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Abstract Expanding a set of known domain experts

with new individuals, sharing similar expertise, is a

problem that has various applications, such as adding

new members to a conference program committee or

finding new referees to review funding proposals. In this

work, we focus on applications of the problem in the

academic world and we introduce VeTo+, a novel app-

roach to effectively deal with it by exploiting scholarly

knowledge graphs. VeTo+ expands a given set of ex-

perts by identifying scholars having similar publishing

habits with them. Our experiments show that VeTo+

outperforms, in terms of accuracy, previous approaches

to recommend expansions to a set of given academic

experts.

Keywords Expertise retrieval · Expert finding ·
Scholarly knowledge graphs · Data mining.

1 Introduction

The problem of expanding a set of known domain ex-

perts with new individuals of similar expertise emerges

in many real-life applications, many of which coming

from the field of academia. As an indicative example,

consider a conference organiser who attempts to add

new members to its program committee or a funding

agency officer seeking new referees to review funding

proposals. Such problems provided motivation for the

broad research field known as expert finding [13].
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Early work in this field assumes that the person

seeking for experts provides a set of keywords that de-

scribe the desired topics of expertise. The respective

expert finding approaches (e.g., [4]) attempt to match

these topics to experts by utilising the co-occurrences

of topic keywords with person names in text corpora

(e.g., websites, publications). Nevertheless, it is often

difficult to explicitly express the desired topics as con-

crete sets of keywords. This motivated various meth-

ods (e.g., [5, 11]) which adopt the query by example

approach: the name of a known expert is provided as

input and, based on this, other individuals with sim-

ilar profiles are sought. Usually, the profiles are con-

structed based on analysing existing text corpora; for

instance, by applying language processing or topic mod-

eling techniques. Although most such methods search

for individuals that are similar to a single expert, some

of them are also able to identify similarities to groups

of experts [2].

Nevertheless, the effectiveness of all previously de-

scribed approaches depends on the availability of con-

crete text corpora that contain information about the

expertise of the individuals. In the case of academic

experts, this means that these approaches rely on the

availability of a large set of scientific publications. Un-

fortunately, the full texts of publications are often re-

stricted behind paywalls and, thus, it is practically im-

possible to construct a concrete set of the relevant texts.

Moreover, even if it was possible to construct a cor-

pus containing an adequate number of relevant publi-

cations, its size would be vast and, thus, gathering and

processing it in a regular basis would be a tedious and

time-consuming task. This problem motivated the in-

troduction of alternative methods that, instead, utilise

scholarly knowledge graphs (e.g., [12]). In late years, due

to the systematic effort of various developing teams, a
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P1 P2 P3

Digital Libraries (DL) Data Management (DM)John Doe Yoyota Vuvuli

Henry Jekyll Lisbeth SalanderJCDL VLDB

Fig. 1 An example scholarly knowledge graph including aca-
demics, papers, venues and topics.

variety of large scholarly knowledge graphs has been

made available (e.g., the AMiner’s DBPL-based datasets

[30], the Open Research Knowledge Graph [14], the

OpenAIRE Research Graph [19, 20]). These heteroge-

neous graphs correspond to a very rich and relatively

clean source of information about academics, their pub-

lications and relevant metadata. Figure 1 presents an

illustrative example of such a graph comprising aca-

demics, papers, venues, and topics.

In this context, in a previous work we introduced

VeTo [32], a knowledge graph-based approach to deal

with the problem of expanding a set of known experts

with new individuals of similar expertise. VeTo is based

on an advanced graph structure similarity technique [33],

tailored for heterogeneous graphs, to identify similari-

ties between researchers based on their publishing habits.

In particular, it takes advantage of latent patterns in
the way academics select the venues to publish their

work and the topics of their respective publications.

Although VeTo was found to outperform competi-

tion, we have identified room for various improvements.

As a result, in this work we present VeTo+, a new ap-

proach that extends VeTo achieving improved effective-

ness in the context of the expert set expansion problem.

VeTo+ improves upon its predecessor by (i) introducing

a flexible weighting scheme, that enables different levels

of attention to the respective similarity measures which

are used by the approach (Section 3.2.1), (ii) support-

ing the use of an alternative metapath-based similar-

ity (the ‘focused’ APV-based similarity, Section 3.2.2),

which can provide more precise recommendations for

some academic domains, and (iii) studying the effect of

additional rank aggregation algorithms, some of which

may result in improved effectiveness (Section 3.2.3).

The aforementioned extensions, in many cases, re-

sult in considerably improved performance and offer

more options in fine-tuning the approach. According to

our experiments, which follow an extended version of

the experimental framework we introduced in our pre-

vious work, VeTo+ achieves significant improved ac-

curacy in recommending expansions to a set of given

academic experts, in comparison to its predecessor and

other rival approaches.

In addition, we worked on extending the open dataset

of expert sets, that we developed in our previous work,

by adding two extra venues. Since our previous dataset

included venues for only one discipline (namely ‘Data

Management’) we have selected to include venues from

another discipline (‘Digital Libraries’) so that to in-

crease its multi-disciplinarity, allowing the generalisa-

tion of results, or reveal possible particularities that

may exist in different disciplines.

2 Background

The focus of this work is on a specific expert find-

ing problem applied in the academic world: to reveal,

among a set of candidate researchers C, the n most

suitable of them, to extend a set of known experts Ekn.

We refer to this as the expert set expansion problem;

it is also known as the finding similar experts problem

(e.g., in [2]), however we prefer the former term, since it

captures the notion with less ambiguity. This has vari-

ous real-life applications like reviewer recommendation,

collaborator seeking, new hire recommendation, etc.

For reasons elaborated in Section 1, we focus on

approaches that exploit scholarly knowledge graphs to

deal with the problem. Knowledge graphs, also known

as heterogeneous information networks [28], are graphs

that contain nodes and edges of multiple types. They

represent entities (nodes) from a domain of interest

and the different types of relationships between them

(edges). For instance, consider the scholarly knowledge

graph depicted in Figure 1. This graph contains in-

formation about three papers (P1, P2, P3), their venues

(JCDL, V LDB), their topics (DL,DM), and the aca-

demics that have authored them. In fact this is a sim-

plistic, toy-example, since real-life scholarly knowledge

graphs (like the Open Research Knowledge Graph or

the OpenAIRE Research Graph) contain a larger vari-

ety of entity types (e.g., academic institutions, funding

organisations, research projects).

Knowledge graphs capture rich information about

their respective domains encoding not only direct rela-

tionships of the involved entities, but also more complex

ones that correspond to larger paths in the graph. In

particular, all paths that involve the same sequence of

entity and edge types capture relationships of exactly

the same semantics between their first and last nodes.

These generalised path patterns are widely known as
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metapaths and we refer to the paths that follow these

patterns as their instances. For example, in the graph of

Figure 1, the paths ‘John Doe - P1 - DL’ and ‘Yo-

yota Vuvuli - P3 - DM’ both are instances of the me-

tapath ‘Academic - Paper - Topic’ (or APT, for bre-

vity) and both have the same interpretation: they relate

an academic with a topic through a paper authored by

them.

A recent line of work in knowledge graphs supports

calculating the similarity of two entities (nodes) of the

same type according to the particular semantics of a

given metapath [26, 29, 33]. Such metapath-based simi-

larity measures have been proven to be valuable in vari-

ous applications, since they can be used to reveal latent

similarities of entities taking into consideration complex

and rich semantics which are captured in the structure

of the respective graphs. This is why approaches that

efficiently calculate them (e.g., based on dynamic pro-

gramming [27]) provide a powerful framework to effec-

tively exploit the information captured in knowledge

graphs.

The main intuition behind metapath-based similar-

ity measures is that they consider the way the nodes of

the graph are connected, according to paths that are in-

stances of the given metapath. For example, academics

John Doe and Henry Jekyll in the graph of Figure 1

seem similar based on the topics of their published pa-

pers (i.e., based on the semantics of the APT metapath)

since they both have only one paper connecting them

to the DL topic (i.e., one APT instance) and no paper

connecting them to the DM topic (i.e., 0 APT instances).

A well-known metapath-based similarity measure

that follows the previous intuition is JoinSim [33]. Con-

sider a knowledge graph G and one of its metapaths

m = F − · · · − L, where F, . . . , L are valid entity/node

types in G. In addition, let {f1, . . . , fn} and {l1, . . . , lk}
be the sets of G nodes of type F and L, respectively. For

each fi (with i ∈ [1, n]), let vm
fi

be a vector of size k,

where vm
fi

[j] corresponds to the number of m instances

connecting fi to lj . Then, the JoinSim similarity of fα
and fβ according to m is given by the cosine similarity

of the vectors vm
fα

and vm
fβ

, i.e.,:

sim(fα, fβ ,m) =
vm
fα
· vm

fβ

||vm
fα
|| ||vm

fβ
||

(1)

The intuition of this formula is that the JoinSim

similarity of fα and fβ is large if they are connected

with a comparable number of paths to a similar set of

nodes of type L. Going back to the example of Figure 1,

given the metapath APT, JoinSim first constructs for

each academic a vector with the topics related to the

papers they have authored, and then calculates simi-

larity scores between the academics based on these vec-

tors.

3 The VeTo+ Approach

In this section, we describe how VeTo+ deals with the

expert set expansion problem; we first provide a de-

tailed description of VeTo (Section 3.1), our previous

approach, which provides the basis of VeTo+. Then,

we elaborate on the improvements introduced on top

of it by VeTo+, our current approach (Section 3.2).

Finally, in Section 3.3, we discuss a few interesting re-

marks about both approaches.

3.1 Basic VeTo

VeTo’s main intuition is that it considers the metapath-

based similarity of academics to known experts to form

a list of recommended candidates for a given expert

expansion problem. In particular, two metapaths are

utilised: APT and APV, each one capturing a distinct

“publishing habit”. The former takes into considera-

tion the venues in which academics select to publish

their articles, while the latter the topics of these arti-

cles. VeTo+ combines the similarities of academics ac-

cording to these two metapaths to create the list of

suggested experts.

Given a set of known experts E, a set of candi-

dates C, and n the number of expansions to be made,

VeTo performs the following steps:

1. For each expert e ∈ E, the top-k most similar aca-

demics based on the APV metapath are identified

as candidates (k is an approach parameter). These

metapath-based similarities are calculated accord-

ing to the JoinSim measure1 (Eq. 1). The ranked

list ReAPV = {c1, c2, ..., ck|ci ∈ C} is produced, con-

taining the candidates having the higher similarity

scores with expert e, according to APV.

2. Given the set {ReAPV |e ∈ E} containing the ranked

lists based on metapath APV for all experts e ∈ E, a

rank aggregation algorithm is applied on it to pro-

duce RAPV the aggregated ranked list that ranks

all candidates considering their similarities to all ex-

perts according to APV (in descending order).

3. A similar procedure to the one performed in Steps

1 & 2 is performed to produce the ranked list RAPT

1 Following the definitions in Section 2, for the case of the
APV metapath, the corresponding vectors have length equal
to the number of distinct venues in the dataset. Of course,
since these vectors are very sparse, in practice sparse vector
representations can be used to reduce the memory footprint.
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that ranks all candidates according to their “aggre-

gated” similarity score based on the APT metapath

in descending order (again, the JoinSim similarity,

defined in Eq. 1, is used).

4. A rank aggregation algorithm is applied on ranked

lists RAPV and RAPT to produce the final aggre-

gated list Rfin that takes into account the similari-

ties between experts and other academics based on

both metapaths.

5. The top-n academics of Rfin, when sorted in de-

scending order based on the aggregated score, con-

stitute the final result to the given expert set ex-

pansion problem.

Regarding the rank aggregation algorithm required

by various steps of the VeTo workflow, in theory, any

such algorithm can be used (see Section 3.2.3). In our

initial work [32] we have implemented and tested the

following:

– Borda Count (BC): Given I = {i1, . . . , ik}, a set of

items to be ranked, and {R1, . . . , Rm}, a set of alter-

native rankings of these items, where each ranking

Rj is a set of k pairs (one for each i ∈ I) of the form

〈i, sij〉, with i ∈ I and sij being i’s ranking score ac-

cording to Rj , Borda Count produces a new ranked

list:

RBC = { 〈i, siBC〉 : i ∈ I, s
i
BC =

∑
j∈[1,m]

k − rank(i, Rj) + 1 }

where rank(i, Rj) is a function that returns i’s rank

(i.e., its order) based on the ranking Rj . Intuitively,

the Borda Count score of an item i is determined

based on the number of of items ranked lower than

it according to all rankings.

– Sum: This is a simple algorithm that ranks items

based on their ranking scores according to the in-

dividual rankings to be aggregated. Using the same

notation as for Borda Count, this algorithm pro-

duces a ranked list:

RS = { 〈i, siS〉 : i ∈ I, s
i
S =

∑
j∈[1,m]

s
i
j }

3.2 VeTo+ extensions

Although our experiments [32] showed that VeTo out-

performed its rivals in the context of expert set expan-

sion, we have identified that there is room for improve-

ments. In the next sections, we elaborate on a series of

additions, that transformed VeTo into a new, improved

approach, called VeTo+.

3.2.1 Weighting different similarity types

The basic VeTo approach implicitly assumes that APT-

based and APV-based similarities are equally important.

In particular, during the fourth step of VeTo, the two

similarity scores for each candidate are simply com-

bined in the way dictated by the used rank aggregation

algorithm. However, it is uncertain that the similarity

of two academics based on the topics of their articles

(i.e., their APT-based similarity) is equally important to

their similarity based on the venues they publish (i.e.,

their APV-based similarity). It is possible that, for some

disciplines, the one or the other similarity plays a more

important role.

To alleviate this issue, we introduced a weighting

scheme for VeTo+: during the rank aggregation, the

similarity scores of the candidates in the RAPT and

RAPV lists are further weighted based on two new con-

figuration parameters, namely α and β, respectively.

The sum of these parameters should always be equal

to 1 (i.e., α+β = 1). Consequently, larger α values pro-

mote candidates that are more similar with the known

experts in E based on the APT metapath, while as β

increases, more emphasis is given to candidates with

higher similarity according to the APV metapath.

3.2.2 Using ‘focused’ APV-based similarities

A major application area of the expert set expansion

problem is the expansion of the reviewer base (program

committee or editorial board) of a given venue (con-

ference/workshop or journal, respectively). During our

experiments it became evident that, for some datasets

(e.g., TPDL), the usage of ‘unconditional’ APV-based

academics similarities, was not performing adequately

well. Contrary, applying a venue-based constraint on

the same metapath, so that only a ‘focused’ set of venues

will be considered, worked well in these cases.

The exact reason why these ‘focused’ APV-based sim-

ilarities might work better for a particular dataset can

be various and are application-dependent. In the case

of our experiments, this could be due to the fact that

people involved in the program committees of the cor-

responding venues (e.g., TPDL) originate from signifi-

cantly different backgrounds having, apart from digital

libraries, also other, very diverse, research interests.

Based on this, we adapted VeTo+ so that it can

support this functionality, as well. The user should first

determine the set of venues that are of interest to them,

and then configure the approach to consider the similar-

ities according to the focused APV-based similarities. For

our work, before proceeding with our experiments, we

conducted a preliminary evaluation of the four datasets
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we are using, and the results revealed that the focused

APV-based similarities provide improvement only for the

case of TPDL and JCDL2. Consequently, in our eval-

uation, we use the focused similarities only for them

and the default similarities for the rest (i.e., VLDB and

SIGMOD).

3.2.3 Examining other rank aggregation algorithms

In addition to the Borda Count and the Sum aggrega-

tion algorithms, for the needs of VeTo+, we examine

two extra rank aggregation algorithms. Following the

same notation as in Section 3.1, we have implemented

and tested the following:

– Reciprocal Rank Fusion (RRF) [6]: This algorithm is

inspired by the fact that highly ranked elements are

important; however, at the same time, RRF recog-

nises that the importance of lower ranked ones should

be preserved. RRF produces a ranked list:

RR = {〈i, siR〉 : i ∈ I, s
i
R =

∑
j∈[1,m]

1

λ+ rank(i, Rj)
}

where constant λ is a parameter that can be used

to adjust the importance of elements based on their

ranking in the input lists. Small values of λ essen-

tially promote highly ranked elements, while large

values mitigate their importance compared to those

in lower ranks.

– CombMNZ [10]: It assigns higher weights to ele-

ments that are present in multiple ranking lists. Due

to its to its simplicity and effectiveness, it serves as

a baseline method when comparing different rank

aggregators and data fusion approaches [3, 16, 17].

CombMNZ calculates ranking scores as:

RC = { 〈i, siC〉 : i ∈ I, s
i
C =

∑
j∈[1,m]

s
i
j ∗ |s

i
> 0| }

where |si > 0| is the number of non-zero scores

assigned to element i from all alternative rankings

Rj . Note that CombMNZ requires normalisation of

scores before aggregation.

It is worth mentioning that, in theory, it is possible

to use other rank aggregators for the two rank aggre-

gation steps of the algorithm. However, not all types

of rank aggregation methods are suitable to be incor-

porated in VeTo. For example, there is a family of ag-

gregators that require training to correlate items com-

ing from different sources (e.g., [16, 17]). This type of

2 For TPDL and JCDL, we used the following venues to cal-
culate the focused APV-based similarities: TPDL (and its pre-
decessor ECDL), JCDL, and IJDL. For SIGMOD and VLDB:
SIGMOD, VLDB, EDBT, ICDE and TODS.

methods require that a fixed set of sources, each having

different quality, exist (since they rely on learning the

particularities of each source). In the aggregation tasks

of Steps 2 & 3 of VeTo, though, we have a different set

of ranked lists for each query (each expert set); even

the number of the list may differ from query to query.

Since the sources are not fixed, learning their statisti-

cal properties is not possible. Therefore the aggregation

methods of this family cannot be used by VeTo.

3.3 Final Remarks

VeTo+ is a configurable approach having the following

parameters:

– α & β: these are the weights for the different simi-

larity types (see Section 3.2.1).

– k: this parameter is used by Steps 1 & 3 of the ba-

sic VeTo approach; it dictates how many of the top

similar academics will be considered as candidates.

Attention should be given to avoid confusing k with

the problem parameter n (usually k >> n).

– rank: this parameter determines the rank aggrega-

tion algorithm to be used and can have one of the

following values: ‘BC’, ‘Sum’, ‘RRF’ or ‘CombMNZ’.

– λ: this is a parameter of the the RRF aggregation

algorithm (see Section 3.2.3), hence it is used in case

that rank = RRF .

– focus: this is a boolean parameter, that determines

if the optimization for the ‘focused’ APV-based sim-

ilarities (see Section 3.2.2) will be used.

It should be noted that, despite the fact that both

VeTo and VeTo+ exploit similarities based on two par-

ticular metapaths (namely APT and APV ), this is not

a limitation of their approach. In case a richer knowl-

edge graph is used and if there are extra metapaths

that seem to be useful, VeTo+ can handle their inclu-

sion. In fact, VeTo+ is able to use an arbitrary number

of metapaths: Steps 1 & 2 should be executed for each

metapath to produce a ranked list of candidates based

on its similarities, then that list should be taken into

consideration in the aggregation of Step 4.

Finally, like its predecessor, although VeTo+ is tai-

lored to the problem of expert finding in academia, it is

possible to be adapted and applied to other domains

given the existence of appropriate knowledge graphs

and metapaths. For instance, given a knowledge graph

containing information about movies (e.g. the FILM

dataset from [18]), one may want to form the cast for

a new movie. Given that they have already selected a

set of known actors, one may want to expand that set.

VeTo+ can exploit similarities based on the Actor -
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Movie - Genre and Actor - Movie - Director metapaths

to suggest possible expansions. The former essentially

considers similarity of actors based on the genres of

movies they have played while the latter captures sim-

ilarity based on the directors they have collaborated

with in the past.

4 Evaluation Framework

A common issue in various expert finding problems is

that it is not easy to evaluate the effectiveness of a given

approach, since it is impossible to construct an objec-

tive ground truth. However, this is not the case for the

expert set expansion problem. In particular, in our pre-

vious work [32], we introduced a novel evaluation frame-

work that can be used to assess the effectiveness of an

approach based on a fairly objective ground truth. In

this work, we expand this framework, adding Mean Av-

erage Precision (MAP) as an extra evaluation measure,

and exploit it to measure the effectiveness of VeTo+

against VeTo and other state-of-the-art approaches. We

next elaborate on the relevant technical details.

The intuition behind this framework is to gather

available expert lists from real-life applications (e.g.,

the PC members of a conference, editorial boards of

journals) and, then, use each of them as dataset for a k-

fold cross validation process. This means that, for each

expert list E, a given expert set expansion approach is

assessed as follows:

1. E is shuffled and, then, split in k disjoint sets E1, . . . ,

Ek, all of equal size3 n = b|E|/kc.
2. For each Ei (with i ∈ [1, k]), a pair of training

and testing set {Etraini , Etesti } is constructed, where

Etraini =
⋃
j 6=i

Ej and Etesti = Ei.

3. For each {Etraini , Etesti } pair:

– we use Etraini as the set of known experts (i.e.,

E = Etraini )

– we apply the expert set expansion approach on

Etraini and get Oi, its output

– we examine false & true positives and negatives

in Oxi , the top-x items of Oi, based on Etesti and

we calculate proper information retrieval mea-

sures based on them, for x ∈ [1, n] (where, n =

|Oi| = |Etesti |).

Regarding the information retrieval measures that

are suitable to be used in Step 3 of the aforementioned

process, we proposed the use of top-x precision, recall,

and F1 score that can be defined as follows:

3 The last one may be larger than the others, however it is
easy to take this into consideration.

Precisionx =
|Oxi ∩ ETesti |

x
, Recallx =

|Oxi ∩ ETesti |
n

,

F1x = 2 · Precisionx ·Recallx
Precisionx +Recallx

The larger the values of these measures are, the bet-

ter the effectiveness of the method based on the given

list E at the corresponding measuring point x. The val-

ues of all measuring points could be used to construct

a line plot.

Moreover, after completing the previous process for

E, we proposed to also calculate, for the same expert

set, the Mean Reciprocal Rank (MRR) based on all

outputs Oi (for all i ∈ [1, k]) which can be calculated

as follows:

MRR =
1

k

k∑
i=1

1

ranki

where, ranki refers to the rank position of the first true

positive element in the output Oi.

In this work, we additionally calculate the Mean

Average Precision (MAP) that also considers the order

of the returned elements. MAP aggregates the Average

Precision (AvgP) value over all outputs Oi, i ∈ [1, k] as

follows:

MAP =

k∑
i=1

AvgP (Oi)

k

where AvgP refers to the average precision after each

true positive is retrieved.

The described evaluation framework was initially

used for the experiments presented in [32] and we adopt

it for the experiments of the current work (see Sec-

tion 5). In particular, we use the list of program com-

mittee members of four well-known computer science

conferences. Similarly to our previous experiments, we

use the PC members of SIGMOD & VLDB, two well-

known conferences from the field of Data Management;

additionally we gathered the members of two top-tier

conferences from the field of Digital Libraries (TPDL &

JCDL). After the data collection, we applied the pro-

cess of the framework on all four PCs using the afore-

mentioned information retrieval measures.

A semi-automatic process was used to gather all

program committee members using Web scrapping tools.

In fact, our collected data could be used by third par-

ties as benchmarks to evaluate the effectiveness of their

own expert set expansion approaches. This is why we

provide them as open datasets (more details in Sec-

tion 5.1).
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5 Experiments

In this section, we describe the experiments we have

conducted to evaluate the effectiveness of our approach.

Section 5.1 discusses the experimental setup, i.e. the

approaches considered and the datasets used. Next, in

Section 5.2 we study the effectiveness of VeTo+ while

investigating different configurations. Finally, in Sec-

tion 5.3 we demonstrate comparative experiments of

VeTo+ against its competitors.

5.1 Setup

Datasets. For our experiments, we used the following

sets of data:

– DBLP Scholarly Knowledge Graph (DSKG) dataset.

It contains data for approximately 1.5M academics,

their papers in the period 2000-2017, the correspond-

ing venues and the involved topics. DSKG is based

on the AMiner’s DBLP citation network [30], en-

riched with topics assigned to papers by the CSO

Classifier [22,23] (based on their abstracts). Finally,

DSKG contains approximately 3.9M and 34.1M APV

and APT metapath instances, respectively.

– Program Committees (PC) dataset. It contains pro-

gram committee data from two established confer-

ences from the field of data management (the ACM

SIGMOD conference and the VLDB conference) and

two well-known conferences from the field of digital

libraries (TPDL and JCDL). The data were gath-

ered by scrapping the official Web pages of these

conferences for the years 2007−2017 and, then, ap-

plying a semi-automatic cleaning process to prop-

erly map the PC members to academics in the DSKG

dataset.

The DSKG dataset was used as a knowledge base

that the various approaches could take advantage of.

The PC dataset, on the other hand, was used to create

the required training and testing sets for the evalua-

tion based on the framework described in Section 4 (we

use 5-fold validation for our experiments). This latter

dataset was also made openly available at Zenodo4 so

other researchers could use it as benchmark to assess

the effectiveness of their own approaches.

Approaches. In our experimental evaluation we con-

sider the following five approaches that can be applied

to the expert set expansion problem.

4 https://doi.org/10.5281/zenodo.3739315

– VeTo, our initial approach presented in [32].5

– VeTo+, our new approach that improves upon VeTo

by implementing the extensions described in Sec-

tion 3.2.

– Baseline, an approach that counts the number of pa-

pers an academic has published in the corresponding

conference, ranks academics based on this number,

and then provides the top academics as the most

suitable expansions.

– ADT, the best performing graph-based approach

proposed in [12], that attempts to capture the asso-

ciation strength between two academics by consid-

ering the weighted paths that relate them to topics

(based on their papers).6

– DOC, an approach proposed in [2], which consid-

ers academic similarities according to the number of

their common publications.7, WG performed worse

in all cases and its results were omitted from the

experimental section for presentation reasons.

The different approaches were implemented in Py-

thon, although the data preprocessing was implemented

in C++ for improved efficiency.8 In addition, metapath-

based similarities required by VeTo and VeTo+ are cal-

culated using the JoinSim [33] algorithm (see also Sec-

tion 2). For this purpose, the open entity similarity Java

library HeySim9 was utilised.

5.2 Effectiveness Analysis & Configuration of VeTo+

In this section, we examine different configurations of

our approach and we investigate the effect they have in

its effectiveness.

5 In this work, the configuration of VeTo and VeTo+ was
done by selecting the same parameter value for all experi-
ments performed on the same dataset; the selection was made
according to the value that yield the best F1 results). This
experimental design is different to the one used in our pre-
vious work [32], where the best configuration of VeTo was
selected for each of the respective setups (e.g., k = 100 and
k = 200 was used for the F1 and the MRR experiment for the
SIGMOD dataset, respectively). More details for the config-
uration of VeTo+ can be found in Section 5.2.1).
6 Note that, since the DSKG dataset does not contain

weighted edges between papers and topics, we assigned
weights in correspondence to the number of topics connected
to each paper, i.e., assuming that a paper is connected with
n topics, the weight assigned to each edge is equal to 1/n.
7 We have also conducted experiments using WG, the al-

ternative graph-based approach proposed in the same paper.
However, similarly to the results in [2]
8 https://github.com/smartdatalake/HMiner
9 https://github.com/schatzopoulos/HeySim

https://doi.org/10.5281/zenodo.3739315
https://github.com/smartdatalake/HMiner
https://github.com/schatzopoulos/HeySim
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(a) SIGMOD (b) VLDB (c) TPDL (d) JCDL

Fig. 2 Parameter configuration based on average F1score of different rank aggregation methods.

5.2.1 Parameter configuration

In this experiment, we examine VeTo+’s performance

in terms of the average F1 score using different param-

eter configurations. In particular, we vary parameters

α, β, and k. For α and β we examine all the values in

the range [0, 1] with a step of 0.05 (recall that a and

b values are dependent since a + b = 1); for k we ex-

amine the values in the set {100, 500, 1000, 2000, 5000}.
Additionally, we examine different values of parameter

λ (in the range [0, 100] with step 25) for the cases when

the RRF rank aggregation algorithm is used. In Fig-

ure 2, we use heatmaps to visualise the average F1 score

achieved by the various VeTo+ configurations for all

datasets based on the aforementioned setup. It should

be noted that, for presentation reasons, we only visu-

alise the results for λ = 25 and λ = 100, as these values

achieve the best results. Finally, for parameter focus

we select the best option for each dataset based on

a set of preliminary measurements we conducted (see

Section 3.2.2). For SIGMOD and VLDB the best op-

tion was to set focus = false, while for TPDL and

JCDL focus = true. The detailed parameter configu-

rations that found to perform best for each dataset are

presented in the Appendix A.

Based on our experiments, the Sum rank aggrega-

tion algorithm achieves the best average F1 score for

SIGMOD that is equal to 0.238 when {α = 0.55, β =

0.45, k = 5000} with BC and RRF being on par with

0.234 and 0.231 respectively. CombMNZ underperforms

in SIGMOD achieving 0.221 when {α = 0.65, β =

0.55, k = 500}. For VLDB, all methods result in com-

parable scores with BC being slightly better with 0.258

at {α = 0.55, β = 0.45, k = 1000}. For TPDL, RRF

at {α = 0.2, β = 0.8, k = 100, λ = 100} achieves

slightly better F1 score with 0.149 compared to Sum

that achieves 0.147, with BC and CombMNZ perform-

ing worse with merely 0.14 and 0.122 respectively. RRF

at {α = 0.6, β = 0.4, k = 5000, λ = 25} is also the best

performing rank aggregation algorithm for JCDL with

0.129 with BC being slightly worse with 0.126. Mean-

while, CombMNZ and Sum score 0.12 and 0.118 respec-

tively. Table 5 summarises the best parameter config-

Table 1 MRR of different variants based on the folds of each
dataset. The highest MRR score for each conference is in bold.

APT APV fAPV pVeTo+ fVeTo+

SIGMOD 0.74 0.766 0.213 0.8 0.8
VLDB 1 1 0.6 1 1
TPDL 0.84 0.558 0.5 0.75 0.866
JCDL 0.488 0.24 0.563 0.378 0.458

Average 0.767 0.648 0.469 0.732 0.781

urations found. Taken into consideration our findings,

we use RRF as the default rank aggregation algorithm

of VeTo+ that achieves the best results in TPDL and

JCDL and has comparable performance for VLDB and

SIGMOD.

5.2.2 Studying the effect of the used metapaths

VeTo+’s approach considers similarities of academics

based on two criteria: their similarity based on the venues

they prefer to publish (captured by the APV metapath)

and on the topics of their published papers (captured

by the APT metapath). In this experiment we investi-

gate the effect of each of these metapaths by examining

the following VeTo+’s variants:

– APT considers similarities of academics based only

on the topics of the papers they publish (only APT

metapath).

– APV considers similarities based only on the venues

they choose to publish (only APV metapath).

– fAPV, a variant of the previous method that calcu-

lates similarities considering only venues of the field

of the venue of interest (i.e., it is a ‘focused’ variant,

details in Section 3.2.2).

– pVeTo+, a ‘plain’ version of our approach that does

not use the focused APV metapath (i.e., focus =

false)

– fVeTo+, a variant of VeTo+ that uses fAPV in-

stead of APV to produce the final result (i.e., focus =

true).

In the context of this experiment, the aforemen-

tioned approaches are configured at their best settings

(see Section 5.2.1). Figures 3, 4 and 5 illustrate the mea-

sured top-x precision, recall and F1 score, respectively,
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Fig. 3 Precision of different variants of our method.
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Fig. 4 Recall of different variants of our method.
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Fig. 5 F1 score of different variants of our method.

Table 2 MAP of different variants based on the folds of each
dataset. The highest MAP score for each conference is in bold.

APT APV fAPV pVeTo+ fVeTo+

SIGMOD 0.324 0.403 0.174 0.464 0.427
VLDB 0.395 0.416 0.273 0.605 0.492
TPDL 0.404 0.175 0.245 0.326 0.448
JCDL 0.306 0.109 0.162 0.261 0.288

Average 0.357 0.275 0.213 0.414 0.413

of all variants for SIGMOD, VLDB, TPDL and JCDL,

while Tables 1 and 2 summarise the MRR and MAP

scores respectively.

It is evident that pVeTo+ and fVeTo+ outperform

the other variants in (almost) all cases. This indicates

that both APV-based and APT-based similarities can be

helpful and that it is beneficial to combine them. Fur-

thermore, it should be noted that APV achieves slightly

higher precision and recall than APT in most cases in

the SIGMOD dataset. Both these approaches achieve

comparable results for the VLDB conference; however

APT is significantly better in JCDL and achieves higher

precision in the first elements of TPDL. This result is

inline with the intuition that for different datasets dif-

ferent metapath-based similarities may be more impor-

tant (see also Section 3.2.1).

Furthermore, fAPV improves upon APV in TPDL

(mainly) and JCDL, failing to achieve similar improve-

ments in SIGMOD and VLDB. As expected this is

reflected in the performance of fVeTo+ and pVeTo+,

as well. A possible explanation for this behavior could

be that the PC members of conferences in digital li-

braries seem to publish a smaller proportion of their

works in digital library venues, compared to the pro-

portion of papers by data management PC members

published in data management venues. Indicatively, we

have found that TPDL’s and JCDL’s PC members pub-
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lished only 10.7% and 10.6% of their papers in digi-

tal libraries venues, while the same statistics for SIG-

MOD’s and VLDB’s PC members is 25.7% and 23.1%,

respectively.10 As a result, fAPV is expected to provide

more evident improvements in the case of recommend-

ing expansions for the PCs of digital libraries confer-

ences since, in this case, the plain APV metapath will

also consider academic similarities based on published

work in venues on irrelevant topics.

5.2.3 Studying the effect of different rank aggregations

A rank aggregation algorithm is required in various

steps of our approach. In this section, we examine the

effect of different rank aggregation algorithms in the

performance of VeTo+. In particular, we consider the

four rank aggregation algorithms: Borda Count (BC),

Sum, CombMNZ and Reciprocal Rank Fusion (RRF)

(see also Sections 3.1 & 3.2). In Figures 6, 7 and 8 we

present the top-x precision, recall, and F1 score for the

best parameter configuration of VeTo+ using each rank

aggregation algorithm.

All algorithms achieve comparable results in (al-

most) all datasets. CombMNZ and Sum perform sig-

nificantly worse than other options in TPDL and JCDL

conferences, respectively. A possible explanation for this

may be that, in these conferences, VeTo+ uses the ‘fo-

cused’ venue similarities (i.e., fAPV instead of APV simi-

larities); in this case, since the number of venues, based

on which the similarities are calculated, is very small, it

is likely that there are many PC members having no ar-

ticles published in the respective venues. Consequently,

no list of similar academics can be produced for them,
thus, the list of recommended experts according to fAPV

is likely to be produced by aggregating a significantly

smaller number of ranked lists. As a result, methods

like CombMNZ and Sum, that incorporate the actual

similarity scores, may be heavily biased against fAPV,

since fAPV scores are expected to be significantly smaller

than APT scores. On the other hand, rank aggregators

like BC and RRF, which rely on the rank positions and

not the exact scores, are not affected by this and are

expected to achieve better results. The differences be-

tween BC and RRF are marginal; BC achieves slightly

higher precision in the top few results in SIGMOD with

RRF subsequently managing to overcome, while RRF

performs better in the first retrieved elements in TPDL.

From these two options, we choose to use RRF as our

default rank aggregation algorithm with VeTo+ for the

rest of the experimental evaluation.

10 Our analysis was based on the venue catalogues deter-
mined in Section 3.2.2.

5.3 Evaluation against competitors

In this experiment, we compare the effectiveness of our

approach against its rivals based on the framework dis-

cussed in Section 4 using all expert sets in the PC

dataset (SIGMOD, VLDB, TPDL and JCDL), accord-

ing to the best configurations identified in Section 5.2.1.

5.3.1 Precision, recall & F1 score

Figures 9, 10 and 11 present the precision, recall and F1

score of all compared approaches, respectively. Larger

values for all measures indicate superior effectiveness.

It is evident that VeTo and VeTo+ clearly outperform

their competitors in (almost) all scenarios. More im-

portantly, in all datasets, they achieve notably higher

precision in comparison to the rest approaches for the

top retrieved results, which are usually the most useful

ones: for most applications, the required expansion of

the expert set involves adding a relatively small number

of extra experts.

Furthermore, VeTo+ achieves better results than

VeTo in all examined expert sets. It significantly out-

performs VeTo for SIGMOD and VLDB after the first

20 results, where they both achieve comparable perfor-

mance. On the other hand, in the case of JCDL and

TPDL the differences between the two approaches are

prominent even for small x values. The larger differ-

ences between VeTo and VeTo+ can be probably ex-

plained by the fact that, for these datasets, VeTo+ is

configured to have focus = true, resulting in using sig-

nificantly different APV -based academics similarities

than those used by VeTo.

Finally, it should be noted that the baseline ap-

proach seems to work pretty well (but, at the same

time, significantly worse than VeTo+) in most cases. It

performs notably well for TPDL and JCDL, a result

indicating that there is a correlation between the aca-

demics that publish articles in these conferences and the

corresponding PC members. On the other hand, both

ADT and DOC do not perform well, with DOC per-

forming significantly better than ADT only in TPDL.

5.3.2 MRR & MAP per conference

Tables 3 and 4 present the assessment of all approaches

based on the Mean Reciprocal Rank (MRR) and Mean

Average Precision (MAP) considering all expert sets

(SIGMOD, VLDB, TPDL and JCDL) over all their

folds. They also include the average score for each ap-

proach considering all expert sets. Values in bold face

highlight the highest scores per conference, while aster-

isks indicate statistical significance compared to VeTo+
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Fig. 6 Precision of different rank aggregation methods.
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Fig. 7 Recall of different rank aggregation methods.
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Fig. 8 F1 score of different rank aggregation methods.

Table 3 MRR based on the folds of each dataset. The high-
est MRR score for each conference is in bold. Asterisks in-
dicate statistical significance (p < 0.05) when compared to
Veto+ using the t-test.

Baseline ADT DOC VeTo VeTo+

SIGMOD 0.323∗ 0.032∗ 0.056∗ 0.7 0.8
VLDB 0.357∗ 0.035∗ 0.049∗ 1 1
TPDL 0.201∗ 0.012∗ 0.209∗ 0.483∗ 0.866
JCDL 0.191∗ 0.027∗ 0.028∗ 0.373 0.458

Average 0.268 0.026 0.114 0.639 0.781

using the t-test with p < 0.05. Overall, larger scores in-

dicate better approach effectiveness.

MRR results are in compliance with the previous ex-

periment: since VeTo and VeTo+ achieve notably larger

precision for small values of x, they perform notably

better than their competitors in terms of MRR (see

also MRR definition in Section 4). VeTo+ matches the

result of VeTo in VLDB, that is the maximum MRR

Table 4 MAP based on the folds of each dataset. The high-
est MAP score for each conference is in bold. Asterisks in-
dicate statistical significance (p < 0.05) when compared to
Veto+ using the t-test.

Baseline ADT DOC VeTo VeTo+

SIGMOD 0.270∗ 0.038∗ 0.049∗ 0.448 0.464
VLDB 0.323∗ 0.061∗ 0.057∗ 0.547∗ 0.605
TPDL 0.222∗ 0.009∗ 0.081∗ 0.284∗ 0.448
JCDL 0.199∗ 0.014∗ 0.020∗ 0.221∗ 0.288

Average 0.253 0.030 0.051 0.375 0.451

score (i.e. equal to 1), while achieving higher scores

in the remaining datasets. The most prominent differ-

ence, that is also statistically significant, is observed

for TPDL where VeTo+ manages a 79% improvement

over VeTo. This large difference may be due to the fact

that VeTo+ is using foucus = true for this dataset;

JCDL, which also takes advantage of the same optimi-

sation, also achieves a notable (but smaller) improve-
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Fig. 9 Precision against competitors.
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Fig. 10 Recall against competitors.
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Fig. 11 F1 score against competitors.

ment (22.79%). Last but not least, DOC performs bet-

ter than ADT overall, mainly due to its noteworthy

score in TPDL, however both these approaches perform

significantly worse than the Baseline.

Table 4 presents the MAP scores for the examined

conferences across all folds. VeTo+ outperforms its com-

petitors in all conferences, achieving statistically sig-

nificant improvements in SIGMOD, TPDL and JCDL.

In particular, complying with the results of MRR, it

achieves the most notable differences over VeTo in TPDL

and JCDL conferences managing 57% and 30% im-

provements, respectively. VeTo+ achieves significantly

larger MAP scores than the Baseline method which in

turn outperforms ADT and DOC that underperform in

all examined scenarios.

5.4 Discussion on the Configuration of VeTo & VeTo+

In our experiments we have examined a range of param-

eter values to identify the best performing configuration

for each dataset (Section 5.2.1). However, this is a time

consuming grid search approach that is not practical

for many real applications, especially when using a new

dataset. Although there are approximation techniques

that could tune these parameters reducing the execu-

tion cost (e.g., using simulated annealing [15, 31]), in

some cases even this cost may not be acceptable. Iden-

tifying this issue, in this section we discuss a set of

best practices and guidelines on how to come up with

an acceptable configuration for a given dataset. Our

guidelines are based on the findings of our experimen-

tal section.



VeTo+: Improved Expert Set Expansion in Academia 13

Taking into account our findings in Section 5.2.1,

we conclude that the Reciprocal Rank Fusion (RRF)

performs overall better than other rank aggregation al-

gorithms in all examined datasets. RRF yields good re-

sults when its λ parameter is set to 100 (or smaller val-

ues in some cases). In general, we observe that VeTo+

achieves the maximum gains when α ∈ [0.5, 0.6], β ∈
[0.4, 0.5] and k ≥ 2000. Last but not least, as discussed

in Section 5.2.2 more ‘focused’ similarities based on

venues bring considerable gains when the PC members

of the examined conference have a large proportion of

their work published in venues of different disciplines.

It is also worth mentioning that in case ‘focused’ venue

similarities are used, it is preferable to use an aggre-

gator that considers the rank positions of the elements

in the input ranked lists (like BC and RRF) and not

the actual similarity scores, in order to avoid the bias

against fAPV similarities as discussed in Section 5.2.3.

6 Related Work

Expertise retrieval consists an interesting field of re-

search in many disciplines like digital libraries, data

management, information retrieval, and machine learn-

ing. A wide range of problems, ranging from expert

finding to expert profiling, belong in this field and there

are many related real-time applications (e.g., collabo-

ration recommendation, reviewer recommendation). A

detailed review of the field is beyond the scope of the

current work. The reader interested could refer to the

excellent survey in [13]. In the next we will focus on the

variations of the expert finding problem.

Finding experts for a given topic in the industry
has been a relatively well-studied problem. Initial ap-

proaches relied on manually curated databases of skills

and knowledge (e.g., [8]), however the interest quickly

shifted to approaches that extract employee’s expertise

from document collections that could be found within

corporate intranets or the Web [4, 7]. A common plat-

form to empirically assess such approaches has been

developed by the TREC community11 facilitating the

development of various relevant methods [1, 9, 21, 24].

Apart from details about the exact expert finding prob-

lems solved by each of the previous methods, our work

significantly differs from these works in principle, since

it is tailored for academic experts and since it does not

rely on document collections because such collections

are often available due to the existing paywalls.

Finding experts in academia, where the experts are

researchers with knowledge and interests in a given to-

pic, has also been an important field (e.g., [25, 34]).

11 https://trec.nist.gov/

However, most of these methods also rely on scientific

text corpora, which are often limited behind paywalls.

Motivated by this problem, many researchers turned

their focus on approaches that are able to utilise alter-

native data sources, like the various scholarly knowledge

graphs, which have lately become popular and contain

rich information about scholars and their publications

(e.g., the Open Research Knowledge Graph [14], the

OpenAIRE Research Graph [19,20]).

As an indicative example, the authors of [2] intro-

duce two approaches that can take advantage of the

data stored in a scholarly knowledge graph. The one ap-

proach, called DOC, considers academics to be similar

if they share a significant number of common publica-

tions. Similarly, the other approach, called WG, calcu-

lates a similarity score for academics based on the num-

ber of co-authors they have in common (i.e., it takes

into consideration ‘working groups’ of academics). Al-

though both methods might sometimes bring interest-

ing results, it is evident that they calculate academic

similarities using very limited information about them,

thus it is difficult to bring valuable suggestions in the

majority of cases.

Another indicative example, is ADT [12], which cap-

tures the association strength between two academics

by considering the paths that connect them to topics.

Given a tripartite graph comprising academics, papers

and topics and weighted edges between them, ADT first

uses a multiplicative scheme to aggregate edge weights

into path weights. Then, the association strength of

two academics is calculated by summing the weights

of the paths that connect them via the topic nodes in

the graph. This method highly depends on the weights

assigned to the edges of the network, which can be

problematic since, in many cases, scholarly knowledge

graphs do not include such information.

It is worth mentioning that both DOC/WG and

ADT make use of very limited information compared to

the content of popular scholarly knowledge graphs. On

the other hand, both VeTo and VeTo+ take advantage

of metapath-based analysis techniques, which have been

recently developed to exploit complex and latent infor-

mation that resides in knowledge graphs. This, along

with the adoption of advanced rank aggregation tech-

niques, gives them the ability to easily calculate and

combine similarities with various semantics.

7 Conclusions

In this work, we study the expert set expansion problem

for academic experts, i.e., given a set of known experts

to find the n most suitable candidates to expand this

set. In this context, we first introduced VeTo [32] and,

https://trec.nist.gov/
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then, in this work, VeTo+, two expert set expansion ap-

proaches for academic experts that exploit information

from a given scholarly knowledge graph to estimate sim-

ilarities between academics, based on their publishing

habits. VeTo+ extends VeTo by introducing a flexible

weighting scheme for the used similarity measures and

a couple of alternative metapath-based similarities and

rank aggregation algorithms.

We utilised an extended version of the evaluation

framework we introduced in [32] to perform thorough

experiments to compare VeTo+ against its predeces-

sor and a set of other competitors. The investigation

revealed that VeTo+ improves upon VeTo, in terms of

effectiveness, taking advantage of its novel weighting

scheme for aggregating the respective similarity mea-

sure scores, and allows for more configuration options

to better fit in different use cases, compared to its pre-

decessor. Additionally, VeTo+ also considers ‘focused’

similarities based on venues, an approach that brings

noteworthy improvements in the case of TPDL and

JCDL conferences. This may be due to the fact that the

PC members of TPDL and JCDL have a smaller pro-

portion of their work published in digital library venues

compared to those of SIGMOD and VLDB that have a

larger proportion of their work published in data man-

agement venues. Therefore, in the case of TPDL and

JCDL the ‘focused’ similarities based on venues avoid

capturing similarities based on published work on irrel-

evant topics.

Although VeTo+ outperforms the state-of-the-art

for the expert set expansion problem in academia, we

believe that there is plenty room for improvements for

future research. First of all, our work does not consider

the fact that knowledge graphs evolve over time. How-

ever, it may be interesting to investigate the effect of

temporal changes over the performance of VeTo+ or,

even, to propose improved approaches that take into

consideration the most recent publishing habits of the

scholars as more important than older ones. Another

indicative extension could be to investigate the effec-

tiveness of adaptations of VeTo+ to solve similar prob-

lems from other domains (e.g., finding similar movie

actors) using appropriate knowledge graphs from the

respective domains.
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A Detailed configurations

In this section we present the exact parameter configurations
of the rank aggregation algorithms that found to perform best
for each dataset.

Table 5 Parameter configuration of VeTo+ for each rank
aggregation algorithm.

BC Sum CombMNZ RRF

SIGMOD

α = 0.55 α = 0.55 α = 0.65 α = 0.55
β = 0.45 β = 0.45 β = 0.35 β = 0.45
k = 1000 k = 5000 k = 500 k = 2000

focus = false focus = false focus = false focus = false
λ = 100

VLDB

α = 0.55 α = 0.5 α = 0.55 α = 0.6
β = 0.45 β = 0.5 β = 0.45 β = 0.4
k = 1000 k = 5000 k = 500 k = 2000

focus = false focus = false focus = false focus = false
λ = 100

TPDL

α = 0.2 α = 0.25 α = 0.8 α = 0.2
β = 0.8 β = 0.75 β = 0.2 β = 0.8
k = 100 k = 100 k = 100 k = 100

focus = true focus = true focus = true focus = true
λ = 100

JCDL

α = 0.5 α = 0.85 α = 1 α = 0.6
β = 0.5 β = 0.15 β = 0 β = 0.4
k = 100 k = 500 k = 500 k = 5000

focus = true focus = true focus = true focus = true
λ = 25
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