
EverLast: A Distributed Architecture for
Preserving the Web

Avishek Anand
Max-Planck Institute for

Informatics,
Saarbrücken, Germany

aanand@mpi-inf.mpg.de

Srikanta Bedathur
Max-Planck Institute for

Informatics,
Saarbrücken, Germany

bedathur@mpi-
inf.mpg.de

Klaus Berberich
Max-Planck Institute for

Informatics,
Saarbrücken, Germany

kberberi@mpi-inf.mpg.de

Ralf Schenkel
Saarland University,

Saarbrücken, Germany
schenkel@mmci.uni-

saarland.de

Christos Tryfonopoulos
Max-Planck Institute for

Informatics,
Saarbrücken, Germany

trifon@mpi-inf.mpg.de

ABSTRACT
The World Wide Web has become a key source of knowl-
edge pertaining to almost every walk of life. Unfortunately,
much of data on the Web is highly ephemeral in nature,
with more than 50-80% of content estimated to be changing
within a short time. Continuing the pioneering efforts of
many national (digital) libraries, organizations such as the
International Internet Preservation Consortium (IIPC), the
Internet Archive (IA) and the European Archive (EA) have
been tirelessly working towards preserving the ever changing
Web.

However, while these web archiving efforts have paid sig-
nificant attention towards long term preservation of Web
data, they have paid little attention to developing an global-
scale infrastructure for collecting, archiving, and performing
historical analyzes on the collected data. Based on insights
from our recent work on building text analytics for Web
Archives, we propose EverLast , a scalable distributed frame-
work for next generation Web archival and temporal text
analytics over the archive. Our system is built on a loosely-
coupled distributed architecture that can be deployed over
large-scale peer-to-peer networks. In this way, we allow the
integration of many archival efforts taken mainly at a na-
tional level by national digital libraries. Key features of
EverLast include support of time-based text search & anal-
ysis and the use of human-assisted archive gathering. In this
paper, we outline the overall architecture of EverLast, and
present some promising preliminary results.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing meth-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’09, June 15–19, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-322-8/09/06 ...$5.00.

ods; H.3.1 [Information Storage and Retrieval]: Large
text archives

Keywords
Web Archives, Crawling, Indexing, Time-travel search

1. INTRODUCTION
The World Wide Web has become a key source of infor-

mation pertaining to all facets of life, starting from business,
entertainment, science to politics, culture etc. It is evolving
and growing at a high rate [24], and the loss of born-digital
information on the Web is significant. Archiving the Web
is an effective way to counter the decay seen on the Web.
Web archives can capture the timelines of entities and top-
ics on the Web, and they reflect the evolution and trends of
our society, economy, and culture that are of high interest
to scientific scholars, market researchers, patent offices, and
others.

From a utilitarian point, web archives (WA) serve pur-
poses very different from standard web-search engines. They
not only provide the latest or near-latest view of the Web,
but are also the source of the evolutionary history of the
Web. History must be completely and correctly captured,
stored forever in a tamper-resistant manner, must be acces-
sible without fear of censorship or blockage, and most impor-
tantly, must be seamlessly searchable in both text and time
axes along with support for different forms of time-aware
mining. Further, web archiving must also be self-sustaining,
and not be placed under the control of any single corpora-
tion which could possibly end up with the ability to “rewrite
history”. This, along with the fact that archiving efforts are
currently run at a national level through archival tools de-
veloped or sponsored by national digital libraries, introduces
the need for a distributed, scalable and durable framework
that will manage and make the archived content available.

1.1 Web Archiving - Today
Starting from the pioneering efforts of the Swedish Royal

Library and other national libraries in Europe [2], web
archiving has been steadily gaining importance. The best

known large-scale effort to date has been that of the Inter-
net Archive (IA), which has an accumulated size of more
than 500 Terabytes [1] and is growing at 100 Terabytes per
year. However, despite many advances made in web archiv-
ing, the state-of-the-art is still far away from reaching its
ultimate objective of preserving all digital-born information
on the Web for posterity. We have recently been involved in
Web archiving projects in co-operation with archivists from
the European Archive (EA)1. The experiences from these
projects have helped us to get a better understanding of the
current limitations of web-archiving solutions.

Limited coverage and lack of responsiveness. The
Internet Archive (IA) performs large-scale crawls to
generate snapshots of the Web, using a fixed set of
sites nominated by partner organizations. The largest
such crawl so far consists of two billion pages and was
completed in 2007 after a six month effort. On the
other hand, this was only a small fraction of the Web,
which is conservatively estimated to consist of about
27 billion pages [36] – discounting the informative
pages that are behind forms and rapidly changing
sites such as newspapers etc. More importantly, this
also is a single snapshot of all the pages crawled,
not their complete evolutionary history during the
time of data collection. Combined with the fact that
these large-scale crawls are done very infrequently,
the resulting archives offer very limited coverage
of the Web, more so of different versions of pages
involved. The alternative of recrawling sites at very
high rates is not practical, since it does not honor
the crawler-politeness requirements, and can therefore
easily be mistaken for a denial-of-service attack.

Store but no access. Current web archives, including IA,
focus almost exclusively on the preservation of content,
but not on providing access to their archives. The
best way to access the IA collection is through their
WaybackEngine. Given a URL completely specified
by the user, this service presents the version history of
the URL, but does not provide any content-querying
capabilities. Interfaces provided by other archives are
similarly limited.

1.2 Web Archiving - The EverLast Approach
In this paper, we present the design of EverLast, a scal-

able and durable framework that we are building as a next
generation web archiving (WA) infrastructure. EverLast is
a loosely coupled distributed architecture that can be de-
ployed over peer-to-peer (P2P) networks, thus making it
naturally decentralized and non-authoritarian. We broadly
define a P2P network as any large-scale distributed system
with self-organization capabilities to counter problems of lo-
calized failures (such as a peer disappearing from the net-
work) and to deal with dynamics (content, query, and be-
havioral). As a consequence, smaller-scale instances of Ever-
Last operating within intranets of organizations/(digital) li-
braries and data grids or clouds are possible as well.

EverLast pursues two main goals: (i) Efficiently collecting
and maintaining an archive of the World Wide Web with
good coverage, and (ii) Enabling historical text analytics by
efficiently processing Time-travel Keyword Queries to return

1http://www.liwa-project.eu/

a ranked list of relevant documents from a web snapshot
in the past. Towards these goals, advances are made in
each aspect of the web-archiving life-cycle, viz., capturing
or harvesting, storing, and indexing of web documents in a
timely fashion. The data and metadata are distributed and
managed using a structured P2P network substrate such as
Pastry [27] or Chord [32]. We rely on these networks to
provide consistent primary key lookups, and robust handling
of churn. We briefly present the key features provided by
EverLast:

Human-assisted web capture. The evolution of digital
content on the Web is highly bursty and non-localized.
Most of the time, only web users can locate such
“hot” regions of change. Therefore, EverLast combines
the standard methods of crawling with human-assisted
crawlers – archival plugins built into browsers or prox-
ies which selectively capture Web pages of archival in-
terest along with their timestamps and publish them
into the archive at regular intervals.

Time-travel keyword queries. EverLast is built around
the need to provide efficient support for time-travel
queries, a feature which can be used to build rich tem-
poral analysis on archives.

Distributed archival storage. The P2P research com-
munity has proposed peer-to-peer storage architec-
tures aiming at long-term (nearly immortal) stor-
age [21, 28, 35]. Such persistent storage systems that
support efficient primary key lookups, although essen-
tial, are not sufficient for Web archiving. We augment
these persistence solutions with a storage-metadata
management layer required for Web archiving.

1.3 An Application Scenario for Everlast
As an example for an application scenario let us consider

Marco, a journalist of a local newspaper, living in Marbella,
Spain. Marco is writing an article about the environmental
policy of the local authorities over the last 10 years, and
he is using a variety of sources to prepare the article, in-
cluding the web pages of the municipality, as well as those
of local environmental groups. Apart from the current ver-
sions of these Web pages, stating the recent environmental
actions, Marco queries the EverLast engine using the URLs
of these Web pages for the time frame 1999 – 2009 to re-
ceive a chronologically sorted list of pages. By clicking on a
specific date, Marco is now able to see and use the page as
it appeared at the time it was archived.

However, after lunch, Marco recalls that in November
2003, there was a big debate in the local community about
the construction of a parking lot in the place of a neighbor-
hood grove. Since this is an important issue that he would
like to add in the article, Marco specifies the time as Novem-
ber 2004, and issues the query “parking lot grove Marbella”
to the EverLast engine, to receive pages of November 2004,
containing the specified keywords.

The same evening, Marco has the idea of further strength-
ening his article by comparing the environmental policy of
his municipality, with the ones from other European cities.
He decides that recycling is one of the most important show-
cases for environmental actions, and wants to use it as a
working example for this comparison. He resorts to Ever-
Last, specifies the time frame 1999 – 2009, and issues the

query “recycling (Patras OR Lyon OR Aachen)” to receive
documents from the given time frame stating the recycling
actions of these cities.

Clearly, Marco would benefit from utilizing a system that
is able to provide access to archived versions of web pages, ei-
ther by specifying the page URL, or through free text search.
Furthermore, the integration, in a single search interface, of
archival efforts conducted at a national level, and typically
lead by national digital library organizations, would be a
valuable tool, beyond anything supported in current archival
efforts. In our application scenario, each local archival site
(e.g., digital library or institution) would maintain its own
EverLast peer, that would provide the EverLast functional-
ity, and act as an access point the content provider. Users
utilizing EverLast may also utilize the archival plug-in to
archive web pages of interest that they are visiting. In this
way, users may act as crawlers that are able to capture dy-
namic and interesting regions of the Web, and increase the
coverage of the Web archiving sites.

1.4 Organization
The remainder of this paper is organized as follows. Sec-

tion 2 discusses related research with respect to P2P storage
systems, distributed crawling and access structures for man-
aging time-evolving data, while Section 3 presents the un-
derlying data and query model. Sections 4 and 5 present the
EverLast architecture and the associated protocols respec-
tively. In Section 6 we provide an experimental evaluation of
archival coverage in EverLast. Finally, Section 7 concludes
the paper.

2. RELATED WORK
The design of EverLast builds on research from differ-

ent domains. Peer-to-peer storage with the promise of high
availability and durability has been an active area of re-
search [14, 15, 28, 35]. These efforts focus only on building
reliable storage services but do not address the necessary
higher-level functionality for querying and analytics.

Distributed crawling [30, 31] aims to overcome the band-
width limit and coverage issues of centralized crawlers, but
suffers from overheads of maintaining the URL frontier.
Since these are not archival crawlers, they aim to minimize
repeated visits to a page. In fact, web crawlers may some-
times be tuned to maximize the number of detected links as
anchor texts do already lead to index entries for the search
engine. In contrast, an archive crawler always needs the
full contents of a page. Further, traditional crawlers do not
take into account the dynamics of the Web to improve their
coverage.

Various access structures for managing time-evolving data
in centralized settings have been proposed. Two examples
are the TSB-Tree [23], which recently regained attention
in [22], and the MVB-Tree [8]. For a comprehensive sur-
vey of these access structures, we refer the reader to [29].
Their applicability in decentralized settings and to manage
textual data, however, is not well understood.

P2P Information Retrieval (IR), the ability to perform
efficient information retrieval tasks over P2P networks has
attracted considerable attention in recent times (see [7, 9,
17, 20, 26, 34] and references given there). To the best of our
knowledge, none of them have considered temporal querying
and ranking models on evolving data collections.

Finally, within digital library research community there

has been interest in building large (centralized) archives of
the Web [6] and in developing techniques for smaller-scale
personal Web archiving solutions [33]. While both these
approaches have text searching capabilities over archives,
they do not capture temporal aspect explicitly.

3. TIME-TRAVEL: MODEL AND ISSUES
When it comes to search and exploration of web archives,

the time axis plays an important role. This is in contrast to
today’s standard web search that typically ignores the time
axis. In our earlier work [10, 11, 12, 13], we introduced the
concept of time-travel text search and proposed techniques
for its efficient realization in a centralized setting. In this
section we recap the underlying data and query model.

3.1 Data Model
We consider timestamped document versions dt where d

is the actual document content (e.g., a bag of words) and
t is the associated timestamp. We employ a discrete no-
tion of time allowing us to use non-negative integers for
timestamping. In addition, as commonly done in temporal
databases [16], we introduce a special value now that al-
ways points to the current time. The validity time-interval
of a document version dt is defined as [t, t′) where t′ is
the timestamp of the currently known subsequent document
version and [t, now) if no such subsequent version exists.

On the Web, accurate timestamping of retrieved docu-
ments is difficult, since most web servers do not report truth-
ful last-modification timestamps. In EverLast the time-
stamping authority is assigned to the crawler. Crawler peers
thus timestamp document versions with their time of ob-
servation – in other words, the time when the user visited
the page via the browser. To avoid identical versions with
different timestamps, version-reconciliation mechanisms, as
detailed later, can be invoked.

The design choice of letting crawler peers timestamp doc-
ument versions has important implications. Since we can-
not synchronize the activities of crawler peers, they may
feed document versions into our distributed archive in an
order that is different from their temporal order. As a con-
sequence, unlike most temporal index structures, our system
must support out-of-order insertions.

3.2 Query Model
We support time-travel queries q@ [tb, te] consisting of a

content part q and a time interval of interest [tb, te]. The
content part q has the same structure as document versions
in the above data model (e.g., a bag of query keywords).
When evaluating the time-travel query, only document ver-
sions that existed at any point in [tb, te] are taken into
consideration and are thus potential query results. An in-
teresting special case are time-point queries q@ t for which
the time interval of interest consists of a single time instant
t, thus evaluating the query q “as of” time t.

The following two examples demonstrate the usefulness of
our query model and the value that it adds to web archives
in general.

• For an article about Al Gore, a journalist wants to
compare Gore’s recent statements regarding climate
change and those made during his run for presidency.
Many web pages that existed in 2000 have disappeared
from the “live” Web in the meantime. However, time-

travel queries such as

{al gore climate change}@[2000/01, 2000/12]

help our journalist to retrieve relevant archived docu-
ments from our distributed web archive.

• Eddie Electric has lost the manual of his beloved 7-
year-old cellphone. Given the age of the phone and the
fact that the cellphone producer DunQ has been ac-
quired by another company two years ago, there is lit-
tle hope of finding the manual on today’s Web. When
Eddie issues the query

{DunQ CP825X manual}@[2001/01, now]

against the peer-to-peer web archive, he quickly locates
the sought cellphone manual.

In addition to their usefulness as a tool for accessing web
archives, time-travel queries provide a powerful platform to
support higher-level mining and exploration tasks, as the
following example demonstrates.

• FourWheels Inc., a car company, wants to study how
customer sentiments towards their company changed
during the past ten years. By issuing time-travel
queries for the company name and each year in the
period of interest, document versions from the respec-
tive period can be identified, retrieved, and analyzed
further.

4. ARCHITECTURE
Conceptually, EverLast consists of the following four kinds

of peers:

(a) Crawler peers,

(b) Version-directory peers,

(c) Persistence peers, and

(d) Time-travel index peers.

Peers playing the role of the version directory, persistence
and the index are coordinated through a role-specific overlay
network. Each peer in the system can dynamically switch
on/off its role by controlling its participation in the corre-
sponding overlay. A structured P2P substrate such as Pas-
try [27] or Chord [32] can be used to organize these overlays.
A high-level data-flow model of EverLast is depicted in Fig-
ure 1.

The archive is harvested via crawler peers which contin-
uously collect versions of documents (URLs) on the Web,
either by explicitly running archival crawlers such as Her-
itrix [18], or via human-assisted crawling. These versions are
locally collected into a history database, which is offloaded
periodically to the version directory. The version directory
is responsible for managing version timelines of all the docu-
ments seen so far, keeping document-version-level statistics
such as PageRank scores, and managing their placement and
location on the persistence layer. The indexing layer man-
ages the time-travel index that enables rich temporal text
queries over the contents of the archive. The persistence of
objects in the system, viz., document versions or inverted
(sub)lists, is handled in a uniform manner by the persis-
tence layer. The persistence storage is provided by adapting

Persistence

Version Directory Time-Travel Index

Crawlers

Figure 1: Architecture of EverLast

a distributed object storage service that allows for efficient
primary key lookups, and, in addition, provides high avail-
ability and durability of content. In the rest of this section,
we discuss each of these components in detail.

4.1 Crawlers
One of the key issues that web archives face is that their

captures do not cover the changing Web and are not respon-
sive enough to record the evolution with sufficient accuracy.
In EverLast, we augment the traditional archival crawling
with human-assisted crawling, which utilizes the collective
intelligence of web surfers to obtain high-quality archival
dumps of the evolving Web. Here, browsers or proxy servers
are augmented with plugins that, whenever a document is
visited, consult the local history collected so far to determine
if the current contents of a document qualify it to be a new
version. If so, these are timestamped with their crawl-time,
and are stored in the local history. For simplicity, we assume
that crawler peers provide true timestamps, for example by
regularly synchronizing their time with time servers in the
Internet. At periodic intervals (configurable by the user),
these crawlers offload the history collected so far onto the
version directory.

Studies have shown that close to 50% of an individual’s
browsing activity is page-revisits [19]. Thus, even a single
user has a high chance of capturing many versions of a single
page.

Retaining such a history of web pages visited by the user
for later-time analysis has attracted some attention. For
example, Zoetrope [3] implements a variety of browser-side
plugins that enable proper capturing and replaying multiple
versions of complex web pages – even those which include dy-
namic content, cookies, and advertisements etc. In EverLast
we currently utilize a proxy server that has been enhanced
with archiving abilities to achieve reasonable captures. One
of the key technical challenges that requires further research
is to preserve the privacy of the user and automatic ways to
avoid sensitive content from being archived. Even though a
good fraction of such content is sent through secure HTTP
which cannot be intercepted by the proxy, more powerful
schemes are needed to identify content that must not be
archived. Note also that for simplicity we assume that
crawler peers are completely trusted, an assumption that
does not hold in general. Foregoing this assumptions opens
a range of issues to be tackled at the version directory for
constructing accurate version timelines.

4.2 Version Directory
Each URL is mapped to a unique version directory peer,

which is responsible for maintaining the version history of
the URL, i.e., for constructing and updating the sequence

of time intervals where in each interval a different version
of the URL was active. Since the crawler peers offload their
local history without any global synchronization, version ar-
rivals can be highly irregular and conflicting. For example,
an older version may arrive after a newer version, or two
crawler peers may report different content/size for the same
versions of the URL (perhaps due to different language con-
tents being served for the same URL).

In order to deal with these issues, the version directory
peer must first reconcile the versions carefully, by taking
into account the timestamps and content-signatures. The
lifetime of a version, consisting of a begin and end time, is
constructed based on these reported timestamps. To accu-
rately construct a version history or a timeline, we should
firstly be able to identify if the content in a page (change
detection) has changed. We assume that a version has not
undergone a change until another version with different con-
tent is served with a later timestamp. This works well in
principle in case of versions arriving in sequence (which in
reality is rarely the case). Version updates are typically re-
ported out-of-order in case of human-assisted crawling and
this makes the problem challenging. For example lets say
we have two existing versions for doc1 at time-points t1 and
t5.

In case of arrival of an out-of-order update (doc1, t3)
where t1 ≤ t3 ≤ t5 whose content is same as (doc1, t1) it
is ignored assuming the document has not changed. But
now consider the arrival of an update (doc1, t2) where
t1 ≤ t2 ≤ t3 whose content is different from (doc1, t1). In
such a case we cannot ascertain the end time of the version
which begins at t2 if we do not keep track of the updates af-
ter t2 leading to inaccuracy in timeline construction (in this
case the end time is reported to be t5 whereas it actually
should be less than t3).

Version reconciliation may result in either append, insert
or branch operations on the version timeline as well as a
simple extension of the current version. If a new version of
the url is created with timestamp ts after reconciliation,
its contents vc are posted into the persistence layer calling
put(〈url, ts〉, vc) of the persistence layer. Additional page-
level measures, e.g., its PageRank, can also be computed by
the version directory peers using methods such as JXP [25]
that are designed for P2P systems.

Once a new version is readied by the reconciliation stage,
its contents are inverted and term-level statistics of the ver-
sion are posted into the Time-Travel Indexing layer.

The contents in the version directory form a critical re-
source for the functioning of EverLast, demanding its high-
availability at all times. Since this layer only houses com-
pact metadata structures, we can achieve these availability
demands via eager replication mechanisms commonly sug-
gested in distributed storage research.

4.3 Time-Travel Index
Efficiently supporting time-travel text querying is an im-

portant aspect of EverLast. Existing access structures for
time-evolving data, as mentioned earlier, may at first seem
adaptable to handle this task. There are, however, several
details unique to our setting that make their applicability
– at best – questionable: (i) out-of-order insertions of doc-
uments versions, since no synchronization between crawler
peers is enforced, (ii) the decentralized setting for which
none of the existing access structures was designed, and, fi-

Gateway Peers

Indexing Peers

Figure 2: Time-term partitioning of Time-travel In-
dex

nally, (iii) management of text data, which is clearly not a
key application area of the existing access structures.

EverLast employs a distributed variant of the time-travel
inverted index proposed in [10, 13]. We provide a concise
overview of the index structure, before describing how it can
be adapted to a decentralized setting.

Time-Travel Inverted Index (TTIX)
The time-travel inverted index builds on the standard in-
verted index – the workhorse of Information Retrieval.
TTIX extends index entries (called postings in IR jargon)
by validity-time intervals. Index entries thus have the form

〈 did, tb, te, tf 〉 ,

where did is a document identifier, [tb, te) is the validity-
time interval, and tf is the term frequency.

In addition, TTIX partitions the time axis for each term
separately, thus yielding multiple index lists per term, each
responsible for an associated time interval. The index list
Lv : [ti, tj) thus contains all index entries for term v whose
validity-time interval overlaps with [ti, tj). This partition-
ing of the time axis introduces extra storage-costs, since in-
dex entries are replicated across index lists, if their validity-
time interval overlaps with more than one of their associ-
ated time intervals. In [10, 11], we proposed techniques
that determine temporal partitionings of individual inverted
lists that trade-off extra storage-costs and query-processing
gains.

Two key benefits of TTIX are (i) its ease of implementa-
tion and (ii) the fact that well-known optimizations to the
inverted index (e.g., compression and pruning techniques)
remain applicable.

Distributed TTIX in EverLast
There are – at least – two ways of adopting the TTIX struc-
ture to a distributed setting.

One of the natural ways is to partition the index first
by time and then by term, thus yielding a time-term-
partitioned index (Ti-Te for short), illustrated in Figure 2.
In this case, the whole collection of documents in the archive
is partitioned up-front based on the validity-time intervals

Term

“T”

...

…

…

...

…T3 – T6

...T2 – T3

…T0 – T2

Indexing peers

T0 T2 T3 T6

Time

Figure 3: Term-time Index Partitioning in EverLast

of documents, and a separate standard inverted index for
each of the partitions is built. Index entries corresponding
to document versions that span multiple temporal partitions
are replicated in each partition.

However, in a decentralized setting, such as EverLast, the
Ti-Te partitioning scheme has significant drawbacks. Deter-
mining a partitioning of the document collection up-front
requires, among other things, collecting statistics about the
collection as a whole. Regarding the size of the targeted doc-
ument collections, it is questionable whether keeping such
statistics is a task manageable by a single peer having rather
limited computational and storage capacity. Even more im-
portantly, this partitioning also suffers from skewed distri-
bution of queries – it is likely that most queries will be about
recent past. Thus, peers responsible for the recent past will
tend to be overloaded, and as time progresses they are under
utilized.

Alternatively, the index can be partitioned first by term
and then by time, thus yielding a term-time-partitioned
index (Te-Ti for short). In this partitioning scheme, the en-
tire term space is first partitioned using the cryptographic
hash function of the underlying P2P substrate. Each term
is thus assigned to a time-travel index peer, which is then
responsible for managing index entries for the term. The
peer’s responsibilities include (i) keeping statistics about the
index entries, (ii) determining and continuously adjusting
the temporal partitioning, (iii) interacting with persistence
peers who keep the index lists, and (iv) interacting with
version-directory peers in the presence of additional doc-
ument versions containing the term. Since the metadata
needed to perform partitioning of the inverted list of a sin-
gle term is small enough to be stored and processed in a
single peer, the Te-Ti partitioning scheme seems to be bet-
ter suited in a decentralized setting. Accordingly, EverLast
adopts this model of TTIX organization.

Figure 3 shows how EverLast implements the Te-Ti index-
ing. Indexing peers (denoted by green boxes) are organized
into an overlay, with each peer housing the metadata for
all the temporal partitions of a term-specific inverted list.
In addition to the boundaries of the partition, the meta-
data could include access-statistics, number of entries, etc.
which could be exploited during query processing or sub-
sequent index reorganization. Each entry in this metadata
table also uniquely determines the primary-key into the per-
sistence layer (orange shaded nodes), which can be used to
retrieve the entries during query processing.

TTIX Partitioning Strategies in EverLast
Since peers participating in EverLast are completely au-
tonomous, it is possible that one of the partitions is tem-
porarily unavailable during query processing. A straightfor-
ward solution is to simply keep multiple copies of each par-
tition placed in different peers. However, due to replication
of entries spanning across partitions, we already introduce
some amount of redundancy into the index. How can we
exploit this inherent redundancy in TTIX to avoid complete
copying of partitions?

To answer this question, we again observe that the in-
dex entries whose validity-time interval spans the partition
boundary are available in at least two partitions. Even when
one of the partitions is lost, corresponding index entry is still
reconstructible by consulting the neighboring partition.

One way to optimize reconstructibility is to improve the
overall replication of the index entries, while keeping the
overall index size under check. This can be formulated as an
optimization problem, similar to those explored in [10]. The
resulting formulation, which we call maximum-replication
problem [4], turns out to be NP-Hard (by reducing from
subset-sum problem), and even approximation algorithms
are not known. Our solution for maximum-replication prob-
lem in EverLast is based on greedy heuristics, and can be
solved in time linear in the number of entries in the index.
It partitions the time-axis greedily at time-points where the
index can has maximum number of newly added replicated
entries.

4.4 Persistence
Persistence of objects, more precisely document versions

and inverted lists, is handled in a uniform manner us-
ing existing P2P storage technologies such as OceanStore
or PAST that provide high durability and availability of
objects. These storage services provide put(pk, obj) and
get(pk), where pk is the primary-key of the object obj.

In EverLast, the timestamps associated with objects is
incorporated into defining their primary keys. Thus, the
document versions and temporal partitions of inverted lists
can be quickly located from the storage layer. We define
the primary key of a version starting at ts of the web page
url as a pair 〈url, ts〉. Similarly, for a index list partition
Lv : [ti, tj), we assign the pair 〈v, ti〉 as the primary key.

4.5 Query Processing
To evaluate a query q@[tb, te], a client needs to first con-

tact the Time-Travel Indexing layer to get the keys to the
corresponding inverted list partitions that are stored in the
persistence service. If tb = te in the time-travel query, only
one persistence peer per term needs to be contacted. On
the other hand, if the query is specified over a time-range,
multiple persistence peers that hold the inverted lists for
overlapping time partitions need to be contacted. In order
to speed up the query processing, we can utilize caching
techniques [37] at the indexing peer.

5. PROTOCOL SPECIFICATIONS
In EverLast there are four kinds of peers: version directory

peers, indexing peers, storage peers and crawler peers. The
version directory peers are responsible for version reconcili-
ation, managing document versions and index lists. The in-

dexing peers are responsible for partitioning of the index and
maintaining the index partitions to peer mapping. They,
hence, act as a lookup service for routing of queries to the
appropriate partitions. The storage peers are responsible for
storing the actual archived documents and the time-travel
index, and implement the get and put functions to provide a
primary key lookup functionality. Finally, the crawler peers
are responsible for offloading the local versions of crawled
pages periodically to the version directory peers.

In this setting, we can also distinguish between four kinds
of data objects, namely document versions, partitioned in-
dex blocks, parts of the version table maintained by the
directory peers and the Index Partition Table (IPT), con-
taining partition-to-peer mappings maintained by the index
peers. These data objects are resident in the persistence
layer and can be accessed by primary key lookups issued to
the storage peers. The primary keys for these data objects
utilize a hash function, H, on one or more of their properties
like URL, term, begin and end times, and are constructed
as follows:

• Document versions: H(url, ts)

• Index partition blocks: H(term, tb, te)

• IPT entries maintained by Indexing peer for each term:
H(term)

In the following sections we discuss the protocols regulat-
ing peer interactions, such as version reconciliation, docu-
ment version and index updates, query processing, and peer
joining and departure, by utilizing the aforementioned prim-
itives.

5.1 Version Reconciliation and Document
Version Updates

In EverLast, the crawler peers maintain a local repos-
itory of content crawled along with their time-of-crawl
time-stamps. When a crawler peer wants to add the
crawled content to the version directory peers, it creates a
addVersion(url, document, timestamp) message, and sends
it to the version directory peer responsible for the url.
This peer is found through the mapping function M(url).
Each version directory peer typically receives numerous
addVersion() messages from different crawler peers. It rec-
onciles these versions by referring to the versions table and
keeps the version which is consistent with the previous ones.

The directory peer updates the document version by call-
ing the updateVersion(url, timestamp, document) function.
The version table is then updated according to the version
selected and the version is finally written into the persistent
storage by using put(H(url, timestamp), document).

5.2 Updating the Index
When a directory peers wants to update the index, it

issues the lookupTerm(term, 〈did, tb, te〉) message, to re-
ceive the partition information from the indexing peer
that responsible for this. The partition boundaries tbegin
and tend which enclose timestamp are looked up from
IPT, and are subsequently sent to the directory peer.
The data blocks for these partitions are then fetched
via the get(H(term, tbegin, tend)) and updated with the
new entry 〈did, tb, te, tf〉. This is then written into
the storage layer using the put(H(term, tbegin, tend), obj)

where obj is the modified index list. Finally, a
updateIndex(term, 〈did, tb, te〉) message is sent to the in-
dexing peer, which updates the statistics in the IPT.

5.3 Updating the Indexing Layer
In order to keep the IPT in the storage and index lay-

ers synchronized, index peers issue a get(H(term)) message
to the storage layer at regular intervals. The fetched IPT
for the corresponding term is then synchronized, if needed,
with the current version stored at the indexing peer. Fi-
nally, the modified IPT object (obj) is written back into the
persistence layer by using put(H(term), obj).

5.4 Query Processing
In our setting any peer may issue a query of the form

Q = q1 . . . qn@t, where n is the number of keywords con-
tained in the content part of Q. To resolve this query, the
query initiator forwards it to an indexing peer, by sending
a processQuery(Q) message. When an indexing peer re-
ceives a processQuery() message, it extracts the keywords
qi, 1 ≤ i ≤ n, and routes the query to the responsible index-
ing peers. If a peer responsible for a term qi, 1 ≤ i ≤ n is
not online at the time of the lookup, the IPT can be fetched
by using the get(H(qi)) and the index partition for the time
component t is looked up. The storage peers are then con-
tacted for the corresponding index lists for the query terms
either directly from the IPT or by using the lookup function
get(H(qi, tbegin, tend)) where tbegin and tend are the partition
boundaries which enclose t. The index lists are then sent to
the query initiator which locally merges the index lists, and
ranks the results.

5.5 Node Join and Node Departure
Each overlay in EverLast demands a specific join and de-

parture protocol. The NodeJoin operation follows the con-
ventional DHT-based joining protocols, in which the node
sends a NodeJoin(nodeID, available space, role type)
message, where role type is either a storage, version
directory or an indexing peer. The corresponding overlay
proceeds with its own protocol for adding a new peer to
the overlay and provides the node with an overlay id as
a system-specific identifier. Node departure is similarly
invoked before a node intends to leave the overlay by issuing
a NodeDepart(overlay id, role type) message.

6. EXPERIMENTS
In this section we present a series of experiments demon-

strating the benefits of augmenting standard archive crawl-
ing with human-assisted crawling, and show how index par-
titioning improves the reconstructability of TTIX through
replication.

6.1 Human-assisted Crawling
While we are experimenting with the archive harvesting –

the process of capturing versions of a set of URLs – via
crawler peers, we provide some evidence to show the ef-
fectiveness of human-assisted crawling. We focus on the
achieved coverage of different versions of web pages over
time during the archive harvesting.

We are aiming at getting insight into the dynamics of
different types of web sites to draw some conclusions on the
potential coverage of our web archive. To this end, the most

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 2 3 4 5 6 7 8 9 10

V
er

si
on

 C
ov

er
ag

e

Crawler Delay/Page

Daily Crawler
Continuous Crawler

Figure 4: Version Coverage of Traditional Archival
Crawlers

important statistics are (i) how frequently do pages within
the site change, and (ii) how frequently do users access these
pages. This allows us to compute estimates of the fraction
of versions that would be covered by our system, given that
a certain fraction of users contribute to the system.

Unfortunately, no web site provides both an archive of its
different versions and a reasonably sized access log. There-
fore, we resort to reverse engineering the version trail of a
web site from an access log, namely the publicly available
log of the 1998 FIFA Soccer WorldCup [5] with more than
1.3 billion accesses in 88 days. Abstractly, such an access
log is a sequence of tuples (d, u, p, s, c), where, d is the date
and time of access, u is a unique identifier of the accessing
user (e.g., the IP address), p is the URL of the page, s is the
size of the returned information, and c is the return code.
Tuples in this sequence are ordered by date. We consider
only successful accesses, i.e., accesses with a return code of
200, and failed accesses that indicate that a page was perma-
nently dropped (with a return code of 404). Accesses with
a return code of 304 (“unchanged”) are mapped to the most
recent previous successful access, accesses with other return
codes are ignored.

We make the simplifying assumption that a new version
of a page p was uploaded to the site whenever the size in a
successful access to p is different from the previous successful
access to p in the log. This allows us to extract a sequence of
page versions from the access log. A failed access to a page
that has been successfully read before, ends the lifetime of
the current version of that page, without starting a new
version. We also account for partial accesses, i.e., accesses
where the client loaded only a prefix of the page, which are
marked as successful in the log.

After consolidation, we identified 1,343,563,889 accesses
to 560,569 distinct versions of 19,210 documents, made by
2,764,625 distinct users.

Archival Crawler. An archival crawler is designed to
access a web site completely while respecting the exclusion
directives and crawler-politeness requirements set by the site
administrator. Our experience with the Heritrix crawler
shows that this induces an average delay of 2-10 seconds
between two successive page requests. These crawlers can
be set up to harvest the archive of a web site, so as to run (i)
at regular intervals, or (ii) continuously – as soon as the cur-
rent crawl is completed, start another crawl. The duration
of a crawl clearly depends on the number of pages accessed,

but we make a simplifying assumption that it depends on
the number of pages active on the site at the beginning of the
crawl. Further, we also assume that within a single crawl the
same URL is not revisited. Results of our experiments over
the WorldCup web site of a daily and a continuous crawl, us-
ing per-page delays in the range of 2-10 seconds, are shown
in Figure 4. As these results show, even in the “best” possi-
ble configuration of running a crawler continuously, we can
capture only about 12%-20% of the versions!

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000

of

 A
cc

es
se

s/
D

oc
.

of Versions/Doc.

WorldCup
f(x)

Figure 5: Correlation between Page Dynamics and
Visits

Human-assisted Crawler. In contrast to the above
scenario, a human-assisted crawler simply piggy-backs the
archive harvesting on the regular browsing behavior at
crawler peers. Effectiveness of such an approach depends
on answers to the following two questions:

• Are highly dynamic pages, which have more versions,
also visited by more surfers?

• What fraction of surfers of a site need to be subscribed
as crawler peers in EverLast to ensure better version
coverage than an archival crawler?

The scatter-plot shown in Figure 5 addresses the first ques-
tion. The x-axis of the plot represents the dynamics of URLs
in the WorldCup web site, as number of versions per docu-
ment observed from the logs. The y-axis shows the absolute
number of accesses made to the same URL during the same
period. It is evident from the figure that higher dynamics of
a URL typically entails a higher access rate. Also, the Pear-
son’s rank coefficient between the number of accesses per
document and number of versions per document has a value
of 0.7 which represents a high degree of correlation between
them. Although there is a large-spread in the number of
accesses (y-axis), it is important to observe that the number
of accesses is significantly above the baseline – represented
by the line with gradient 1 in the graph.

To answer the second question, we randomly selected
a fraction of surfers and tagged them as human-assisted
crawlers subscribed with EverLast. All the documents and
versions visited by this subset of surfers are considered as the
harvested archive. We measured the fraction of documents
and versions that were thus harvested, for different fractions
of users participating in EverLast. Results are shown in Fig-
ure 6. As shown in the graph, we need less than 1% of surfers
to participate with EverLast in order to capture at least as

0

10

20

30

40

50

60

70

80

90

0,01 0,1 0,25 0,5 0,75 1 2 3 4 5

users participating in EverLast (in percent of all users)

p
e

rc
e

n
ta

g
e

 o
f

it
e

m
s

 c
o

v
e

re
d

Document Coverage

Version Coverage

Figure 6: Version Coverage from Human-assisted
Archiving in EverLast

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

R
ep

lic
at

io
n

Blowup

Greedy for Max-Min Replication

Figure 7: Greedy algorithm for Max-Min replication
problem

many versions as the best archival crawler assumed in our
setting – i.e., continuous crawling with mean delay of 2 sec-
onds per-page (leftmost point in x-axis of Figure 4). If 5%
of surfers participate, we are able to capture more than 40%
of the versions.

6.2 Partitioning Strategies
We used the Wikipedia version history to show the effect

of index partitioning. The time-travel index list consists
of version entries along with their validity time intervals.
The index list which we consider has all the document ver-
sions, which are nearly 14 million, ranging over a period of
five years. Index partitioning is done along the time axis
using our greedy algorithm, boosted by a randomized sim-
ulated annealing algorithm. The results are presented in
Figure 7. As expected, we observe that with increasing
index-size (x-axis), the amount of replication in the index
increases steadily, with up to 50% of index already repli-
cated due to partitioning. These results are encouraging
as they suggest a churn-resilient query processing strategy
that scans the neighboring partitions to provide most of the
relevant results.

Finally, notice that for a blowup of 2 in the index we get

values of around 45% replication, contrary to the expected
replication of around 100%. This happens because our repli-
cation mechanism is trying to also support efficient query
processing by materializing the large index lists into sub-
lists with smaller time-intervals. Additionally, there exist
documents that cannot be replicated because their lifetimes
are shorter from the time granularity assumed.

6.3 Distributed TTIX
We have experimented extensively with the time-travel

inverted indexing under Te-Ti partitioning in a centralized
setting. Note that we do not consider a top-k model of
processing time-travel queries. Therefore, during processing
a query we scan all the contents of the relevant partition of
the inverted list. This model is equivalent to the processing
model in EverLast, where partitions are accessed by looking
them up via the get(pk) interface of the persistence layer.
Thus, results from our earlier work are carried over in the
current setting as well. The interested reader is referred to
[10, 11, 13] for more details.

In this experiment, we focus on a single term-specific in-
verted list that is partitioned along its time-axis. One draw-
back of such a partitioning is that entries spanning across
partition boundaries are replicated, resulting in an overall
index-size blowup. As a result, even fine granularity parti-
tioning helps in reducing per-query index access cost, but
incurs high storage expenses. Extreme solutions, such as
not partitioning or partitioning at a very fine granularity,
are not practical since query processing becomes very expen-
sive. The partitioning strategies we developed in [10] trade-
off processing performance with storage overheads, and pro-
vide interesting results; with as low as 10% additional data
sent from persistence peers to indexing peer, the index-size
blowup can be reduced by an order of magnitude.

7. CONCLUSIONS
In this paper, we outlined the overall architecture of Ever-

Last aimed at addressing the challenges posed by the com-
plete life cycle of capturing, storing and querying of web
archives at large-scale. EverLast is designed over a loosely
coupled distributed framework, applicable for deployment
over P2P networks as well as data grids and small-scale
server networks. Current estimates show that the proposed
techniques of augmenting the standard archive crawler with
human-assisted crawlers improves the quality of archives in
terms of number of versions captured. The time-travel in-
dexing scheme has been shown to be efficient and versatile
for advanced queries over web archives.

8. REFERENCES
[1] Internet archive. http://archive.org.

[2] Swedish royal library: Kulturarw3 – long-term
preservation of electronic documents.
http://www.kb.se/kw3/ENG/.

[3] E. Adar, M. Dontcheva, J. Fogarty, and D. Weld.
Zoetrope: Interacting with the Ephemeral Web. In
Proc. of ACM UIST, 2008.

[4] Avishek Anand. Indexing partitioning techniques for
peer-to-peer web archival. Master’s thesis, Universität
des Saarlandes, FR Informatik, 2009.

[5] M. Arlitt and T. Jin. 1998 World Cup Site Access
Logs. http://www.acm.org/sigcomm/ITA/, 1998.

[6] William Y. Arms, Selcuk Aya, Pavel Dmitriev,
Blazej J. Kot, Ruth Mitchell, and Lucia Walle.
Building a research library for the history of the web.
In JCDL, 2006.

[7] R. A. Baeza-Yates, C. Castillo, F. Junqueira,
V. Plachouras, and F. Silvestri. Challenges on
distributed web retrieval. In Proc. of ICDE, 2007.

[8] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multiversion
b-tree. The VLDB Journal, 5(4), 1996.

[9] M. Bender, S. Michel, J. X. Parreira, and T. Crecelius.
P2p web search: Make it light, make it fly (demo). In
Proc. of CIDR, 2007.

[10] K. Berberich, S. Bedathur, T. Neumann, and
G. Weikum. A Time Machine for Text Search. In
Proc. of ACM SIGIR, 2007.

[11] K. Berberich, S. Bedathur, T. Neumann, and
G. Weikum. FluxCapacitor: Efficient Time-Travel
Text Search. In Proc. of VLDB, 2007.

[12] K. Berberich, S. Bedathur, and G. Weikum. Efficient
Time-travel on Versioned Text Collections. In Proc. of
GI-Fachtagung für Datenbanksysteme in Business,
Technologie und Web (BTW), 2007.

[13] K. Berberich, S. Bedathur, and G. Weikum. Tunable
Word-Level Index Compression for Versioned Corpora.
In Proc. of Workshop EIIR, 2008.

[14] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M.
Voelker. Totalrecall: System support for automated
availability management. In Proc. of ACM/USENIX
NSDI, 2004.

[15] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit,
H. Weatherspoon, M. F. Kaashoek, J. Kubiatowicz,
and R. Morris. Efficient Replica Maintenance for
Distributed Storage Systems. In Proc. of
ACM/USENIX NSDI, 2006.

[16] James Clifford, Curtis E. Dyreson, Tomás Isakowitz,
Christian S. Jensen, and Richard T. Snodgrass. On
the semantics of ”now” in databases. ACM Trans.
Database Syst., 22(2):171–214, 1997.

[17] P. Cudré-Mauroux, S. Agarwal, and K. Aberer.
Gridvine: An infrastructure for peer information
management. IEEE Internet Computing, 11(5), 2007.

[18] Heritrix Archival Crawler. http://crawler.archive.org/.

[19] E. Herder. Characterizations of User Web Revisit
Behavior. In Proc. of Workshop on Adaptivity and
User Modeling in Interactive Systems, 2005.

[20] P. Kalnis, W. S. Ng, B. C. Ooi, and K.-L. Tan.
Answering similarity queries in peer-to-peer networks.
Inf. Syst., 31(1), 2006.

[21] R. Kotla, M. Dahlin, and L. Alvisi. Safestore: A
durable and practical storage system. In USENIX
Annual Technical Conference, June 2007.

[22] D. Lomet, M. Hong, R. Nehme, and R. Zhang.
Transaction Time Indexing with Version Compression.
In Proc. of VLDB, 2008.

[23] D. Lomet and B. Salzberg. Access methods for
multiversion data. In Proc. of ACM SIGMOD, 1989.

[24] A. Ntoulas, J. Cho, and C. Olston. What’s New on
the Web?: The Evolution of the Web from a Search
Engine Perspective. In Proc. of WWW, 2004.

[25] J. X. Parreira, C. Castillo, D. Donato, S. Michel, and

G. Weikum. The JXP Method for Robust PageRank
Approximation in a Peer-to-Peer Web Search
Network. VLDB Journal, 17(2), 2008.

[26] I. Podnar, M. Rajman, T. Luu, F. Klemm, and
K. Aberer. Scalable peer-to-peer web retrieval with
highly discriminative keys. In Proc. of ICDE, 2007.

[27] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), 2001.

[28] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large-scale, persistent
peer-to-peer storage utility. In Proc. of SOSP, 2001.

[29] B. Salzberg and V. Tsotras. Comparison of Access
methods for Time-evolving Data. ACM Computing
Surveys, 31(2):158–221, 1999.

[30] V. Shkapenyuk and T. Suel. Design and
implementation of a high-performance distributed web
crawler. In Proc. of ICDE, 2001.

[31] A. Singh, M. Srivatsa, L. Liu, and T. Miller. Apoidea:
A decentralized peer-to-peer architecture for crawling
the world wide web. In Proc. of ACM SIGIR, 2003.

[32] I. Stoica, R.t Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In Proc. of
ACM SIGCOMM, 2001.

[33] Stephan Strodl, Florian Motlik, Kevin Stadler, and
Andreas Rauber. Personal & soho archiving. In JCDL,
2008.

[34] C. Tryfonopoulos, C. Zimmer, G. Weikum, and
M. Koubarakis. Architectural alternatives for
information filtering in structured overlays. IEEE
Internet Computing, 11(4), 2007.

[35] H. Weatherspoon, C. Wells, P. R. Eaton, B. Y. Zhao,
and J. D. Kubiatowicz. Silverback: A Global-Scale
Archival System. Technical Report
UCB//CSD-01-1139, U.C. Berkeley, 2000.

[36] The Size of the World Wide Web.
http://www.worldwidewebsize.com/, March 2008.

[37] C. Zimmer, S. Bedathur, and G. Weikum. Flood
Little, Cache More: Effective Result-reuse in P2P IR
Systems. In Proc. of DASFAA, 2008.

	Introduction
	Web Archiving - Today
	Web Archiving - The EverLast Approach
	An Application Scenario for Everlast
	Organization

	Related Work
	Time-travel: Model and Issues
	Data Model
	Query Model

	Architecture
	Crawlers
	Version Directory
	Time-Travel Index
	Persistence
	Query Processing

	Protocol Specifications
	Version Reconciliation and Document Version Updates
	Updating the Index
	Updating the Indexing Layer
	Query Processing
	Node Join and Node Departure

	Experiments
	Human-assisted Crawling
	Partitioning Strategies
	Distributed TTIX

	Conclusions
	References

