
Distributed Evaluation of Continuous Equi-join Queries over Large Structured
Overlay Networks∗

Stratos Idreos†

CWI
Amsterdam, The Netherlands

S.Idreos@cwi.nl

Christos Tryfonopoulos Manolis Koubarakis

Department of Electronic and Computer Engineering
Technical University of Crete, Chania, Greece

{trifon, manolis}@intelligence.tuc.gr

Abstract

We study the problem of continuous relational query pro-
cessing in Internet-scale overlay networks realized by dis-
tributed hash tables. We concentrate on the case of contin-
uous two-way equi-join queries. Joins are hard to evaluate
in a distributed continuous query environment because data
from more than one relations is needed, and this data is
inserted in the network asynchronously. Each time a new
tuple is inserted, the network nodes have to cooperate to
check if this tuple can contribute to the satisfaction of a
query when combined with previously inserted tuples. We
propose a series of algorithms that initially index queries
at network nodes using hashing. Then, they exploit the val-
ues of join attributes in incoming tuples to rewrite the given
queries into simpler ones, and reindex them in the network
where they might be satisfied by existing or future tuples. We
present a detailed experimental evaluation in a simulated
environment and we show that our algorithms are scalable,
balance the storage and query processing load and keep the
network traffic low.

1 Introduction

We are interested in the problem of relational query pro-
cessing in wide-area networks such as the Internet and the
Web. This is an important research area with applications
to e-learning [30], P2P databases [20], monitoring [19] and
stream processing [28]. We envision large P2P overlay net-
works where information is inserted and stored in the form
of relational tuples and is queried with SQL queries. Each
node keeps a fraction of the total data tuples. Tuples of a
given relation can be distributed among various nodes. In

∗This work was supported in part by the European Commission project
Evergrow. Christos Tryfonopoulos is partially supported by a Ph.D. fel-
lowship from the program Heraclitus of the Greek Ministry of Education.

†Work performed while the author was with the Department of Elec-
tronic and Computer Engineering, Technical University of Crete.

this paper we concentrate on continuous relational query
processing and present algorithms for continuous two-way
equi-join queries. Join queries have traditionally been the
study of many query optimization efforts. Distributed eval-
uation of join queries is very challenging, mainly due to the
fact that data from different parts of the network have to be
combined. We consider this paper to be our first step in con-
tributing to the vision of relational P2P databases: a set of
unified protocols for full support of SQL in P2P networks.

Current work on continuous relational queries has
mostly emphasized system design and query evaluation for
the centralized case [39, 26, 9, 28, 33]. Recent papers
[16, 19] and the present paper study continuous relational
query processing in its natural habitat dictated by target ap-
plications: distributed, Internet-scale environments realized
by technologies building on distributed hash tables (DHTs)
[36]. The only system so far that implements join algo-
rithms on top of DHTs is PIER [20] but this is done only
for the case of one-time queries. The case of continuous
join queries is a different one and cannot be captured by the
algorithms presented in [20]. PeerCQ is another interesting
system proposed for continuous queries over DHTs [16].
PeerCQ does not consider the relational data model and the
SQL query language, and assumes that data is not stored
in a DHT but is kept locally in external data sources. In
PeerCQ, the DHT infrastructure is nicely utilized to achieve
a good distribution of the responsibilities for monitoring ex-
ternal data sources and evaluating queries. To the best of
our knowledge, our paper is the first one that presents algo-
rithms for continuous relational join queries on top of DHTs
where DHT nodes are fully utilized to store data tuples and
run collaborative query processing protocols.

The contributions of this paper are the following. We
present four distributed algorithms for evaluating continu-
ous two-way equi-join queries over DHTs. In our algo-
rithms, when a node poses a continuous query, the query
is indexed somewhere in the network and waits for incom-
ing tuples. As new tuples are inserted, the network nodes
cooperate to deliver a notification to the node that posed the

query. All algorithms in the paper use a two-level indexing
mechanism to index queries and tuples. In the first level,
nodes use attribute names prefixed by relation names to in-
dex a query or a tuple. In the second level, nodes utilize
attribute values in order to achieve a better load distribu-
tion. The two-level indexing mechanism is exploited by a
two-phase query evaluation algorithm.

The emphasis of our algorithms is twofold. We try to
distribute the load of evaluating continuous join queries to
as many nodes as possible and, at the same time, keep the
cost in terms of overlay hops low. We show the tradeoff
between achieving load distribution and performing query
evaluation with as little network traffic as possible. Each
algorithm we studied offers a particular way to resolve this
tradeoff, and it might be appropriate for applications with
relevant characteristics. One of our technical contributions
is the introduction of appropriate metrics for capturing indi-
vidual node load and total system load in our environment.

The challenges presented by continuous query process-
ing should not be underestimated. When the number of in-
stalled queries increases, the total query processing load and
network traffic created by incoming tuples increases as well.
Similarly, when the rate of incoming tuples in a given time
window increases, a higher amount of installed queries will
be triggered, leading to a higher query processing load and
network traffic. Our simulations show that our algorithms
scale well when such events take place. Another aspect of
scalability is also clearly demonstrated in our work. When
the overlay network grows, query processing becomes eas-
ier since new nodes relieve other nodes by taking a portion
of the existing workload.

The experiments we present use Chord [36] as the un-
derlying DHT, due to its relative simplicity, and appropri-
ateness for equi-join queries. However, our ideas are DHT-
agnostic: they will work with any DHT extended with the
APIs we define. Recent distributed data structure propos-
als such as [12, 32, 22] that can handle equality queries and
range queries efficiently can also be extended to handle two-
way join queries (with equality or other comparison opera-
tors) in a straightforward way using our approach.

The organization of the paper is as follows. Section 2
presents Chord and gives our assumptions regarding system
and data model. Sections 3, 4, 5 and 6 discuss alternative
indexing and query evaluation algorithms. In Section 7 we
discuss optimizations. Section 8 presents a detailed exper-
imental evaluation. Section 9 discusses related work and
finally in Section 10 we conclude the paper.

2 System model and data model

We assume an overlay network where all nodes are
equal, as they run the same software and they have the same
rights and responsibilities. Nodes are organized according
to the Chord DHT protocol and are assumed to have syn-
chronized clocks. In practice, nodes will run a protocol

such as NTP [6] and achieve accuracies within few mil-
liseconds. Each node can insert data and pose continuous
queries. Let us now give a short description of Chord. Each
node n and item i in the network owns a unique key, de-
noted by Key(n) and Key(i) respectively. Chord uses con-
sistent hashing to map keys to identifiers. Each node and
item is assigned an m-bit identifier, that should be large
enough to avoid collisions. A cryptographic hash function,
such as SHA-1 or MD5 is used: function Hash(k) returns
the m-bit identifier of key k. Identifiers are ordered in an
identifier circle (ring) modulo 2m i.e., from 0 to 2m − 1.
Key k is assigned to the first node which is equal or fol-
lows Hash(k) clockwise in the identifier space. This node
is called the successor node of identifier Hash(k) and is de-
noted by Successor(Hash(k)). We will often say that this
node is responsible for key k. A query for locating the node
responsible for a key k can be done in O(logN) steps with
high probability [36], where N is the number of nodes in the
network. Chord is described in more detail in [36].

For this work, we have developed a simple API on
top of Chord [21]. Function send(msg,id), where msg is
a message and id is an identifier, delivers msg from any
node to Successor(id) in O(logN) hops. Moreover, func-
tion multiSend(msg,I), where I is a set of d > 1 identi-
fiers I1, ..., Id delivers msg to nodes P1,P2, ...,Pd such that
Pj = Successor(I j), where 1 < j ≤ d. This happens in
d ∗O(logN) hops. Function multiSend() can also be used
as, multiSend(M,I), where M is a set of h messages and I is
a set of h identifiers. For each I j, message M j is delivered to
Successor(I j) in h ∗O(logN) hops. A detailed description
and evaluation of this API can be found in [21].

In this paper data is described using the relational data
model and is inserted in the system in the form of data tu-
ples. As in PIER [20], different schemas can co-exist but
schema mappings are not supported. Continuous queries
are formed using the SQL query language. We consider the
case of two-way equi-joins i.e., SQL queries of the form:

Select R.A1, . . . ,R.Aκ,S.B1, . . . ,S.Bλ

From R,S
Where α = β

where R and S are relations with schemas R(A1, . . . ,Aν)
and S(B1, . . . ,Bµ), 1 ≤ κ ≤ ν, 1 ≤ λ ≤ µ and α is an ex-
pression (e.g., arithmetic, string) involving only attributes
of R and possibly constants, and β is an expression involv-
ing only attributes of S and possibly constants.

We distinguish two types of queries depending on the
form of α and β. If α and β involve a single attribute of R
and S (e.g., Ai and B j respectively) and equality α = β has a
unique solution over dom(Ai)×dom(B j) then we say q is of
type T1. If any of α or β involve more than one attributes of
R and S then we say q is of type T2. We show how to evaluate
such queries without first transforming them to simple equi-
joins using generalized projection.

Each tuple t has a time parameter called publication time,
denoted by pubT (t), representing the time that the tuple was

2

inserted into the system. In addition, each query q has a
time parameter, called insertion time, denoted by insT (q)
that shows the creation time of q. A tuple t can trigger a
query q iff pubT (t) ≥ insT (q) i.e., only tuples inserted af-
ter a query was posed can trigger it. Whenever the Where
clause of a query is satisfied, an answer is computed and this
is the notification sent to the query subscriber. Each query
q has a unique key, denoted by Key(q), that is created from
the key of the node n that poses it, by concatenating a posi-
tive integer to Key(n). Like [20], we assume a “best-effort”
semantics for query evaluation and leave all the handling of
failures, partitions etc. to the underlying DHT.

Example. Consider an e-learning network such as
EDUTELLA where nodes join the network for the purposes
of sharing learning material [11]. Let us assume the learn-
ing material consists of research papers that are inserted
in the overlay once they are published. Each paper can
be described by a set of tuples using the following simple
schema:

Document(Id,Title,Con f erence,AuthorId),
Authors(Id,Name,Surname)

The following query asks that its subscriber be notified
whenever author Smith publishes a new paper:

Select D.Title, D.Con f erence
From Document as D, Authors as A
Where D.AuthorId = A.Id and A.Surname = Smith

3 Two-level indexing

One of the main challenges when designing a distributed
query processing algorithm is to generate as little load as
possible in the network and to distribute this load fairly
among existing nodes. Assume a continuous two-way join
query with the join condition R.B = S.E. The goal is to in-
dex the query in such a way, so that when new tuples are
inserted, the query and the tuples will meet to create noti-
fications. Indexing a query amounts to storing the query at
one or more nodes of the overlay. We could index queries
to a globally known node or set of nodes, but this would
eventually overload these nodes. In a P2P environment we
want as many nodes as possible to contribute some of their
resources (storage, cpu, bandwidth, etc.) for achieving the
overall network functionality. The resource contribution of
each node will obviously depend on its capabilities, its gains
from participating in the network etc. In this paper we make
the simplifying assumption that all nodes are equivalent and
can contribute to query evaluation in identical ways.

We choose to index a query using identifiers that are re-
lated to the query. This is a useful property since a tuple that
should trigger a query q, is also related to the query q, for
example, they both refer to the same relation. In this way,
it is easy to make an incoming tuple meet the appropriate
queries without any global knowledge or broadcasting.

The difficulty with join queries such as the above is that
a join condition, like the one in our example, gives us little
flexibility. For example, let us consider the simpler case of
continuous select-project queries with a Where clause of the
form R.B = value. In this case, we can simply assign the
query to the successor x of Hash(R + B + value). We use
the operator + to denote the concatenation of string val-
ues. Relevant tuples will arrive at x in the same way, and
we have to worry only for skewed values regarding load
distribution. With this solution to select-project queries in
mind, how do we index a query with a join condition like
R.B = S.E? One way could be to index the query to the
successor nodes x1 and x2 of Hash(R) and Hash(S) respec-
tively. Incoming tuples could then be indexed according to
their relation name, and some kind of communication is re-
quired between x1 and x2 to create notifications. The prob-
lem with such a solution is that the query processing load
is gathered to a small subset of the set of network nodes,
i.e., to as many nodes as the number of distinct relations
in the schema. This means that as the network size grows,
the network utilization (i.e., the percentage of nodes partic-
ipating in query processing) drops. The next logical step
is to also use the attribute names in the indexing scheme
i.e., x1, x2 can be the successor nodes of Hash(R + B) and
Hash(S +E) respectively. Now we can expect a better dis-
tribution of the query processing load but again the total
number of nodes contributing to query processing is limited
(bounded by the total number of attributes in the schema).

Another approach would be to index a join query accord-
ing to an expression combining the two join attributes, i.e.,
to the successor node of Hash(R.B+S.E) for our example.
However, new tuples would have to reach all pair combina-
tions of the attributes of different relations of the schema,
to guarantee completeness. Although evaluating locally a
query is now very easy since we have the two relations in
one node, the main disadvantage of this method is again the
fact that the number of nodes that are responsible for query
processing is bounded; this time by the possible join pairs.

All the previous solutions have the disadvantage that
only a subset of the set of network nodes sustain the total
query processing load. As with select-project queries we
would like to use the various values that the join attributes
can take in order to distribute this load. However, these val-
ues are not known at the time that the query is inserted but
are revealed to us as tuples arrive. Our algorithms exploit
this fact by using the values in incoming tuples that trigger
a query in order to distribute the query processing load.

The four algorithms we will present are based on a two-
level indexing mechanism to index queries and tuples. In the
first level (attribute level) nodes use the names of attributes
prefixed by their relation names to index a query or a tuple.
In the case of a query, those attributes are among the ones
involved in the join condition. In the second level of index-
ing (value level), nodes utilize attribute values in order to
achieve a better load distribution. A high level description
of the indexing and query processing algorithms we present

3

Figure 1. Inserting a tuple of a binary relation

is as follows. To pose a query q, a node indexes q at the
attribute level where q is stored waiting for tuples to trig-
ger it. When a node wants to insert a tuple, it indexes the
tuple both at the attribute and at the value level. As tuples
of the involved relations are inserted at the attribute level,
the indexed queries are triggered, rewritten and reindexed
at the value level according to the values of their join at-
tributes in the incoming tuples. More precisely, one of the
two join attributes is replaced in the join condition by its
value in the incoming tuple. In this way, the join query is
reduced to a simple select-project query that enters the net-
work (reindexing) and waits to be triggered. Thus, a single
join query q is evaluated by multiple nodes that share the
query processing load at the value level by evaluating the
multiple select-project queries that have been created from
different values of the join attributes. Our algorithms result
in the allocation of two roles to network nodes: the role of
query rewriters and the role of query evaluators. A node
can play both, one or none of these roles depending on the
queries and tuples that are present in the network, and the
node’s position in the identifier space.

We continue our presentation by explaining how tuples
are indexed in our proposal. Sections 4 and 5 discuss how
join queries are indexed and how nodes react upon receiving
a new tuple in order to trigger the appropriate queries.

3.1 Tuple indexing

Our tuple indexing protocol is a variation of hash parti-
tioning. Assume a relation R over h attributes and a node
x1 that wants to insert a new tuple t. Let {A1,A2,,Ah}
be the attributes in t with values {v1,v2,,vh} respec-
tively. For each Ai, x1 computes two identifiers: AIndexi =
Hash(R+Ai) and V Indexi = Hash(R+Ai + vi). When the
value of an attribute is numeric (e.g., an integer), this value
is treated as a string by +. For each Ai, tuple t will be in-
dexed twice: once according to AIndexi at the attribute level,
and once according to V Indexi at the value level. Thus a set
I of 2h identifiers is created by node x1. For each AIndexi,
x creates a message AL-INDEX(t,Ai). Similarly for each
V Indexi, x1 creates a message VL-INDEX(t,Ai). Attribute
Ai is included in the messages so that node x2 that receives t
can tell which attribute was used to index t to x2 (used for lo-
cal processing); this attribute will be denoted by IndexA(t).
Finally, a set M of 2h messages is created and x1 calls multi-
Send(M,I) to index t in 2h∗O(logN) overlay hops. A com-
plete example of inserting a tuple is shown in Figure 1.

The way a node reacts, upon receiving a tuple, depends
on the algorithm and on the indexing level that the tuple was
received as we will see in the following sections.

4 The single-attribute index algorithm

Let us now describe our first algorithm, the single-
attribute index algorithm (SAI). To pose a query q of type
T1, a node n indexes q by one of the two join attributes at the
attribute level. Node x that receives q, stores it and when tu-
ples that trigger q arrive, x rewrites and reindexes q to nodes
that are capable to create notifications at the value level.

Indexing a query at the attribute level. Indexing a
query q at the attribute level proceeds as follows. First, node
n chooses one of the join attributes of q. For the moment,
we assume that this choice is random; more detailed criteria
are discussed in Section 4.1. We call this attribute the index
attribute of q and the relation that it belongs to the index
relation of q, and denote them by IndexA(q) and IndexR(q)
respectively. The remaining join attribute is called the load
distributing attribute of q and its relation the load distribut-
ing relation of q, denoted by DisA(q) and DisR(q) respec-
tively. As we will see below, the values of DisA(q) will be
used to distribute the query processing load generated dur-
ing the evaluation of q, hence our terminology.

Then, node n creates identifier AIndex =
Hash(IndexR(q) + IndexA(q)) and message msg =
QUERY(q, Id(n), IP(n)). Arguments Id(n) and IP(n) are
used when delivering notifications back to n. Finally, node
n calls the function send(msg,AIndex) to index q at the
attribute level with complexity O(logN).

Node Successor(AIndex) that receives msg is called the
rewriter of q. It stores q in the local attribute-level query
table (ALQT) and waits for tuples to trigger it. The role
of a rewriter node is not to compute the join itself, but to
distribute the load of computing joins, creating notifications
and delivering them. Each query has one rewriter and all
queries with the same index attribute have the same rewriter.

Handling tuple insertions at the attribute level. In
SAI, an incoming tuple is indexed both at the attribute and
at the value level according to the protocol of Section 3.1.
Assume a node x that receives a tuple t at the attribute level
with the message AL-INDEX(t, IndexA(t)). x searches its
ALQT for queries that are triggered by t. The result is a
set of k join queries. For each query qi, node x owns infor-
mation on one of the two relations needed to compute the
join, namely on IndexR(qi). This information is the new
tuple t. Another node has to be contacted then, where tu-
ples of relation DisR(qi) are stored or are expected to arrive.
Since qi is an equi-join query, the only suitable tuples are the
ones where the value of DisA(qi) satisfies the join condi-
tion of qi after IndexA(qi) has been replaced with its value
in t. If valDA(qi, t) is that value, then the successor node
of V Index(qi) = Hash(DisR(qi)+DisA(qi)+valDA(qi, t))
has the rest of the tuples needed to evaluate the join due to
how tuples are indexed at the value level (see Section 3.1).

4

Figure 2. An example with SAI

We call this node the evaluator of the query for the value
valDA(qi, t). A query q has as many evaluators, as the dis-
tinct values of attribute IndexA(q).

Let us now discuss what a rewriter sends to an evalua-
tor. Each query qi is rewritten according to the incoming
tuple t. The resulting query q′i will produce the same noti-
fications, when sent to an evaluator, as if t and qi had both
arrived there. To create q′i, each attribute of IndexR(qi) in
the Select and Where clause of qi, is replaced by its cor-
responding value in t. Assume the query Select R.A, S.B
From R, S Where R.C = S.C which is triggered at the at-
tribute level by a tuple S(3,4,7). The rewritten query will
be Select R.A, 4 From R Where R.C = 7. Thus, the original
query is reduced to a simple select-project query which will
be send (reindexed) at the Successor(Hash(R+C +′ 7′)).

In this way, the rewriter node x rewrites all k triggered
queries and for each rewritten query q′i it creates a message
JOIN(q′i). A set M of k messages and a set I of k V Index
identifiers are created. Node x calls the multisend(M,I)
function to reindex the rewritten queries at the value level
which costs k ∗O(logN) overlay hops.

Processing rewritten queries at the value level. We
will now discuss how a node x at the value level reacts upon
receiving a JOIN(q′) message. Assume that q′ was created
by query q when tuple t of relation IndexR(q) arrived. First,
x has to check whether it locally stores any matching tuples
of DisR(q), i.e., tuples that were inserted in the network
after q. In addition, node x has to remember the fact that
q′ arrived in order to be able to create notifications in the
future, when tuples of DisR(q) arrive. Thus, x stores q′ in its
value-level query table (V LQT). This last step is necessary
only if this is the first time that x receives q′. This can be
easily determined using unique keys for queries [21].

An evaluator x may create one or more notifications and
use either the send() or multisend() function respectively
to deliver them. A notification contains the results of a
triggered query, namely the appropriate tuples (projected if
necessary) along with time information about when those
tuples were inserted in the network. In [21] we also present
techniques on how a node can retrieve its notification if it is

off-line at the time that the notification is created.
Handling tuple insertions at the value level. Let us

now see what happens as tuples arrive at the value level
where they meet rewritten queries. Assume a node x that
receives a tuple at the value level with a message VL-
INDEX(t, IndexA(t)). x checks if there is any rewritten
query q′ in its V LQT that is triggered by the new tuple. For
each triggered query a notification is created and t is also
stored in the local value-level tuple table (V LT T). Storing
tuples at the value level is necessary for the completeness of
SAI, e.g., assume the following series of events: (a) a query
q is indexed, (b) a tuple t of DisR(q) is inserted and stored
at node x (at the value level), and (c) a tuple of IndexR(q) is
inserted causing query q to be rewritten and reindexed to x.
If t is not stored at x then a notification will be lost.

A complete example with SAI is shown in Figure 2.
Events take place from left to right, i.e., initially query q
is indexed and then tuples arrive. For readability, only the
steps that affect query q are shown. Notice that while in
Step 3 a notification is created by a tuple that meets a rewrit-
ten query at the value level, in Step 5 the opposite happens.

Local query indexing and grouping. Since a large
number of queries are expected to be similar, i.e., refer-
ence the same relations, all queries that have equivalent join
condition are grouped together at each node. Equivalence
is easy to determine during parsing for queries of type T1.
Grouping queries is useful for minimizing the local compu-
tation cost and the network cost. Similar queries are trig-
gered in a single step. In addition, reindexing can also be
done with only one message since for the same incoming
tuple all similar queries will require the same evaluator.

Locally tuples and queries are stored in hash table based
data structures that are described in detail in [21]. Here we
concentrate on the distributed nature of our algorithms.

4.1 Choosing the index attribute

Let us now discuss parameters that affect the choice of
the index attribute. This choice determines which node will
be the rewriter and which nodes will be the evaluators of a

5

query. We can see this choice from two different perspec-
tives with the following corresponding performance metrics
that are affected: (a) the total network traffic and (b) the dis-
tribution of load among evaluator nodes.

Network traffic. A rewriter of a query q rewrites and
reindexes q each time a tuple of relation IndexR(q) is in-
serted. Thus, by indexing a query according to the attribute
that belongs to the relation with the lowest rate of tuple ar-
rival, we will decrease network traffic since less queries will
be triggered, rewritten and reindexed. It is easy to find and
maintain this information. Each node x can keep track of
the total number of tuples that have arrived to x in the last
time window. Then, any node can simply ask the two possi-
ble rewriter nodes before indexing a query for the rate that
tuples arrive. In this way, the decision of where to index
a query is adapted to the data already collected by the ap-
propriate rewriters when a query is inserted. The same ob-
servation stands for queries that are highly selective, i.e.,
SQL queries with a Where clause which contains a join
condition conjoined with a highly selective predicate (e.g.,
R.A = S.B∧S.C = 10). In this case, nodes should also keep
track of the values of attributes as tuples arrive.

Distribution of load among rewriter nodes. A join at-
tribute with a highly skewed value distribution will result in
loading a small portion of the evaluators of the query. Thus,
when distribution of load is important, the join attribute with
the more uniform distribution should be chosen.

The two metrics mentioned earlier are mutually indepen-
dent. In our experiments, where we assume a highly skewed
distribution for all attributes, we use the first metric.

5 The double-attribute index algorithms

In this section we introduce the double-attribute index
(DAI) algorithms. The motivation is to achieve an even
better distribution of the query processing load. In SAI
rewriter nodes distribute the query processing load by as-
signing rewritten queries to a multitude of evaluators. In
the DAI algorithms we go even further and take advantage
of the possibility of indexing a query twice at the attribute
level, once for each join attribute. This leads to having two
rewriters per query and thus a better load distribution than
in SAI where there is only one rewriter per query.

The DAI algorithms are based on the same two-level in-
dexing principle of SAI. But here there is a difference! If
we evaluate the rewritten queries exactly as in SAI, we will
end up creating duplicate notifications because there are
two rewriters per input query. In Figure 3 we give an ex-
ample of this situation. In Step 3, the same notification is
created twice: once when query q′′ is reindexed and once
when tuple t2 arrives at node N3. Thus, to avoid creat-
ing duplicate notifications, we have a choice to make at the
value level. Will evaluators create notifications when they
receive rewritten queries or when they receive new tuples?
We present two alternative algorithms (one for each option):

Figure 3. Duplicate notifications

the DAI algorithm where notifications are created by eval-
uators when rewritten queries arrive (DAI-Q), and the DAI
algorithm where notifications are created at evaluators when
tuples arrive (DAI-T).

Common steps in all DAI algorithms. Upon insertion,
a query is indexed twice at the attribute level. For exam-
ple, consider a query q with the join condition R.B = S.E.
The query is indexed once with R.B and once with S.E as
index attribute to the successor nodes of Hash(R + B) and
Hash(S + E) respectively. This takes place using the multi-
send() function in 2∗O(logN) hops.

We will use the notation qL (respectively qR) to refer to
a query q when it is indexed with respect to the left (respec-
tively right) attribute of a join condition. Using our notation,
we now have the following equalities:

DisR(qL) = IndexR(qR), DisR(qR) = IndexR(qL),
DisA(qL) = IndexA(qR) and DisA(qR) = IndexA(qL)

In all DAI algorithms, new tuples are indexed both at
the attribute and at the value level as in SAI. Similarly, an
indexed query is triggered, rewritten and has its evaluator
computed at the attribute level exactly as in SAI. The rest of
the query processing algorithm (i.e., how a rewritten query
is processed at evaluator nodes, how evaluators react upon
receiving tuples at the value level, etc.) is different for algo-
rithms DAI-Q and DAI-T and is discussed below.

The DAI-Q algorithm. In DAI-Q, once an evaluator
node receives a rewritten query, it tries to evaluate it against
locally indexed data tuples and create notifications. An
evaluator does not store the rewritten queries that it receives
since incoming tuples will not try to create notifications. On
the contrary, when an evaluator receives a new tuple at the
value level, it stores it locally so that it is available when
rewritten queries arrive, but it does not try to create any no-
tifications (there are no stored rewritten queries).

The DAI-T algorithm. In DAI-T, notifications are cre-
ated when evaluators receive tuples at the value level. Thus,
in contrast with DAI-Q, evaluators do not need to store tu-
ples but need to store rewritten queries. An important mo-

6

Figure 4. An example with DAI-T

tivation behind DAI-T is that since rewritten queries are
stored at evaluators, a rewriter does not need to reindex the
same rewritten query more than once at the value level. This
results in a huge performance gain for DAI-T compared to
the rest of the algorithms, since after the rewritten queries
(for a given input query) have been distributed to the ap-
propriate evaluators, no intercommunication is needed be-
tween the attribute and value level. This leads not only to a
decrease in the total network traffic but also to a significant
decrease in the total query processing load that is created
when evaluators receive and process rewritten queries.

A complete example of DAI-T in operation is shown in
Figure 4. Observe that when similar tuples are inserted (af-
ter Step 3), notifications are created without extra messages
except the ones used to index a tuple. Moreover, compared
to SAI, the notifications are created by N3 and N4, whereas
in SAI only N3 or only N4 would create the notifications
depending on what index attribute has been chosen.

6 The DAI-V algorithm

The algorithms presented so far are capable of process-
ing queries of type T1 but not queries of type T2. Let us see
why by considering the following query q :

Select R.A,S.D
From R,S
Where 4∗R.B+R.C +8 = 5∗S.E +S.D∗S.F

In queries of type T2 such as q, we have multiple candi-
dates for the role of the index attribute. Assuming that the
choice of index attribute is made randomly, let us consider
what happens when q is triggered by a tuple at the attribute
level. Unlike queries of type T1, queries of type T2 give rise
to rewritten queries with an arbitrary equality in the Where
clause e.g., the equality 5∗S.E +S.D∗S.F = 25 if a tuple t
of R with values R.B = 4 and R.C = 9 is inserted and trig-
gers query q. Indexing of such linear equalities can be done
using geometric data structures but, in general, queries of
type T2 will contain arbitrary functions so geometric data

structures is not an option we would like to consider fur-
ther. Instead, we introduce a new double-attribute indexing
algorithm that is different from previous DAI algorithms
in how rewriters create the V Index identifiers that lead to
evaluators. This algorithm has been especially designed for
queries of type T2 and covers queries of type T1 as well.
Now V Index identifier creation is based on the value that
the left- or right-hand side of the join condition takes when
a trigerring tuple arrives at the attribute level. Thus, our new
algorithm is denoted by the acronym DAI-V.

Let q be a query on relations R1 and R2 indexed using at-
tribute IndexR(qL) of relation R1 and attribute IndexR(qR)
of relation R2. Rewriters x1 and x2 respectively receive the
query. In DAI-V tuples are indexed only at the attribute
level. When a tuple t1 of R1 arrives at rewriter node x1, qL
is triggered. Then x1 creates the identifier V Index(qL) =
valJC(qL, t1), where valJC(qL, t1) is the value that is com-
puted by substituting values from the tuple t1 in the attribute
expression appearing in the R1 part of the join condition.
For our example query, valJC(qL, t1) = 25 when a tuple t1
of R with values R.B = 4 and R.C = 9 is inserted. The cor-
responding evaluator is x = Successor(Hash(V Index(qL))).
After computing V Index, a message JOIN(q′L, t ′1) is created
by x1 and sent to the evaluator node, where q′L is the rewrit-
ten qL and t ′1 is the projection of t on the attributes needed
for the evaluation of the join. Once an evaluator receives
a JOIN message, it matches the rewritten query against the
locally stored data tuples to create notifications, and then
stores t ′1 locally. The rewritten query is not stored. Sim-
ilarly, a future tuple t2 of relation R2, will arrive at x2
where it triggers qR and q′R is created. The evaluator is
the successor node of V Index(qR) = valJC(qR, t2). When
valJC(qR, t2) = valJC(qL, t1), then we get to the same eval-
uator node where t ′1 has been stored. There, q′R meets t ′1 and
a notification is created.

DAI-V uses only values to reindex rewritten queries.
Thus, we expect that the previous algorithms that use val-
ues prefixed with join attribute names will distribute better
the query processing load. On the other hand, for the same
reason, DAI-V is expected to create less traffic since queries

7

can be grouped more easily.

7 Optimizations

In this section we present optimizations that enable us to
decrease network traffic and achieve better load balancing.
The techniques presented are applicable to all algorithms.

The join fingers routing table. We introduce the join
fingers routing table (JFRT) in order to make the cost of
inserting a new tuple and evaluating queries less expensive
in terms of overlay hops. This cost is c1 + c2 for each at-
tribute of a new tuple where c1 is the cost to index a tuple,
namely c1 = O(logN) for DAI-KV and c1 = 2 ∗O(logN)
for the other algorithms. The term c2 = e ∗O(logN) is the
cost to distribute the rewritten queries from a rewriter to
their evaluators and e is the number of distinct combina-
tions of load distributing attributes and join conditions in
the triggered queries; thus this is the cost to reach the eval-
uators that compute the joins. c2 is the largest part of the
cost c1 + c2 and we can reduce it down to e in the follow-
ing way. Each time a rewriter x communicates with a new
evaluator n, it saves IP(n) and the V Index identifier that
leads to n, in the local JFRT which is a hash table that uses
the V Index identifiers as keys. Each entry for an identifier
id contains the IP address of the Successor(id). The next
time the rewriter needs to reindex a query with the same
V Index, it can do it in one hop. This way, the cost be-
comes c1 + f +(e− f) ∗O(logN), where f are the evalu-
ators found in JFRT and can be reached in one hop. The
term (e− f)∗O(logN) represents the cost to reach the eval-
uators not found in the routing table. Ideally this cost will
be reduced down to c1 + f if e = f and will remain almost
constant as the network size N grows.

Balancing the load at the attribute level. We observe
that the nodes at the attribute level get more hits than those
at the value level. For example, a request to index a query
under R.B will appear more often than a request to reindex
a query under R.B+ v, where v is a value that R.B can take.
For a database schema of k relations where each relation ri
has ai attributes there will be at most ∑

k
i=1 ai rewriter nodes.

We can distinguish two types of load that a (rewriter) node
suffers at the attribute level: the rewriter storage (RS) load
and the rewriter filtering (RF) load. The RS load of a node n
is defined as the total number of queries that are indexed to
n. The more queries a rewriter has, the more effort it has to
put into rewriting and reindexing operations. The RF load
of a node n is defined as the total number of tuples that n
receives at the attribute level in a time window. The more
tuples a rewriter receives, the more times it has to search its
ALQT to trigger, rewrite and reindex queries.

We can significantly improve load distribution at the at-
tribute level through replication of queries. We will use DR
to denote the degree of replication (DR ≥ 1). For exam-
ple, if DR = 3 then when a node indexes a query q at the
attribute level under R.B, instead of indexing q only accord-
ing to the identifier rid1 = Hash(s), where s = R+B, it also

indexes q according to the identifiers rid2 = Hash(s + s)
and rid3 = Hash(s + s + s). rid1, rid2 and rid3 are called
replication identifiers with successor nodes n1, n2 and n3
respectively. In this way, the query is replicated DR times
and instead of having one rewriter it has DR. Then, when
any node x wants to index a tuple t of R at the attribute level
under R.B, instead of sending t directly to n1, according
to the protocol of Section 3.1, x chooses randomly among
n1,n2 and n3. Thus, n1,n2 and n3 share the RF load that
initially only n1 suffered while all of them suffer the same
RS load. In the absence of collisions there will be at most
DR ∗∑

k
i=1 ai rewriter nodes and distinct replication identi-

fiers. The cost we pay is more overlay hops when indexing
queries at the attribute level, and more storage load at the
network. In both cases costs are raised by a factor of DR.

A single node can become responsible for more than one
replication identifiers of the same query [21]. We overcome
this problem by allowing each node to be responsible for at
most z replication identifiers in the spirit of [23], i.e., rewrit-
ers will change their identifiers, namely their position on the
identifier circle. In our experiments we use z = 1.

8 Experiments

In this section we experimentally evaluate the perfor-
mance of our algorithms. We implemented a Chord sim-
ulator in Java on top of which we developed our algo-
rithms. We synthetically create tuples and queries as fol-
lows. We assume a database schema S that consists of 50
relations numbered from 1 to 50. This is a likely scenario
in an Internet-wide setting with a multitude of information
sources (having a smaller number of relations does not af-
fect our techniques or results in any way). Each relation
consists of 10 attributes. Each attribute A j of a relation ri

takes values from the domain {1,2, ...,104}. There are two
classes of relations, the small and the big ones. Big rela-
tions are used to model relations with a higher rate of tuple
arrivals than small ones. Unless stated otherwise, the ratio
between the arrival rate of tuples of big and small relations,
denoted as bos (big over small) is 10. In order to create a
tuple of a relation in the small class, we choose randomly
a relation between 1 and 25 and we assign values to its at-
tributes. The values of attributes are skewed with a Zipf
distribution of θ = 0.9. For the relations of the big class,
we do the same with relations 26 to 50. In our experiments,
we create queries of type T1 as follows. We randomly select
one relation from the big class and one relation from the
small class. Then we randomly select two attributes, one
from each relation, to be the join attributes.

E1: Network traffic and JFRT effect. In our first ex-
periment we compare all algorithms in terms of overlay
hops they need and demonstrate the effect of JFRT as the
network is being trained with tuple insertions. We set up
this experiment as follows. We create a network of 104

nodes and install 105 queries. Then we train JFRT s with

8

Figure 5. (E1) Traffic cost and JFRT effect

a varying number of incoming tuples. After each training
phase, we insert another 1100 tuples (100 from the small
class and 1000 from the big one) and count (a) the average
number of overlay hops needed to index one tuple and eval-
uate existing queries and (b) the average size of JFRT s. To
count JFRT size, the sum of the size of all JFRT s in the
network is averaged by the number of rewriter nodes. For
our schema, we have 500 rewriters. Note that DAI-Q and
DAI-T algorithms have the same JFRT size after having re-
ceived the same tuples in a given network, due to having the
same query indexing steps at the attribute level and that they
compute the evaluators in the same way.

The results are presented in Figure 5. The number of
hops is decreasing, as the number of indexed tuples in-
creases because more queries are triggered, rewritten and
reindexed, which makes the JFRT on each rewriter node
to store more information and be able to decrease the cost
of the next tuple insertion. The point 0 on the x-axis has
the highest cost, since it represents the cost to insert a tu-
ple when the JFRT s are empty. We observe that the cost
is reduced more quickly during the first tuple insertions, to
reach a state where additional JFRT training causes only a
small reduction in message cost while at the same time the
average JFRT size keeps growing. This means that a node
can stop training its JFRT after this point and retrain it pe-
riodically. Initially, SAI has a cost lower by a factor of 7
compared to DAI-Q and DAI-T (point 0), because in SAI
queries are indexed only under attributes of the small rela-
tions. But as more tuples are inserted, SAI’s advantage is
diminished since the JFRT s are trained with a smaller pace
because less queries are triggered (at the attribute level).
DAI-T has an advantage since the rewriters do not rein-
dex the same rewritten query more than once. The average
JFRT size in SAI is a lot smaller than that in DAI-Q and
DAI-T since in SAI a rewriter has less queries, and queries
(at the attribute level) in SAI are triggered only by relations
of the small class. Finally, algorithm DAI-V has even lower
requirements regarding network traffic and JFRT (by a fac-
tor of 3 compared to SAI). This is due to how rewriters in
DAI-V reindex triggered queries where only the required
value is used to calculate the Vindex identifier without us-

Figure 6. (E2) Effect of the bos ratio

ing attribute names. In this way, it is possible to group more
triggered queries that may not have exactly the same join
conditions and use only one message to reindex them.

Experiments with uniform distribution for the values of
attributes lead to similar results, except that for all algo-
rithms the decrease rate in number of hops was smaller (i.e.,
we needed longer training phases) and JFRT s were larger
by a factor of 4. Experiments where the query grouping
features where not activated lead to a much higher network
traffic cost for all algorithms since multiple messages where
sent to the same (or towards the same destination). For ex-
ample, in order to filter one tuple with algorithm DAI-Q,
without grouping we needed on average 7 times more mes-
sages. Finally, experiments where we increased the number
of indexed queries showed that the algorithms are scalable
to such changes. For example, SAI and DAI-T need only
10 more hops on average to filter one tuple with 128K in-
dexed queries than with 8K queries. These experiments can
be found in detail in [21].

E2: Effect of the bos ratio. In this experiment we mea-
sure the effect in network traffic and in JFRT storage cost
of the ratio between the number of tuples in big and small
relations. We set up this experiment as follows. We create a
network of 104 nodes where we insert 105 queries, and then
40K tuples to train the JFRT s. Then we count the number
of hops needed to insert one tuple and evaluate all existing
queries and the average size of JFRT s. We repeat this pro-
cedure for various bos ratios from bos = 1 up to bos = 99.

The results are shown in Figure 6. DAI-Q and DAI-V are
not affected significantly as bos increases. However, when
the bos ratio becomes 9 or bigger they show a decrease in
hops and JFRT size since similar tuples arrive all the time
which means that there is no need to add new entries in the
JFRT s while at the same time existing entries are used more
often. With bos = 1, DAI-T has a clear advantage over SAI
in terms of hops since in DAI-T the same rewritten query
is not reindexed more than once. As expected, SAI reduces
significantly the necessary hops as bos increases since tu-
ples of the small relation arrive with a lower frequency so
less queries are triggered. As bos becomes higher than 9,
SAI and DAI-T perform similarly. However, DAI-T is far

9

Figure 7. (E3) Effect of the replication scheme
in filtering and storage load distribution

more expensive in terms of JFRT needs.
E3: Evaluation of the replication scheme. In the third

experiment we demonstrate the effect of our replication
scheme. In a network of 105 nodes we insert 5 ∗ 105 tu-
ples and count the RF and RS load per rewriter node. We
do that for various DR values.

In Figure 7(a) we measure the RF load. Note that the
RF load is independent of the algorithm used. On the x-
axis of Figure 7(a) nodes are ranked starting from the node
with the highest filtering load. The y-axis represents the
cumulative filtering load, i.e, each point (a,b) in the graph
represents the sum of filtering load b for the a most loaded
rewriters. As DR increases, a higher number of rewriters
share the same total filtering load. In addition, as DR grows
the heaviest node suffers less load. Figure 7(b) shows the
RS load per rewriter for DR = 10 and DR = 100. The DAI
algorithms have the same RS load per rewriter, for the same
set of queries, since they all index queries at the attribute
level in the same way. The extra storage load created by the
query replicas is distributed to new nodes, namely the ones
that take part of the filtering load. The results we showed
are when moving identifiers of rewriters to force them be
responsible for at most one replica of the same query. If we
do not do that then the benefits of replication are not that
strong, e.g., for the same experiment with DR = 100 there
were 12K less nodes sharing the filtering load [21].

Since indexing of tuples at the attribute level is not af-
fected by the values that attributes take, these results hold
for any value distribution. Also, experiments with a lower
bos ratio naturally resulted in a better filtering load distribu-
tion without affecting the storage load distribution.

E4: Load distribution. In this experiment we compare
the algorithms in terms of load distribution. First, we in-
troduce new metrics to quantify load at the value level: the
evaluator filtering load (or EF load) and the evaluator stor-
age load (or ES load). For a node n, EF load is the sum
of two quantities: the number of rewritten queries that ar-
rive at n and are checked to see whether they match any
stored tuples, plus the number of tuples that arrive at n and

Figure 8. (E4) Total filtering and total storage
load distribution

are checked to see whether they satisfy any stored rewritten
queries. Similarly, the ES load of n is the sum of two quan-
tities: the number of rewritten queries plus the number of
tuples stored at n. We also define the total filtering load (or
T F load) of a node n as the sum of the RF load and the EF
load of n. Similarly, we define the total storage load (or T S
load) of a node n as the sum of the RS load and the ES load
of n.

We set up this experiment as follows. We create a net-
work of 104 where we insert 105 queries. Then we insert
5 ∗ 104 tuples and we count the total T F and T S load in-
curred by each node for each different algorithm. The de-
gree of replication is DR = 10 while bos = 10.

In Figure 8(a) we see the T F load distribution. DAI-V
behaves a lot differently because rewritten queries are rein-
dexed by using only the values of join attributes. The rest
of the algorithms that also use the name of the load dis-
tributing attribute of a query manage to force more nodes
to take part in the query processing procedure. DAI-Q and
DAI-T use a similar portion of the network for query pro-
cessing. However, DAI-Q loads the nodes with more load
by a factor of 100. This is because in DAI-T the evalua-
tor nodes perform filtering operations only upon receiving a
tuple at the value level while in DAI-Q evaluators perform
filtering operations upon receiving rewritten queries at the
value level which happens more often. In SAI evaluators
perform filtering operations both upon receiving a tuple and
a rewritten query. However, at the attribute level queries are
only triggered by tuples of the small relations so this is why
SAI loads the nodes with more load than DAI-T but with
less load than DAI-Q. Thus, clearly DAI-T outperforms the
others by using a large portion of the overlay and loading
it with less load. The behavior of the algorithms regarding
T S load distribution in Figure 8(b) is explained by the same
reasons. In this case DAI-Q outperforms DAI-T.

We also experimented with an alternative version of
DAI-V where V Index(qL) = Key(q)+valJC(qL, t). This al-
lows DAI-V to have as good T F load distribution as the rest
of the algorithms. However, it also creates large amounts of

10

Figure 9. (E5) Effect of increasing the rate
of incoming tuples, the number of indexed
queries and the network size in filtering load
distribution of DAI-Q

network traffic depending on the number of indexed queries,
since a rewriter would have to reindex each triggered query
to a different evaluator. Experiments in a 104 node network
with 105 indexed queries showed an increase to network
traffic approximately by a factor of 250.

E5: Parameters that affect load distribution. In this
experiment we show how various parameters affect the load
distribution. We set-up this experiment as the previous one
and observe what happens in the load distribution as we in-
crease the rate of incoming tuples, the number of indexed
queries and the network size. The base setting is a network
of 104 with 105 queries and 5∗104 incoming tuples.

For space considerations, in Figure 9 we show only the
effect in the T F load distribution of DAI-Q but similar re-
sults are obtained for all algorithms (and for T S load dis-
tribution as well). These results can be found in [21]. We
observe that by increasing the rate of incoming tuples more
load is created in the network but this load is nicely dis-
tributed among the existing nodes and in fact even more
nodes participate in query processing. The same stands for
the case where we increase the number of indexed queries.
Finally, a larger network size results in that the current load
is distributed to more nodes.

Experiments with a uniform (or a more uniform) data
distribution lead to a better load distribution for all algo-
rithms [21]. The value range of attributes has a crucial
role since a higher value range can significantly improve
all kinds of load distribution especially for DAI-V.

Summary. The experimental evaluation presented
above showed the strengths and weaknesses of the four al-
gorithms. SAI outperforms the other algorithms in terms of
overlay hops by taking advantage of indexing with respect
to the attribute of the relation with the lowest rate of incom-
ing tuples. DAI-T exhibits similar performance when JFRT
is in use. With respect to load balancing, one has to choose
the algorithm that suits one’s scenario, trading network hops
for better load distribution. If T F load distribution is more

important then DAI-T is the best algorithm while if T S load
distribution is needed then DAI-Q is the best. But keep in
mind that DAI-Q is a lot more expensive than DAI-T regard-
ing network traffic. SAI offers a solution that compromises
between T F and T S load distribution. DAI-V has the ad-
vantage that it creates less network traffic but on the other
hand it does not utilize a great percentage of the available
resource/nodes in the network.

9 Related work

Our work shares common ground with a number of re-
search areas which we survey below.

Distributed and Parallel Databases. The database
community has done a lot of work in the area of distributed
and parallel databases [24, 14]. The work on hash-based
join algorithms for shared-nothing [37] parallel database ar-
chitectures is most relevant to our work [29], e.g., papers
[34, 13] study join queries in multiprocessor environments.

In the distributed database system [25], the notion of the
scalable distributed data structure (SDDS) appears which
shares a lot with the underline ideas of current structured
overlay networks in the sense that a SDDS is maintained
even in the presence of node connections, disconnections or
failures without centralized coordination.

Continuous Queries and Stream Processing. Database
research on continuous queries has its origins in the paper
[39] and systems OpenCQ [26] and NiagaraCQ [9]. These
papers offer centralized solutions to the problem of contin-
uous query processing. More recently, continuous queries
have been studied in depth in the context of monitoring and
stream processing with various centralized [28, 8, 33] and
distributed proposals [16, 10, 1, 4, 5, 35, 19].

To the best of our knowledge, PeerCQ [16] is the first
detailed proposal for processing continuous queries on top
of DHTs that has been published before this work. PeerCQ
does not concentrate on the relational data model and the
SQL query language, and assumes that data are not stored
in a DHT but are kept locally at external data sources.
The DHT infrastructure is nicely utilized to achieve a good
distribution of monitoring and evaluating responsibilities.
PeerCQ assumes heterogeneous peers and uses a sophis-
ticated model of peer capabilities to distribute continuous
queries to evaluator peers while maintaining good load bal-
ance and system throughput. It would be interesting to ex-
tend our work with the model of peer capabilities proposed
by PeerCQ to deal gracefully with peer heterogeneity.

[5] is recent paper that considers distributed equi-join
evaluation in wide-area networks consisting of many het-
erogeneous hosts. [5] concentrates on network locality (i.e.,
proximity of hosts) and data locality (i.e., closeness in the
data values and frequencies of these data values) with the
objective of optimizing the delay of output tuples. Thus
the techniques sketched in [5] are complementary to our
techniques. In the DHT setting that we consider, it would
make sense to investigate the applicability of locality-aware

11

DHTs such as Tulip [2] to tackle the questions of [5]. This
is something we plan to do in the context of project Ever-
grow where Tulip is also been developed. In a similar man-
ner, [4] shows the benefits of using the locality-aware DHT
Tapestry [41] to implement distributed operator placement
for continuous query processing of data streams.

[35] is another recent paper that considers distributed
query optimization in stream overlay networks and points
out differences with distributed query optimization.

Finally, [19] is a recent paper that makes the case for dis-
tributed triggers in wide-area monitoring applications. Like
[5] and [35], this paper presents many interesting ideas but
evaluation of these ideas is left to future work.

Pub/Sub Networks. Recently, a number of researchers
have tried to implement content-based pub/sub systems on
top of DHTs [40, 38, 31, 3]. The query languages of these
systems are based on attribute-operator-value comparisons,
thus they are not directly comparable with our work.

P2P Databases. This paper is also closely related with
work in the new area of P2P DBMS [7, 17, 20]. Cur-
rently, one can distinguish two orthogonal research direc-
tions in this area: work that emphasizes semantic interoper-
ability of peer databases [7, 17] and work that attempts to
push the capabilities of current database query processors
to new large-scale Internet-wide applications by utilizing
DHTs [20]. Our work belongs to the latter direction and
emphasizes the processing of continuous queries on top of
DHTs. Previous work has emphasized algorithms for vari-
ous kinds of queries [15, 18] or the construction and evalu-
ation of real systems [20, 27].

10 Conclusions and future work

We studied the problem of evaluating continuous two-
way equi-join queries over DHTs. We evaluated four alter-
native algorithms with emphasis in distributing the query
processing load and minimizing network traffic. The al-
gorithms proposed in this paper are the base for the algo-
rithms we are currently working on for evaluating contin-
uous multi-way join queries. In future work, we also plan
to take into account network locality by exploiting locality-
aware DHTs. We would also like to consider other types of
continuous queries expressed in SQL.

Acknowledgements: We are grateful to Vasilis Samo-
ladas for numerous useful discussions.

References

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Centintemel, M. Cherniack, J. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and
S. Zdonik. The Design of the Borealis Stream Processing Engine. CIDR ’05.

[2] I. Abraham, A. Badola, D. Bickson, D. Malkhi, S. Malook, and S. Ron. Practi-
cal Locality-Awareness for Large Scale Information Sharing. IPTPS ’05.

[3] A.Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: Content-
Based Publish/Subscribe over P2P Networks. Middleware ’04.

[4] Y. Ahmad and U. Centinemel. Network-Aware Query Processing for Stream-
based Applications. VLDB ’04.

[5] Y. Ahmad, U. Cetintemel, J. Jannotti, and A. Zgolinski. Locality-Aware Net-
worked Join Evaluation. NETDB ’05.

[6] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The Price of Validity
in Dynamic Networks. SIGMOD ’04.

[7] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini,
and I. Zaihrayeu. Data Management for Peer-to-Peer Computing: A Vision.
WebDB ’02.

[8] S. Chandrasekaran and M. J. Franklin. PSoup: a system for streaming queries
over streaming data. VLDB Journal, 12:140–156, 2003.

[9] J. Chen, David J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Con-
tinuous Query System for Internet Databases. SIGMOD ’02.

[10] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
Y. Xing, and S. Zdonik. Scalable Distributed Stream Processing. CIDR ’03.

[11] P.-A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Publish/Subscribe for
RDF-based P2P Networks. ESWC ’04.

[12] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundram. Querying Peer-
to-Peer Networks using P-Trees. WebDB ’04.

[13] D. DeWitt and R. Gerber. Multiprocessor hash-based join algorithms.VLDB85.
[14] D. DeWitt and J. Gray. Parallel database systems: the future of high perfor-

mance database systems. Communications of the ACM, 35(6), 1992.
[15] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online Balancing of Range-

Partitioned Data with Applications to Peer-to-Peer Systems. VLDB ’04.
[16] B. Gedik and L. Liu. PeerCQ: A Decentralized and Self-Configuring Peer-to-

Peer Information Monitoring System. ICDCS ’03.
[17] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What Can Peer-to-Peer

Do for Databases, and Vice Versa? WebDB ’01.
[18] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate range selection queries

in peer-to-peer systems. CIDR ’03.
[19] J. M. Hellerstein, A. Jain, S. Ratnasamy, and D. Wetherall. A Wakeup Call for

Internet Monitoring Systems: The Case for Distributed Triggers. HotNets ’04.
[20] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.

Querying the Internet with PIER. VLDB ’02.
[21] S. Idreos. Distributed Evaluation of Continuous Equi-join Queries over Large

Structured Overlay Networks. Master thesis. Intelligence Systems Laboratory,
Technical University of Crete. September 2005.

[22] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. BATON: A Balanced Tree Structure
for Peer-to-Peer Networks. VLDB ’05.

[23] D. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms for Peer-
toPeer Systems. SPAA ’04.

[24] D. Kossman. The State of the art in Distributed Query Processing. ACM Com-
puting Surveys, 32(4):422–469, September 2000.

[25] W. Litwin and M. A. Neimat ad D. A. Schneider. LH*- A Scalable Distributed
Data Structure. ACM Transactions on Database Systems, 21(4):480–525, 1996.

[26] L. Liu, C. Pu, and W. Tang. Continual Queries for Internet Scale Event-Driven
Information Delivery. TKDE, 11(4):610–628, 1999.

[27] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica. Enhancing
P2P File-Sharing with an Internet-Scale Query Processor. VLDB ’04.

[28] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously Adaptive
Continuous Queries over Streams. SIGMOD ’02.

[29] M. Mehta and J. DeWitt. Data placement in shared-nothing parallel database
systems. VLDB Journal, 6:53–72, 1997.

[30] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch. EDUTELLA: A P2P Networking Infrastructure Based
on RDF. WWW ’02.

[31] P.R. Pietzuch and J.M. Bacon. Hermes: A Distributed Event-Based Middleware
Architecture. DEBS ’02.

[32] S. Ratnasamy, J. Hellerstein, and S. Shenker. Range Queries over DHTs. Tech-
nical Report IRB-TR-03-009, Intel Corp., June 2003.

[33] S. Chandrasekharan et al. TelegraphCQ: Continuous dataflow processing for
an uncertain world. CIDR ’03.

[34] D. Schneider and D. DeWitt. Tradeoffs in Processing Multi-Way Join Queries
via Hashing in Multiprocessor Database Machines. VLDB ’90.

[35] J. Shneidman, P. Pietzuch, M. Welsh, M. Seltzer, and M. Roussopoulos. A Cost-
Space Approach to Distributed Query Optimization in Stream Based Overlays.
NETDB ’05.

[36] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A
Scalable P2P Lookup Service for Internet Applications. SIGCOMM ’01.

[37] M. Stonebraker. The case for shared nothing. Database Engin., 9(1), 1986.
[38] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A Peer-

to-Peer Approach to Content-Based Publish/Subscribe. DEBS ’03.
[39] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous Queries over

Append-Only Databases.SIGMOD ’92.
[40] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/Subscribe Function-

ality in IR Environments using Structured Overlay Networks. In SIGIR ’05.
[41] B.-Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubi-

atowicz. Tapestry: A Resilient Global-scale Overlay for Service Deployment.
IEEE Journal on Selected Areas in Communications, 22(1), 2004.

12

