 
atomic queries is 85% then atomic queries for the author 
attribute will appear in the 85% of the profiles in the profile 
database. The same holds for the rest of the attribute types 
(title, abstract and body). At this point we should stress that 
in this way all possible combinations of atomic queries may 
appear in the generated continuous queries, and that a simple 
probability calculation allows us to control or exclude certain 
types of atomic queries.  

VI. CONCLUSIONS AND FUTURE WORK 
In this work we presented a methodology for creating 

realistic artificial continuous query databases from any real-
life (attribute-tagged) corpus, and as a proof-of-concept we 
applied it to the NN corpus. The robustness of the proposed 
methodology is highlighted not only by the publications in 

top-class venues that utilize it (e.g., [11, 12, 16, 18]), but also 
by the different document corpora it was applied on (TREC 
.gov, TREC ClueWeb09, OHSUMED, NN, and others). Upon 
publication of this work we plan to publicly release all code 
(i.e., for corpus preprocessing and query generation) and the 
proof-of-concept NN corpus, in an effort to assist researchers 
in creating their own benchmarks for the evaluation of 
filtering tasks and give visibility to the hosting venue. 

Finally, interesting directions for future work include the 
design and implementation of modules for creating realistic 
vector space and semi-structured continuous queries.  
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