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A B S T R A C T
The availability of the sheer volume of Copernicus Sentinel-2 imagery has created new opportunities
for exploiting deep learning methods for land use land cover (LULC) image classification at large
scales. However, an extensive set of benchmark experiments is currently lacking, i.e. deep learning
models tested on the same dataset, with a common and consistent set of metrics, and in the same
hardware. In this work, we use the BigEarthNet Sentinel-2 multispectral dataset to benchmark for the
first time different state-of-the-art deep learning models for the multi-label, multi-class LULC image
classification problem, contributing with an exhaustive zoo of 60 trained models. Our benchmark
includes standard Convolution Neural Network architectures, as well as non-convolutional methods,
such as Multi-Layer Perceptrons and Vision Transformers. We put to the test EfficientNets and
Wide Residual Networks (WRN) architectures, and leverage classification accuracy, training time
and inference rate. Furthermore, we propose to use the EfficientNet framework for the compound
scaling of a lightweight WRN, by varying network depth, width, and input data resolution. Enhanced
with an Efficient Channel Attention mechanism, our scaled lightweight model emerged as the new
state-of-the-art. It achieves 4.5% higher averaged F-Score classification accuracy for all 19 LULC
classes compared to a standard ResNet50 baseline model, with an order of magnitude less trainable
parameters. We provide access to all trained models, along with our code for distributed training
on multiple GPU nodes. This model zoo of pre-trained encoders can be used for transfer learning
and rapid prototyping in different remote sensing tasks that use Sentinel-2 data, instead of exploiting
backbone models trained with data from a different domain, e.g., from ImageNet. We validate their
suitability for transfer learning in different datasets of diverse volumes. Our top-performing WRN
achieves state-of-the-art performance (71.1% F-Score) on the SEN12MS dataset while being exposed
to only a small fraction of the training dataset.

1. Introduction
The Copernicus program is believed to be a game

changer for Earth Observation (EO) science. Free and open
data available at this scale, frequency, and quality constitute
a fundamental paradigm change in EO (Koubarakis et al.,
2019). Today, Copernicus is producing 20 terabytes of
satellite data every day, however, the availability of the
sheer volume of Copernicus data outstrips our capacity to
extract meaningful information. Motivated by the success
of deep learning (DL) methods in various data-intensive
tasks e.g., in medicine (Esteva et al., 2019), self-driving
cars (Maqueda et al., 2018), image classification (Perez and
Wang, 2017), machine translation (Vaswani et al., 2018),
etc., the remote sensing community has been exploiting deep
learning methods to propel the research and development of
new applications at scale (Zhu et al., 2017).

One prominent application for remote sensing (RS)
imagery is land use / land cover (LULC) classification.
Research has focused on both pixel-based (Khatami et al.,
2016) and object-based (Qian et al., 2015) approaches.
LULC mapping scale may vary from high-resolution (Tong
et al., 2020) to global scale, e.g. the Copernicus Global Land
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Cover (Buchhorn et al., 2020). Machine learning (Talukdar
et al., 2020), and DL (Kussul et al., 2017) methods, in
particular, have been widely adopted by the community
to classify LULC, with some studies exploiting the multi-
temporal nature of satellite data, e.g. Ienco et al. (2017).
A particular problem family is multi-label LULC scene
categorization (Stivaktakis et al., 2019). The objective of
image scene classification and retrieval is to automatically
assign class labels to each RS image scene in an archive,
and differs from semantic segmentation tasks for LULC
mapping and classification. Adopting DL approaches for RS
image scene classification problems have shown excellent
performance (Lu et al., 2019).

However, DL leads to highly nonlinear, generally over-
parameterized models (Du et al., 2018) that are prone to
overfit. In order to use DL models that generalize well
for previously unseen test data, we need to train them
with large amounts of input labeled data. The data-hungry
nature of modern machine learning has thus been a barrier
for its widespread application in geosciences and RS. The
lack of curated datasets and pretrained models tailored
to RS data has prevented the use of traditional transfer
learning approaches for LULC image classification. There-
fore, researchers have used models pre-trained on optical
datasets (Sumbul et al., 2020), such as ImageNet (Deng et al.,
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2009), to facilitate the training of new RS models using
smaller labeled datasets. This kind of learned knowledge,
however, cannot fully transfer on such a different data
distribution. Features learned from optical datasets have
different characteristics from the ones found in multispectral
satellite imagery, therefore in principle, DL models should
be trained from scratch to encode this information.

In order to address the problem of the scarcity of labeled
data for training DL models for LULC image classifica-
tion, Sumbul et al. (2019) created and published BigEarth-
Net, a large, labeled dataset, which contains single-date
Sentinel-2 patches for multi-label, multi-class LULC scene
classification. BigEarthNet is a benchmark dataset that con-
sists of 590,326 Sentinel-2 image patches acquired between
June 2017 and May 2018 over the 10 European countries,
with spectral bands at 10, 20, and 60-meter resolution.
Each image patch is annotated by the multiple land-cover
classes (i.e., multi-labels) provided by the CORINE Land
Cover (CLC) database of the year 2018 (Copernicus, 2018)
based on its detailed Level-3 class nomenclature. In order
to increase the effectiveness of BigEarthNet, the authors
introduced an alternative class-nomenclature to better de-
scribe the complex spatial and spectral information content
of the Sentinel-2 imagery. The new classes nomenclature
consists of 19 LULC classes (Sumbul et al., 2020). Recently,
the dataset was enriched with Synthetic Aperture Radar
Sentinel-1 patches (Sumbul et al., 2021).

We identify three major gaps in LULC scene classifica-
tion with DL, which we address in our work. First is gap
is reproducibility, reusability and provenance of the trained
models. Currently, an extensive set of benchmark experi-
ments is lacking, i.e. DL models tested on the same dataset,
with a common and consistent set of metrics, and in the same
hardware. Published works on BigEarthNet (Section 2.1)
are fragmented, and in the absence of baseline studies, it is
difficult to appreciate which methods work best. Second is
the testing and reporting of results on new, state-of-the-art,
model architectures what have shown great promise in non-
RS, Computer Vision applications. Given the rapid growth
of DL research in this field, new families of approaches
have emerged, other than traditional Convolutional Neural
Networks (CNN), that is worth exploring in RS. Third is
accounting for training efficiency and inference time, in
addition to classification accuracy, as critical parameters that
define overall model performance. This is especially impor-
tant for training on large datasets, such as on BigEarthNet (∼
66Gb, ∼ 0.5 million image patches) or other similar training
datasets for LULC classification, e.g. Hong et al. (2021);
Helber et al. (2019). The sheer size of such datasets leads
to significant training time overheads, which becomes a
bottleneck for testing different model architectures and ideas.
Therefore, new methods for efficient training are required
to allow researching, engineering and fine-tuning novel DL
architectures, including ablation studies and hyperparameter
optimisation.

To address these gaps we rigorously benchmark DL
models using the BigEarthNet dataset, analyzing their over-
all performance under the light of both speed (training time
and inference rate) and model simplicity vis-à-vis LULC
image classification accuracy. We investigate standard archi-
tectures, such as CNNs, and test novel, non-convolutional
methods, such as Multi-Layer Perceptron (MLP) and Vision
Transformer (ViT). To the best of our knowledge, it is the
first time that ViT and MLP are used to encode multispectral
information for LULC, setting-up a challenging state-of-the-
art for future methods. ViTs in particular, are inherently data-
hungry. Compared to standard CNNs, the lack of inductive
bias renders their training from scratch a way more difficult
task, and are therefore difficult to be utilized in tasks with
small datasets. These models are typically pretrained in large
datasets and then finetuned for the task at hand (Dosovitskiy
et al., 2020; Steiner et al., 2021). Incorporating them in our
model zoo, we finally make them available for exploitation
in the remote sensing domain.

In addition, in order to address the requirement for
efficiency in training, we explore lightweight architectures
with very few parameters compared to typical CNNs. We
focus on the use and adaptation of the framework for scaling
EfficientNet (Tan and Le, 2019) encoders, and apply it to
the order of magnitude more lightweight Wide Residual
Network-WRN (Zagoruyko and Komodakis, 2016). Cou-
pled with an implementation for efficient distributed training
on 20 GPUs, we are able to experiment with several varia-
tions of such scalable models. Our benchmark identifies a
set of novel, efficient, models, which are on par or better
for most accuracy metrics with other published works, and
with considerably fewer trainable parameters and memory
requirements at both training and inference. The benchmark
concludes with a new WRN model, enhanced with a spatio-
spectral attention mechanism, which achieves the best over-
all performance and sets the new state-of-the-art (SOTA) for
LULC image classification on the BigEarthNet.

Our main contributions can be summarised as follows:
• We benchmark 60 DL models for the task of multi-

label, multi-class LULC single image classification.
• We provide a DL model zoo based on Sentinel-2 data.

The models and the implementation of our framework
can be found on the project’s github repository1. We
also provide the first pretrained Vision Transformer
and MLP-mixer networks for multispectral Sentinel-2
data.

• We design and scale a new family of models based
on Wide Residuals Networks (WRN) that follow the
EfficientNet paradigm for scaling. This is the first time
that WRN model compound scaling is applied in a
remote sensing context and our results show great
promise for performance enhancement in satellite im-
age classification tasks.

1https://github.com/Orion-AI-Lab/EfficientBigEarthNet
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• We provide the new SOTA on the BigEarthNet dataset
in terms of classification accuracy, training time, and
inference rate. Our champion model outperforms a
baseline ResNet50 model for all 19 LULC classes,
achieving 4.5% higher F-score, having an order of
magnitude less trainable parameters.

• We show that convolution-free and lightweight archi-
tectures (e.g MLPMixer) can have comparable perfor-
mance with their convolutional counterparts.

2. Related work
2.1. LULC scene classification with BigEarthNet

Recent works have used BigEarthNet to experiment and
test DL models for LULC scene classification. In Sumbul
and Demİr (2020), a multi-attention strategy that utilizes a
bidirectional long short-term memory network is adopted
to capture and exploit the spectral and spatial information
content of RS imagery. A new study by Koßmann et al.
(2021) proposes an oversampling method to cope with the
BigEarthNet LULC class imbalance, while in Aksoy et al.
(2021) the authors propose a consensual collaborative multi-
label learning method for harmonizing the BigEarthNet
labels. In Kakogeorgiou and Karantzalos (2021) the authors
use the DenseNet (Huang et al., 2017) model and test differ-
ent Explainable Artificial Intelligence methods to interpret
model predictions. Finally, in Chaudhuri et al. (2021) a deep
representation learning framework on fused BigEarthNet
spectral bands is proposed for the same task.

The BigEarthNet dataset has also been used for unsu-
pervised and/or weekly supervised tasks. In Sumbul et al.
(2021) a Deep Metric Learning framework is adopted, where
a triplet sampling method is proposed to learn quality fea-
ture representations towards content-based image retrieval.
In Wang et al. (2020), a U-Net (Ronneberger et al., 2015)
image classifier transferred to segmentation is trained with
weak labels, outperforming pixel-level algorithms. The au-
thors in Mañas et al. (2021) show that pre-training with con-
trastive learning on BigEarthNet outperforms ImageNet pre-
trained models for LULC scene classification, while in Sto-
jnic and Risojevic (2021) contrastive multiview coding is
adopted for self-supervised pretraining. Similarly, in Vin-
cenzi et al. (2021) colorization is proposed as a solid pretext
task before using BigEarthNet labels for the LULC scene
classification downstream task.
2.2. LULC scene classification with other datasets

The work of Maggiori et al. (2016) has been one of
the early works on LC classification with high-resolution
RS images using transferable deep models. Since then,
deep learning has been extensively used for LULC image
classification, in different setups and for various datasets.
SEN12MS by Schmitt et al. (2019) is a dataset consisting of
180,662 triplets of dual-pol synthetic aperture radar (SAR)
image patches, multispectral Sentinel-2 image patches, and
MODIS land cover maps as labels. EuroSAT (Helber et al.,
2019) is another single label LULC image classification

dataset, and is comprised of ten classes with a total of 27,000
labeled and geo-referenced Sentinel-2 multispectral images.
Finally, a typical dataset used for deep learning based LULC
high resolution RS scene classification is the well-known UC
Merced (UCM) dataset by Yang and Newsam (2010). The
UCM dataset consists of 21 different labeled classes, but
is relatively small in size, with only 100 images per class,
which must then be divided between training and validation
sets.

To address the challenge of few training samples for
DL, Scott et al. (2017) test a transfer learning with fine-
tuning approach and a data augmentation strategy tailored
specifically for remote sensing imagery for the UCM dataset.
Finding efficient data augmentations is also the focus of Sti-
vaktakis et al. (2019) for the same dataset. Gómez and Meoni
(2021) on the other hand, adopt a semisupervised learning
approach to deal with label scarcity, which is tested on both
the UCM and EuroSAT datasets. The approach is based
on a combination of weak and strong data augmentations
along with pseudolabeling. A semi-supervised processing
chain based on the appropriate selection of labeled samples
through a teacher model is proposed by Fan et al. (2020),
leveraging the availability of large amounts of unlabeled
very high-resolution RS ShenzhenLC city data, for urban
LULC image classification. The heterogeneous urban LC
types of the city of Southampton, UK and its surrounding
environment were used by Zhang et al. (2018), proposing
an MLP-CNN ensemble classifier for capturing deep spatial
feature representations spectral discriminative information,
for aerial imagery classification.

Chaib et al. (2017) use traditional CNN models for
feature extraction, while for the classification the authors
rely on Support Vector Machines. This simpler approach is
tested on the UCM dataset and the Aerial Image dataset (Xia
et al., 2017), a large-scale data set for aerial scene classifica-
tion with more than 10,000 aerial scene images, annotated
with 30 classes. Tong et al. (2020) setup the Gaofen Im-
age Dataset (GID), a large-scale LC annotated dataset with
Gaofen-2 (GF-2) satellite images. The authors exploit GID
to pretrain standard CNNs models that capture the contextual
information contained in different LC types, and propose
a domain adaptation strategy by creating and appropriately
selecting pseudolabels from a different target domain of
unlabeled high resolution RS images. The transferability
of their DL models is showcased on several datasets, in-
cluding Gaofen-2, Gaofen-1, Jilin-1, Ziyuan-3, Sentinel-2A,
and Google Earth platform data. High resolution RS data
are also used by Lee et al. (2020), who propose a spec-
tral domain transformation strategy on individual Landsat-
8 multi-temporal pixel data, for creating two-dimensional
matrices on which CNN models can be applied for LULC
classification.

Finally, Zhang et al. (2020) address the issue of input
image resolution, similarly to Efficient scaling, and develop
an approach to automatically design a pyramid-like scale
sequence that is fed to CNN models for aerial digital photog-
raphy LULC image classification. Learning multiscale deep
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representations was also proposed by Zhao and Du (2016)
for classifying RS images, an approach that was tested for
three custom very high resolution RS datasets.
2.3. EfficientNets in remote sensing

EfficientNet is a family of DL models that are scaled
to balance network depth, width, and input data resolution
to achieve an optimal performance-training time trade-off.
Before the EfficientNets came along, the most common way
to scale up CNNs was either by one of three dimensions:

• Depth (number of hidden layers) as in He et al. (2016):
although deeper networks tend to provide better image
classification accuracy, they are also more difficult
to train due to the well-known vanishing gradients
problem. Accuracy gains quickly diminish beyond a
certain depth.

• Width (number of channels/filters) as in Zagoruyko
and Komodakis (2016): while easier to train and able
to capture fine-grained features, they encounter diffi-
culties in capturing higher-level image content.

• Image resolution (image size) as in Huang et al.
(2019): enhanced resolution of the input imagery in
principle provides the CNN with more information.

EfficientNets on the other hand perform Compound Scaling,
i.e. scale simultaneously all three dimensions, depth, width,
and image resolution, while maintaining a balance between
all dimensions of the network.

In RS, EfficientNets have lately gained traction, however
in most cases they are used as a lightweight CNN backbone
without care on how to scale them for the problem at hand.
In Alhichri et al. (2021) for example, the authors engineer a
new CNN model that is based on the pretrained EfficientNet-
B3 scaled CNN, enhanced with an attention mechanism for
RS image classification. EfficientNet-B0 lightweight back-
bone with a recurrent attention module is employed for the
same problem in Liang and Wang (2021). EfficientNet-B0
and its deeper EfficientNet-B3 version are used in Bazi et al.
(2019) for fine-tuning pre-trained CNNs, while in Rahhal
et al. (2020) EfficientNet is used as a feature extractor cou-
pled with a set of Softmax classifiers for knowledge adapta-
tion across multiple RS sources. Semantic segmentation of
high-resolution RS images is addressed with an EfficientNet-
B1 model as lightweight network with attention modules
in Liu et al. (2020). An EfficientNet with a reduced number
of parameters but improved performance is proposed in Shao
et al. (2020) for mapping buildings damaged by a wide range
of disasters. In Gómez and Meoni (2021), the authors de-
ploy EfficientNet models for semi-supervised multi-spectral
scene classification with few labels. Finally, in Tian et al.
(2020) EfficientNet-B0 is used as a backbone, mixed with
an attention module, for RS object detection.

Model compound scaling with EfficientNets have been
sporadically adopted for addressing remote sensing appli-
cations. In Charoenchittang et al. (2021), the authors test
and report performance for five different scaled versions of

EfficientNet (B0-B4), to classify airport buildings within
Google Earth collected and annotated RGB imagery. Wu
et al. (2020) also use Google Earth imagery for an aircraft
type recognition task, and apply compound scaling for bal-
ancing network width, depth, and resolution and selecting
the best performing EfficientNet. In Zhao et al. (2020) the au-
thors use EffcientNet as a backbone feature encoder to their
network for delineating buildings and argue that employing
the compound scaling method allows the scaled model to
focus on more relevant regions with enhanced object details.
Similarly, Chen et al. (2022) scale an Efficient based model
for pavement defect detection and classification. They show
preference for the EfficientNetB4 model which although
has marginally lower detection accuracy with respect to the
EfficientNetB5 counterpart, the former has fewer trainable
parameters. Finally, Ye et al. (2022) use and scale Efficient-
Det Tan et al. (2020) that combines EfficientNet architecture
with a bi-directional feature pyramid network for object
detection in very high resolution satellite imagery.
2.4. Wide Residual Networks in remote sensing

WRNs have been used to a lesser extent than Efficient-
Nets to address remote sensing applications. They have been
mainly used as part of benchmark studies and compared with
traditional CNNs, e.g. as by Chen et al. (2020) for remote
sensing image classification. Similarly, Naushad et al. (2021)
show that a WRN encoder has superior performance than
other CNNs for LULC classification using the EuroSAT
dataset (Helber et al., 2019). A variant of WRN was also
used by Kang et al. (2021) as an encoder to construct
feature embeddings that are then passed onto the nodes of a
graph neural network for multi-label remote sensing image
classification.

More complex approaches that build on WRNs have also
been researched. Ben Hamida et al. (2018) test different 3-
D architectures for airborne image classification considering
the WRN trade-offs between network width versus depth.
Bai et al. (2018) adopt a modified WRN, with wider con-
volutional channels and fewer network layers, to identify
tsunami induced damages in build-up areas from Synthetic
Aperture Radar data. Diakogiannis et al. (2020) focus on
a semantic segmentation application, split into sequential
tasks and addressed with an hierarchical model. The authors
perform an ablation study that follows the WRN philoso-
phy for understanding the performance gains, considering
both model complexity and training convergence. Khurshid
et al. (2020) build on the WRN concept to propose a new
residual unit to limit diminishing feature reuse, as indicated
by Zagoruyko and Komodakis (2016). Finally, Md. Rafi
et al. (2019) work on hyperspectral image classification
and propose an attention transfer architecture for domain
adaptation between two WRNs.
2.5. Attention modules in remote sensing

Deep learning architectures that incorporate attention
modules have been widely used in remote sensing and have
shown to provide improvements for different applications,
e.g. for image classification, image segmentation, change
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detection, and object detection. The main variations include
spatial, temporal, channel, cross and self-attention networks,
while an overview of the main attention mechanism ap-
proaches used in RS is provided by Ghaffarian et al. (2021).

To cope with the large receptive fields of traditional
CNNs, Ding et al. (2020) propose a complex attention struc-
ture, that focuses on both low level features extracted from
the early layers of a CNN, and high level features extracted
from the late layers. The architecture is able to enrich the
semantic information of low-level features by embedding
local focus from high-level features and the algorithm is
applied for RS image segmentation. Similarly, Tang et al.
(2021) propose a spatial and channel attention consistent
model to capture both local and global features for RS image
classification. For the same task, Wang et al. (2019) design
a recurrent attention mechanism that is able to fit high-
level semantic and spatial features into simple represen-
tations, managing to accelerate the convergence rate and
improve the classification accuracy. Alhichri et al. (2021)
enhance the EfficientNet-B3 encoder with a variation of
the Squeeze-and-Excitation attention mechanism (Hu et al.,
2018), that we also test in our work, for RS image classifica-
tion. Squeeze-and-Excitation channel attention mechanism
is also applied by Tong et al. (2020) for the same problem,
using a different encoder. Zhao et al. (2020) propose two
simple spatial and channel attention modules, which are able
to reduce the impact of many small objects and complex
backgrounds on RS image classification.

Wang et al. (2019) focus on object detection for VHR
RS imagery, and develop an architecture comprising of
an encoder-decoder model that extracts features at multi-
ple scales, followed by a different, trainable, attention net-
work for each scale. A multi-scale approach is also adopted
by Chen and Shi (2020) for RS image change detection,
in which multiple spatial-temporal attention networks are
trained to capture such dependencies at various scales.

Self-attention approaches have gained traction in RS.
Cao et al. (2020) propose a spatial and channel nonpara-
metric self-attention layer, to enhance the semantic informa-
tion propagated from representative objects, for RS image
classification. A self-attention model is designed by Wu
et al. (2020) to reduce the interference of complex back-
grounds and to focus on the most salient region of each
image, also for RS image classification. Martini et al. (2021)
exploit Sentinel-2 time-series and develop a self-attention-
based network tailored for domain adaptation for LC and
crop classification in different geographic regions. Finally,
in contrast to self-attention approaches where the input is a
single embedding sequence, cross-attention combines asym-
metrically two separate embedding sequences of the same
dimension, e.g. as in Cai and Wei (2020) where the authors
develop a cross-attention mechanism for hyperspectral data
classification, showing improved performance on several
popular relevant RS data sets.

3. Models in the benchmark
In this section, we present the DL models that we deploy

and benchmark for LULC scene classification. These models
are tested by adapting and customizing state-of-the-art DL
architectures in Computer Vision, which have not yet been
evaluated in remote sensing for the particular task. Figure 1
summarises the workflow of the benchmark.
3.1. Vision transformer

Transformers (Vaswani et al., 2017) are a typical exam-
ple of an architecture that makes the most of attention mech-
anism. These architectures have been successfully deployed
in tasks concerning natural language processing (Devlin
et al., 2018). This success has driven the research community
to extend the traditional transformer architecture to com-
puter vision. Recently, transformers have been successfully
tested for hyperspectral image classification (Zhong et al.,
2021). The Vision Transformer (ViT) in Dosovitskiy et al.
(2020) processes images as follows. First, it splits the input
image in N non-overlapping patches, and each patch (token)
is linearly embedded. A class embedding is prepended to the
token sequence, while positional embeddings are added to
the patch embeddings to ensure positional information is not
lost.

In our implementation, we use a fully connected layer
for the encodings. The output of this process is the input to
a standard Transformer encoder. The classification is based
on the prepended class token or a global average pooling
of all tokens if the class token was not prepended (Arnab
et al., 2021). We examine 5 versions of the ViT architecture.
The first four are identical, and we simply vary the patch
size. These models will be referred to as ViT/PatchSize e.g
ViT/20. They consist of 8 transformer layers with 4 attention
heads. Additionally, we examine a ViT with 12 transformer
layers, 10 attention heads, and a patch size equal to 20. It will
be denoted as ViTM/20.
3.2. Multi-layer Perceptrons

Ever since the attention mechanism gained popularity,
multiple networks based on attention have emerged. Alter-
natives to this strategy have made their appearance though,
with the reemergence of simple MLP architectures as effi-
cient lightweight models. Recent work in Tolstikhin et al.
(2021) has shown that a plain architecture based on MLPs
can compete with complex CNN and Transformer architec-
tures. The MLP-Mixer (Tolstikhin et al., 2021) architecture,
for example, splits the input in K patches (tokens) and pro-
duces an embedding for each one of them. The embeddings
are then fed in ×𝑁 Mixer Layers. The final prediction is
produced by a simple classification head. Each Mixer Layer
consists of two blocks: the token-mixing MLP block and the
channel-mixing MLP block.

In this work, we build on top of the MLP-Mixer for the
fast training of lightweight models with high throughput. We
use two versions of the MLP-Mixer in particular. The base
version, which we call MLP-Mixer, uses patch size of 12,
a hidden dimension of 128 for the linear embeddings, and
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Figure 1: Workflow for the benchmark. There are five model families tested in the benchmark. For EfficientNets and Wide
Residual Networks we test variations with different attention modules and the addition of a Ghost module. We select the best
performing model from each of the two base architectures and scale them through compound scaling. EfficientNet and Wide
Residual Network architectures are explained in Figure 2 and Figure 4 respectively.
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Figure 2: Our EfficientNet base model architecture implemented in the benchmark. MBConv1 and MBConv6 blocks are explained
in Figure 3.

4 Mixer layers. Each layer uses channel MLP dimension of
200 and token MLP dimension of 64. The second version
called MLPMixerTiny uses a patch size of 6, embedding
hidden dimension of 30, and 2 Mixer Layers. The token MLP
dimension is set at 12 and the channel MLP dimension at 50.
Following 3.1, any MLPMixer variant with different patch
size will be referred as MLPMixer/PatchSize.
3.3. EfficientNet and WRN-based models

We deploy in our benchmark the original model in Tan
and Le (2019), which introduces a new baseline CNN ar-
chitecture called EfficientNet-B0. Based on MnasNet (Tan
et al., 2019), this baseline network uses the Inverted Residual
Block (MBConv Block), as in Howard et al. (2017), a type
of residual block used by several mobile-optimized CNNs
for efficiency reasons, with the addition of a Squeeze-and-
Excitation (SE) block (Hu et al., 2018).

Furthermore, we investigate the impact of yet another ef-
ficient CNN encoder, the WRN (Zagoruyko and Komodakis,
2016). Wide Residual Networks constitute an enhancement
to the original Deep Residual Networks. Instead of relying
on increasing the depth of a Residual Network to improve
its accuracy, it was demonstrated that a network could be
made shallower and broader without compromising its per-
formance. Prior to the introduction of WRNs, Deep residual
networks (e.g., ResNets) were shown to have a fractional
boost in performance, but at the cost of roughly doubling
the number of layers. This led to the problem of dimin-
ishing feature reuse (Srivastava et al., 2015) and overall
made the models slower to train. WRNs showed on popular
benchmark datasets that having a wider residual network,
by widening the ResNet blocks, leads to better performance
with respect to deeper counterparts. In Zagoruyko and Ko-
modakis (2016), the authors also show that gradually in-
creasing both depth and width helps until the number of
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Figure 3: The modules of MBConv1 and MBConv6 blocks used
in the architecture of Figure 2. With light blue, we mark the
position of the Attention mechanism, for which we substitute
the different attention modules as explained in Section 3.3.

parameters becomes too high and stronger regularization is
needed.

We design and deploy two different base models in this
benchmark. The first one uses EfficientNet-B0 as a back-
bone, enhanced with different attention mechanisms and a
ghost module that we introduce in this section. The model
architecture is presented in Figure 2. The second base model
uses WRN as a backbone and is also tested with different at-
tention mechanisms and with the addition of a ghost module.
As our baseline model we use the smallest WRN possible,
WRN-10-2, which denotes a residual network that has a
depth of 10 convolutional layers and a widening factor of
2. The architecture of the WRN-based family of models is
presented in Figure 4.
3.3.1. EfficientNet/WRN with ghost module

Inspired by the work in Han et al. (2020), we test the
effect of a Ghost module for our base architectures. This
refers to an essentially standalone replacement layer for
standard convolution layers in deep neural network archi-
tectures. In principle, this alternative convolutional layer
runs linear transformations on fewer feature maps and still
fully reveals information of the underlying intrinsic features.
The main functionality of the Ghost module we use is to
remove redundant copies of unique intrinsic feature maps
(Ghost Feature Maps) learned by different convolutional

layers in deep networks, so that we preserve the feature-rich
representations of the input image while avoiding redundant
convolution operations. In this benchmark, we use the suffix
−ghost to denote a model that uses a Ghost module in its
architecture.
3.3.2. EfficientNet/WRN with attention modules

While conventional CNNs extract features by fusing
spatial and channel information within local receptive fields,
attention mechanisms can enhance the important parts of
the input data either or both in the spatial and the spectral
domain. In our benchmark, we experiment with different
spatial and channel attention mechanisms for both Efficient-
Net and WRN based models. The exact position of the
attention mechanisms is shown in Figures 3 and 5 for the
two base architectures of Figures 2 and 4 respectively.

Firstly, we evaluate the Squeeze-and-Excitation Atten-
tion Module (SE), as in Hu et al. (2018), a channel attention
building block, facilitating dynamic channel-wise feature
recalibration via channel-wise dependency modeling. Given
the input features, the SE block first employs a 2D Global
Average Pooling (GAP) for each channel independently, then
two fully-connected layers with non-linearity followed by a
sigmoid function are used to generate channel weights. The
two fully-connected layers are designed to capture non-linear
cross-channel interactions, which involves dimensionality
reduction for controlling model complexity. Hereinafter, we
use the suffix −SE to denote a model that uses a Squeeze-
and-Excitation Attention module in its architecture.

Channel attention mechanisms, such as the SE, have
demonstrated promising results in the design of lightweight
mobile networks. Nevertheless, a fundamental shortcoming
of those mechanisms is that positional attention informa-
tion is neglected, which is critical for vision tasks. Later
works, such as the Convolutional Block Attention Module
(CBAM) Woo et al. (2018), attempt to exploit positional
information with little to no additional computational cost by
reducing the channel dimension of the input tensor and then
computing spatial attention using convolutions. CBAM con-
sists of two consecutive sub-modules, the Channel Attention
Module (CAM) and the Spatial Attention Module (SAM).
CAM is similar to the SE with a small modification. Instead
of reducing the Feature Maps to a single pixel by GAP,
it decomposes the input tensor into 2 subsequent vectors
of dimensionality (c × 1 × 1). One of these vectors is
generated by GAP while the other vector is generated by
Global Max Pooling (GMP). Average pooling is mainly used
for aggregating spatial information, whereas max pooling
preserves much richer contextual information in the form
of edges of the object within the image, which leads to
finer channel attention. The authors validate this in their
experiments where they show that using both GAP and GMP
gives better results than using just GAP as in the case of SE.
SAM, on the other hand, is a three-step sequential procedure.
The first phase is called the Channel Pool and it contains max
pooling and average pooling operations applied across the
channels to the input (c × h × w), to generate an output with
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Figure 4: Our WRN base model architecture implemented in the benchmark. The blocks of the architecture are explained in
Figure 5.
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Figure 5: The modules of the residual block used in the
architecture of Figure 4. With light blue, we mark the position
of the Attention mechanism, for which we substitute the
different attention modules as explained in Section 3.3.

shape (2× h×w). This is the input to a convolution layer that
outputs a 1-channel feature map (1 × h × w). After feeding
the output into a BatchNorm and an optional ReLU, the data
enter a Sigmoid Activation layer. Finally, the attention maps
produced by CAM and SAM are multiplied with the input
feature map for adaptive feature refinement. In this work,
we use the suffix −CBAM to denote a model that uses a
Convolutional Block Attention Module in its architecture.

CBAM adopts convolutions to capture local relations
but fails to model long-range dependencies. In order to deal
with this drawback, (Hou et al., 2021) proposed Coordi-
nate Attention (CA) module, a novel attention mechanism
which embeds positional information into channel attention
so that the network can focus on large important regions

at little computational cost. CA captures long-range spatial
dependencies while alleviating positional information loss,
caused by the 2D global pooling, by factorizing channel
attention into two parallel 1D feature encoding processes that
effectively integrate spatial coordinate information into the
generated attention maps. More precisely, the CA approach
uses two 1D global pooling operations to aggregate the input
features in the vertical and horizontal directions into two
separate direction-aware feature maps. These two feature
maps with embedded direction-specific information are then
independently encoded into two attention maps, each of
which captures long-range dependencies of the input feature
map along one spatial direction. As a result, the positional in-
formation can be preserved in the generated attention maps.
Both attention maps are then applied to the input feature
map via multiplication to emphasize the representations of
interest. We use the suffix −CA to denote a model that uses
a coordinate attention module in its architecture.

Although the strategy of dimensionality reduction for
controlling model complexity is widely used in the afore-
mentioned attention modules, Wang et al. (2020) claim
that dimensionality reduction has side effects on channel
attention prediction and it is inefficient and unnecessary to
capture dependencies across all channels. Therefore, they
propose the Efficient Channel Attention (ECA) module,
which avoids dimensionality reduction and captures cross-
channel interaction in an efficient way, so that both efficiency
and effectiveness are preserved. It first performs channel-
wise global average pooling and then captures channel at-
tention through a fast 1𝐷 convolution, whose kernel size is
adaptively determined by a non-linear mapping of the chan-
nel dimension. The ECA block models local cross-channel
interaction by considering every channel and its 𝑘 neighbors.
We use the suffix −ECA to denote a model that uses an
Efficient Channel Attention module in its architecture.
3.4. Method for scaling-up our EfficientNet and

WRN models designs
Our framework for scaling the base models of Figures 2

and 4, and their variants with the different attention mecha-
nisms and the ghost module, is the compound model scaling
method, as in Tan and Le (2019). It consists of a set of rules
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to scale the three dimensions of our model architectures,
depth, width, and input data resolution, using a compound
coefficient 𝜙. Through that coefficient, dimensions do scale
uniformly. 𝜙 represents how many more resources are avail-
able for the model to scale, while 𝛼, 𝛽, 𝛾 are parameters
that assign those extra resources to the dimensions of the
network:

𝑑𝑒𝑝𝑡ℎ 𝑑 = 𝑎𝜙

𝑤𝑖𝑑𝑡ℎ 𝑤 = 𝛽𝜙

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟 = 𝛾𝜙

𝑠.𝑡. 𝛼 ⋅ 𝛽2 ⋅ 𝛾2 ≈ 2
𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1, (1)

We start from a baseline EfficientNetB0 (Figure 2) and
WRNB0 (Figure 4) models and scale them in two steps:
first we determine the 𝛼, 𝛽, 𝑎𝑛𝑑𝛾 coefficients for our Effi-
cientNet and WRN base models. For EfficientNet we use
the same coefficients determined by grid-search and used
by the authors. For WRN on the other hand, we perform
a grid search to determine 𝛼, 𝛽, 𝑎𝑛𝑑𝛾 . At the same time,
inspired by Bello et al. (2021), we evaluate the effect of
width scaling prioritization over depth, in contrast to the
EfficientNet paradigm. It should be noted that due to the
rounding of the number of filters and the number of blocks,
some coefficients result in the same network. In such cases,
we kept the coefficients resulting in the lowest 𝛼 ⋅ 𝛽2 ⋅ 𝛾2
product, based on Eq. 1. We report the results of our grid
search for WRN in Table 1 and summarize the coefficients
used for scaling our EfficientNet and WRN base models in
Table 2. Second, we fix the aforementioned 𝛼, 𝛽, 𝑎𝑛𝑑𝛾 and
scale our baseline model by varying 𝜙, using Eq. 1. Our
baseline B0 models make use of 60×60 resolution images,
reaching up to 120×120 for our B7 models. Eight models
can be generated, from EfficientNetB0 up to EfficientNetB7.
Similarly, another eight WRN models can be generated,
from B0 to B7. To the best of our knowledge, we are the
first to use WRNs, enhance them with different attention
modules, and scale them using the EfficientNet paradigm.
3.5. K-Branch CNN

K-Branch CNN, is a variant of the attention based model
introduced by Sumbul and Demir (2019). Assuming that
different bands come with different spatial resolution, K-
Branch CNN processes the bands grouped by spatial reso-
lution in different branches. Each branch produces a local
descriptor for the respective spatial resolution. To classify
the input image, the respective descriptors are concatenated
and fed to a fully connected layer. We have adapted the
implementation provided by the authors to our framework
to conduct our experiments.
3.6. Traditional convolutional neural networks

In our study, we include three traditional convolutional
neural network families to serve as baselines i.e VGG,
ResNet and DenseNet. These architectures have been widely
used in both remote sensing e.g. (Sumbul et al., 2021;

𝛼 𝛽 𝛾 F-Score Training Time Model Size
(%) (hours.mins)

1.1 1.2 1.1 75.6 0.20 433,195
1.2 1.1 1.1 75.2 0.21 373,367
1.2 1.3 1.1 75.5 0.22 520,091
1.3 1.1 1.1 75.1 0.23 410,471
1.4 1.1 1.1 74.8 0.24 447,114
1.1 1.2 1.2 74.6 0.22 433,195
1.2 1.1 1.2 74.2 0.23 373,367
1.1 1.2 1.3 74.4 0.23 433,195
1.2 1.1 1.3 74.0 0.23 373,367

Table 1
Grid-search used to determine the optimum compound scaling
coefficients 𝛼, 𝛽, 𝛾, which are later used for scaling our WRN
model.

Model 𝛼 𝛽 𝛾
EfficientNet 1.2 1.1 1.1

WRN 1.1 1.2 1.1

Table 2
Compound scaling coefficients 𝛼, 𝛽, 𝛾 determined by grid-search
and used for scaling our EfficientNet and WRN models.

Helber et al., 2019; Kakogeorgiou and Karantzalos, 2021)
and computer vision applications. We briefly discuss the
core ideas in the following subsections.
3.6.1. VGG

VGG (Simonyan and Zisserman, 2015) is one of the
reference convolutional neural networks. It received the first
and second place in the ImageNet challenge 2014 in the lo-
calization and localization tracks respectively. It is designed
to use small 3x3 convolutional filters, while increasing the
depth of the neural network.
3.6.2. Residual Neural Network

Residual Neural Networks (He et al., 2016) have been
the golden standard in multiple tasks for a long time. They
introduced skip-connection blocks that enabled the training
of very deep neural networks, up to 8x deeper than VGG and
showed that increased depth can lead to considerable boost
in accuracy, earning the first place in the classification track
of the ImageNet challenge 2015.
3.6.3. Dense Convolutional Neural Network

In a similar fashion as ResNets, DenseNet (Huang et al.,
2017) proposes to connect all layers directly instead of single
skip connections. To achieve that, each layer receives as
inputs the concatenated features of all preceding layers. A
composition of such densely connected blocks with transi-
tion layers that perform downsampling (including pooling
and convolutions) results to the Dense Convolutional Neural
Network.
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4. Experiments
4.1. Dataset and experimental setup

We use the BigEarthNet pre-defined splits as in Sumbul
et al. (2021) to train, test, and validate our models, based
on the 19 land use classes nomenclature. This corresponds
to 295,118 (33 GB), 147,559 (17 GB) and 147,559 (17 GB)
Sentinel-2 image patches respectively. In addition to the 10𝑡ℎ
spectral band of Sentinel-2, which was also excluded in the
original BigEarthNet implementation, we also excluded the
1𝑠𝑡 and 9𝑡ℎ spectral bands as they do not contain information
regarding the Earth’s surface.

We benchmark five model families in this work. First, we
test traditional CNN models, including ResNets, DenseNets,
and VGG. We then proceed to test the non-convolutional
MLP models (Section 3.2). We use two versions of the
MLPMixer (Tolstikhin et al., 2021), which we refer to
as “MLPMixer” and “MLPMixerTiny”, with 446,723 and
40,863 trainable parameters respectively. Transformer net-
works ViT (Dosovitskiy et al., 2020) are also trained and
reported in our models zoo (Section 3.1). We then bench-
mark EfficientNetB0 baseline network (Tan and Le, 2019)
and test the impact of the attention mechanisms (squeeze and
excitation, efficient channel attention, coordinate attention
and convolutional block attention module) and variations
with and without a ghost module, as described in Section 3.3.
A total of eight models is produced. Finally, we repeat
the same set of experiments for WRNB0 baseline network
and its variations. A total of ten models is produced, two
more compared to EfficientNetB0, since the latter already
contains the squeeze and excitation attention module in its
baseline architecture. Based on these experiments, we select
the best performing EfficientNetB0 and WRNB0 variation,
considering both classification accuracy and training time
metrics. These models are subsequently scaled-up from
B0 up to B7 using the compound scaling methodology
described in Section 3.4.

Given the computing resources available at the HPC
infrastructure and depending on the model size, batch size
varies between 32 and 256 and the learning rate varies
between 0.00001 and 0.001 with a step decay at epochs
24 or 27. We train all models for a total of 30 epochs
using the Adam optimizer. The learning rate is scaled by the
number of workers in each run. The weights are initialized
randomly. We select to minimize the Binary Cross Entropy
loss function.
4.2. Evaluation metrics

In supervised learning, for a multi-class problem, differ-
ent methods are used to evaluate the generalization perfor-
mance of a model, such as Accuracy and Area Under the
Receiver Operating Characteristic (ROC) curve. In a multi-
label setting, which is a generalization of multi-class clas-
sification, evaluating performance is more complicated than
single-label classification problems, due to the simultaneous
presence of multiple labels in the scene. Several problem
transformation methods exist for multi-label classification.
We adopt the binary relevance method (Read et al., 2011),

which entails training distinct binary classifiers, one for each
label. Each node in the output layer of our networks uses the
sigmoid activation, so that a probability of class membership
for the label is predicted. The results of each test sample can
be assigned to one of the four categories:

• True Positive (TP) - the label is positive and the
prediction is also positive

• True Negative (TN) - the label is negative and the
prediction is also negative

• False Positive (FP) - the label is negative but the
prediction is positive

• False Negative (FN) - the label is positive but the
prediction is negative

Here we define a set D of N examples and 𝑌𝑖 to be a
family of ground truth label sets and 𝑃𝑖 = ℎ

(

𝑥𝑖
) to be

a family of predicted label set. Following the formulation
in Zhang and Zhou (2014), the union set of all unique labels
is:

𝐿 =
𝑁−1
⋃

𝑖=0
𝐿𝑖 (2)

While the definition of indicator function 𝐼𝐴 on a set A
is presented as:

𝐼𝐴(𝑥) =

{

1 if 𝑥 ∈ 𝐴
0 otherwise (3)

Micro Precision (precision averaged over all label pairs)
is defined as:

𝑃𝑟𝑚𝑖𝑐𝑟𝑜 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

∑𝑁−1
𝑖=0

|

|

𝑃𝑖 ∩ 𝐿𝑖
|

|

∑𝑁−1
𝑖=0

|

|

𝑃𝑖 ∩ 𝐿𝑖
|

|

+
∑𝑁−1

𝑖=0
|

|

𝑃𝑖 − 𝐿𝑖
|

|(4)
Micro Recall (recall averaged over all the label pairs) is

defined as:

𝑅𝑚𝑖𝑐𝑟𝑜 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

∑𝑁−1
𝑖=0

|

|

𝑃𝑖 ∩ 𝐿𝑖
|

|

∑𝑁−1
𝑖=0

|

|

𝑃𝑖 ∩ 𝐿𝑖
|

|

+
∑𝑁−1

𝑖=0
|

|

𝐿𝑖 − 𝑃𝑖
|

|(5)
Micro F Measure by label is the harmonic mean between

Micro Precision and Micro Recall.
𝐹𝑚𝑖𝑐𝑟𝑜 = 2 ⋅ 𝑇𝑃

2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

= 2⋅
∑𝑁−1

𝑖=0
|

|

𝑃𝑖 ∩ 𝐿𝑖
|

|

2 ⋅
∑𝑁−1

𝑖=0
|

|

𝑃𝑖 ∩ 𝐿𝑖
|

|

+
∑𝑁−1

𝑖=0
|

|

𝐿𝑖 − 𝑃𝑖
|

|

+
∑𝑁−1

𝑖=0
|

|

𝑃𝑖 − 𝐿𝑖
|

|(6)
We use in this benchmark the Micro set of metrics

(Eq. 4, 5, 6) for optimisation, hyperparameter tuning and
reporting the results on the test set in Table 3.
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4.3. Benchmark implementation
We provide a framework, built upon and extending the

implementation in Sumbul et al. (2020), for efficient dis-
tributed training in TensorFlow API2 (Abadi et al., 2016).
We use Horovod (Sergeev and Balso, 2018), which is a
high-level API that sits on top of TensorFlow for training
on multiple nodes and GPUs. In Sergeev and Balso (2018),
it is argued that Horovod optimally utilizes the available
network to take full advantage of hardware resources, there-
fore one could gain better performance than using a pure
Distributed TensorFlow implementation. Hence, we publish
on our github repository the distributed implementation of
the deep neural networks pipelines created for this work,
along with the pretrained weights to facilitate uptake of novel
transfer learning applications based on Sentinel-2 data.

We conducted our experiments on Aris High Perfor-
mance Computing (HPC) infrastructure, and used 10 nodes
with 2 GPU-NVIDIA Tesla K40 each. In our experiments,
we focus on two directions: speed and classification accu-
racy. We examine how fast we can train quality classifiers,
how fast we can classify new samples at inference, and
finally, how well our classifiers perform. The metrics sys-
tematically recorded are i) training time (hours and minutes),
ii) inference rate (images per second), iii) Precision (Eq. 4),
iv) Recall (Eq. 5), v) Accuracy, and vi) F-Score (Eq. 6).
4.4. Results

We report the benchmark results in Table 3 for the eight
CNN, two MLP, six ViT, eight EfficientNet-based and ten
WRN-based models. In addition, we show in Figure 6 the
models’ performance as a function of the F-score metric
(Eq. 6) to capture the classification accuracy, the training
time to capture the efficiency of the network, and the total
number of trainable parameters. For completeness, we in-
clude in Table 4 the metrics from the original BigEarthNet
paper (Sumbul et al., 2020) for the CNN architectures tested.

According to Table 3, the two best performing models
are EfficientNetB0-ECA and WRNB0-ECA. Together with
a vanilla EfficientNetB0 model as it is available from Keras,
we scale them from B0 to B7 using the compound scaling
method (Section 3.4). The main difference between our
EfficientNet-SE implementation and the EfficientNet-Keras
one is the use of the reduction ratio (r) within the Squeeze
and Excitation module. We use the reduction ratio suggested
by the SE paper authors in Hu et al. (2018), instead of the one
suggested by the original EfficientNet paper authors (Tan
and Le, 2019). We present the model scaling results in
Table 5.

5. Discussion
5.1. Trade-offs in the benchmark

Training times vary considerably for the traditional CNN
family of models, ranging from ∼50 minutes to over two
hours, while F-score varies within a 2% interval. Overall
VGG prevails. VGG19 achieves the highest accuracy, trained
in 57 minutes, while VGG16 is the fastest to train (49
minutes), even though it has more parameters than some

of its CNN counterparts, e.g. DenseNet169. At inference
though, the fewer the overall parameters, the higher the
processed images per second rate, and here DenseNet121
performs best. The CNN model results of Table 3 match well
with the metrics reported in Sumbul et al. (2020) (Table 4).
Furthermore, we train a ResNet50 model on only 1 GPU-
NVIDIA Tesla K40, in order to appreciate the improvement
in training time with our distributed learning implementation
(Section 4.3). Rows 1 and 2 in Table 3 highlight the 13.5×
speedup with our implementation. Moreover, we evaluate
the impact, the Ghost module has on the ResNet50 model.
We notice a 50% decrease of the model parameters and
therefore an improvement inference rate, accompanied by an
almost 8% increase in the training time, as well as a 3% drop
of the F-score, compared to the ResNet50 model. Our results
for the ResNet50-GHOST model, match well with the results
reported by Han et al. (2020).

The MLPmixer-based models are very efficient in train-
ing and inference, but are slightly below average in clas-
sification accuracy. In practice, these models can achieve
performance similar to the more heavyweight CNN models,
with significantly less parameters, from as little as 40 thou-
sand parameters. Large CNN models, such as ResNet152
and DenseNet201, achieve almost the same accuracy as
MLPmixer, but use around 58 and 18 million parameters
respectively. Such a large model capacity has negative ef-
fects to both training time and memory usage. MLPMixer
presents a good balance between training time and overall
accuracy, with just under half a million trainable parameters.

On the other hand, our MLPMixerTiny model has the
fewest trainable parameters, for example, three orders of
magnitude less compared with ResNet101, and is trained for
30 epochs in just eight minutes, which is the fastest time in
the benchmark. This is a 6× improvement with respect to the
fastest traditional CNN model, VGG16, and a 17× improve-
ment with respect to the the slowest to train CNN model,
ResNet152. This comes at the expense of accuracy though:
with 71.6% F-score, MLPMixerTiny is at the bottom of the
list, hence in this case there is a trade-off between super-fast
training time versus a drop in classification accuracy, as one
would expect.

This trade-off does not apply to ViT, EfficientNets and
WRNs models, for different reasons. Interestingly, ViT/6
produces the lowest accuracy and is also the most difficult
to train. It experiences the worse overall performance (accu-
racy and training time) in the study. Examining the effect
of the patch size, we show that very small values have a
negative effect on the performance of the model. Patch size
of 20 produces the best results with ViT/20 achieving 77.1%
F-Score, while retaining the training time under half an hour.
This is matching the accuracy of the best CNNs, but the
model is trained faster. A similar effect is observed for the
MLP-Mixer. Our base version with patch size equal to 12
produces the best F-Score while maintaining a good training
time. Increasing the patch size too much significantly hurts
the performance of MLP-Mixer with no considerable gain
in training speed. The effect of patch size is summarized in
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Model
Accuracy Precision Recall F-Score Training Time Inference Rate Model Size

(%) (%) (%) (%) (hours.mins) (imgs/sec)

ResNet501𝐺𝑃𝑈 61.8 78.1 74.8 76.4 13.22 345 23,648,595
ResNet50 62.4 78.8 75.0 76.8 0.59 351 23,648,595

ResNet50-GHOST 58.4 75.2 72.4 73.8 1.04 403 11,930,387
ResNet101 61.7 78.8 74.0 76.3 1.38 268 42,719,059
ResNet152 60.8 76.2 75.0 75.6 2.19 203 58,431,827

DenseNet121 62.3 79.2 74.5 76.8 0.50 407 7,078,931
DenseNet169 61.1 77.7 74.1 75.9 1.01 370 12,696,467
DenseNet201 60.8 78.1 73.3 75.6 1.17 325 18,380,435

VGG16 63 81.4 73.6 77.3 0.49 242 14,728,467
VGG19 63.6 81.7 74.2 77.7 0.57 218 20,038,163

K-Branch 47.3 63.4 65.1 64.2 1.01 510 36,979,027
MLPMixer/6 57.8 76.1 70.6 73.2 0.17 654 468,083
MLPMixer 60.3 79.1 71.8 75.2 0.12 807 446,723

MLPMixer/20 58 78.1 69.4 73.4 0.10 780 740,355
MLPMixer/30 53.5 77.1 63.6 69.7 0.11 845 1,369,715
MLPMixer/40 49.6 75.1 59.4 66.3 0.12 823 2,261,991
MLPMixerTiny 55.7 77.5 66.5 71.6 0.08 911 40,863

ViT/6 54.1 76.8 64.6 70.2 2.33 241 55,237,395
ViT/12 61.3 80.7 71.9 76 0.36 668 15,984,915
ViT/20 62.1 80.5 73.1 76.6 0.23 720 7,760,147
ViT/30 61.6 80.1 72.7 76.2 0.20 704 5,458,707
ViT/40 60.4 80.1 71 75.3 0.19 691 4,989,203

ViTM/20 62.7 80.6 73.8 77.1 0.29 586 9,286,419

EfficientNetB0-SE 61.4 79.6 72.8 76.1 0.15 640 4,411,251
EfficientNetB0-SE-GHOST 60.7 80.2 71.4 75.5 0.16 602 3,053,251

EfficientNetB0-CBAM 61.5 79.9 72.7 76.1 0.17 501 4,412,819
EfficientNetB0-CBAM-GHOST 61.0 80.5 71.7 75.8 0.18 471 3,054,819

EfficientNetB0-COORD 61.2 79.3 72.8 75.9 0.18 604 4,191,967
EfficientNetB0-COORD-GHOST 61.3 80.0 72.4 76.0 0.19 509 2,833,967

EfficientNetB0-ECA 61.4 79.6 72.9 76.1 0.14 651 3,461,663
EfficientNetB0-ECA-GHOST 61.4 80.4 72.1 76.0 0.15 611 2,103,663

WRNB0 56.5 80.0 65.9 72.2 0.10 807 306,803
WRNB0-GHOST 54.9 79.5 64.0 70.9 0.11 845 157,619

WRNB0-SE 61.5 81.1 71.8 76.2 0.11 751 309,729
WRNB0-SE-GHOST 59.6 80.8 69.5 74.7 0.12 808 160,545

WRNB0-CBAM 60.6 80.2 71.3 75.5 0.13 639 310,023
WRNB0-CBAM-GHOST 59.9 80.0 70.5 74.9 0.12 670 160,839

WRNB0-COORD 59.8 80.9 69.6 74.8 0.18 588 312,747
WRNB0-COORD-GHOST 58.3 80.4 68.0 73.7 0.19 655 163,563

WRNB0-ECA 61.7 81.5 71.8 76.3 0.11 823 306,817
WRNB0-ECA-GHOST 59.7 80.7 69.7 74.8 0.12 851 157,633

Table 3
Results of the benchmark, conducted with the distributed learning framework, for the eight CNN, two MLP, six transformer, eight
EfficientNet-based, and ten WRN-based models. ResNet501𝐺𝑃𝑈 metrics correspond to the ResNet50 model when trained in one
GPU only. For each model family, we highlight in bold the best metric achieved, concerning F-Score, training time, and inference
rate. EfficientNetB0-ECA and WRNB0-EC, in bold, are the two best performing models in the benchmark, which we select to
scale through compound scaling (Section 3.4).

Figure 7 for both architectures vis-à-vis F-Score and training
time.

EfficientNets and even more WRNs model families,
exhibit the best overall performance considering the trade-
offs between training time, F-score, and inference rate. This

happens even for the non-scaled, simpler B0 models. Both
EfficientNet and WRN models share four common char-
acteristics: i) they achieve 4× to 10× faster training times
compared to CNNs, ii) the inclusion of the Ghost module de-
teriorates their performance mainly in terms of classification
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Figure 6: Performance vs training time trade-off for the different models evaluated. All models of Table 3 are included, plus our
best performing model of Table 5: WRN-B4-ECA. The size of the bubbles is proportional to the size of the model. Training time
is estimated on a cluster of 20 Tesla K40 GPUs.

Model Precision Recall F-Score
ResNet50 81.39 77.44 77.11
ResNet101 80.18 77.45 76.49
ResNet152 81.72 76.24 76.53

VGG16 81.05 75.85 76.01
VGG19 79.87 76.71 75.96

Table 4
Model metrics reported by the original BigEarthNet pa-
per (Sumbul et al., 2020). Metrics match relatively well with
our implementations presented in Table 3. Our VGG based
model results are slightly better and our ResNet-based model
results are slightly worse.

accuracy, in contrast to the author claims, while reducing
the models’ size by ∼35% and ∼50% for EfficientNets and
WRNs respectively. iii) even though including the Ghost
module significantly reduces the models’ size, those models
require a fraction of additional time to train compared to the
models without the Ghost module. This is because the Ghost
module implementation is more suitable for ARM/CPUs
and is not GPU-friendly due to the Depthwise Convolution
operations, and therefore is more appropriate to deploy in
mobile devices and other devices with limited resources.
For these reasons, we believe that the Ghost versions of

Figure 7: Ablation on the effect of patch size on model’s
performance in regards to F-Score and training time for both
MLPMixer and Vision Transformer.

our models are a promising candidate for Inference-at-the-
Edge use cases. Finally, iv) the ECA attention module pro-
vides the best overall results for F-score and training time.
WRNs in particular perform best (Figure 6 and Table 3),
considering the fact that they have one order of magnitude
fewer parameters with respect to EfficientNets. This does not
come at the expense of classification accuracy and on the
contrary, it is directly translated to better inference times.
Finally, it is noteworthy that classification accuracy variance
is negligible for the variants of EfficientNet based models
(Figure 6), while this does not apply to WRN variants.
The attention mechanism in WRN affects their performance
significantly.
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Model size Model Precision (%) Recall (%) F-Score (%) Training Time (h.mm)
WRN-B0-ECA 306,817 81.5 71.8 76.3 0.11

EfNetB0-ECA 3,461,663 79.6 72.9 76.1 0.14
EfNetB0-Keras 4,075,940 75.6 70.9 73.1 0.34
WRN-B1-ECA 373,381 81.8 72.5 76.9 0.12

EfNetB1-ECA 5,511,623 81.1 73.2 77.0 0.19
EfNetB1-Keras 6,601,608 75.9 71.4 73.6 0.49
WRN-B2-ECA 433,209 82.2 73.1 77.4 0.19

EfNetB2-ECA 6,503,649 81.3 73.8 77.3 0.27
EfNetB2-Keras 7,797,370 75.0 70.6 72.7 0.51
WRN-B3-ECA 590,333 82.4 74.4 78.2 0.23
EfNetB3-ECA 8,981,821 81.7 74.0 77.7 0.36
EfNetB3-Keras 10,815,272 76.4 71.7 74.0 1.03
WRN-B4-ECA 985,961 82.4 75.5 78.8 0.34
EfNetB4-ECA 14,630,489 81.7 73.7 77.5 1.00
EfNetB4-Keras 17,710,928 73.9 72.7 73.3 1.22
WRN-B5-ECA 5,166,299 82.0 76.1 79.0 2.46

EfNetB5-ECA 23,454,139 80.6 73.9 77.1 1.37
EfNetB5-Keras 28,555,496 78.4 74.2 76.2 1.55
WRN-B6-ECA 7,281,895 82.1 75.1 78.5 3.50

EfNetB6-ECA 33,591,965 81.3 74.0 77.4 2.17
EfNetB6-Keras 41,007,480 75.0 72.2 73.6 2.26
WRN-B7-ECA 14,068,791 79.6 73.5 76.4 7.50
EfNetB7-ECA 52,340,949 81.6 71.4 76.1 4.09
EfNetB7-Keras 64,150,392 78.9 73.5 76.1 4.45

Table 5
Scaling and training: i) our best performing model: WRNB0-ECA in this table, ii) our EfficientNetB0-ECA (here EfNetB0-ECA)
according to Table 3, and iii) a vanilla EfficientNetB0-Keras (here EfNetB0-Keras) architecture as available from Keras.

5.2. The new SOTA for BigEarthNet
EfficientNetB0-ECA and WRNB0-ECA models (Ta-

ble 3) are scaled through compound scaling and the results
are reported in Table 5. According to Table 5, we select our
top model to be WRN-B4-ECA with an F-score of 78.8%
trained in 34 minutes and processing 381.0 images/sec at
inference. According to our literature review, this is the
new SOTA for the BigEarthNet dataset. Although WRN-
B5-ECA reaches an F-score of 79.0%, the 0.2% gain is not
enough to justify the 5× training time and model parameters.
In fact, we observe that for WRN-B6-ECA and WRN-B7-
ECA models, F-score drops, hinting at overfitting. Addi-
tional training data would be needed to estimate the weights
for these larger models.

The best model in terms of classification accuracy,
trained in the original BigEarthNet paper (Sumbul et al.,
2020) is ResNet50 with approximately 23 million param-
eters. In that work, the authors achieved an image clas-
sification F-score of 77.11% (Table 4), while with our
setup we reached 76.8% and trained it in almost one hour
(Table 3). On the other hand, our lighter WRN-B4-ECA
model with one million parameters only manages an F-
score of 78.8%, and is trained on the same data splits in 34
minutes, which constitutes a significant improvement. This
is visually highlighted in Figure 6. We further investigate
this improvement by looking into the metrics for each one
of the 19 classes that exist in the dataset. These are shown

in Table 6 for the baseline ResNet50 model, vis-à-vis our
WRN-B4-ECA model. For every single class, our model
outperforms the baseline. For some classes the difference
is remarkable, for example, class ‘permanent crops’ is better
resolved with an F-score jump from 52% to 65.6%. Similar
improvement jumps are noted for ‘transitional woodland-
shrub’ and ‘coastal water’ classes. Overall, the averaged
metrics in the last line of Table 6, which correspond to Macro
F-score instead of the Micro F-score measures in Equation 6,
show an increase by almost 4.47% when using our lighter
model.
5.3. Examination of the effect of input resolution

on our SOTA model
Following the designation of our WRN-B4-ECA model

as the new SOTA for BigEarthNet, we investigate whether
we could benefit in terms of performance by altering the
input image resolution. The default input resolution used by
our WRN-B4-ECA model is 90×90, while it ranges during
the course of our scaling experiments from 60×60, up to
120×120. The impact of the different input image resolutions
are summarized in Figure 8. Our investigation demonstrates
that the default input resolution used by the WRN-B4-ECA
model is ideal and results in the highest performance among
all the other variants.
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Figure 8: The effect of various input resolutions on the
performance of our WRN-B4-ECA model.

5.4. Examination of the effect of input channels
Motivated by the introduction of the SAR modality

(Sentinel-1) in the second version of BigEarthNet dataset
(Sumbul et al., 2021), we investigate whether the extra
information provided by the SAR images and the different
multispectral channels of Sentinel-2 are actually beneficial
for the task at hand. Our investigation revolves around four
diverse architectures, i.e. ViT, ResNet50, MLPMixer and
our best performing model WRN-B4-ECA. We define the
following settings for our experiments. First, we experiment
with inputs consisting solely of the RGB channels. We then
augment our input by introducing the NIR band and train
with 4-channel inputs. Since we have already conducted the
experiments with all multispectral (B02-B12) channels, we
proceed with the introduction of the Sentinel-1 modality
resulting in a 12-channel input. The results of this ablation
are summarized in Figure 9. From our experiments, it is
clear that the multispectral information is very beneficial for
the task of land use land cover classification. This finding,
emphasizes our initial intuition that the restriction on the
input channels (RGB) induced by models pretrained on
ImageNet results in loss in information.

On the other hand, Sentinel-1 data do not seem to con-
tribute much for this task. This could be attributed to the
nature of the dataset. BigEarthNet is focused on frames with
minimum cloud coverage. SAR data could prove to be really
helpful in scenarios of high cloud coverage, since the radar
microwave frequencies can penetrate clouds providing some
backscatter information, as opposed to optical data that are
completely obscured by clouds.

Finally, these experiments emphasize the superiority
of our proposed WRN-B4-ECA model, as it consistently
outperforms the rest of the models and maintains its perfor-
mance even after the introduction of the Sentinel-1 images
contrary to the rest of the models in this experiment.

Figure 9: Ablation on the effect of input channels. X-axis
represents the input setting. RGB refers to models trained
solely with the RGB bands as input, RGB-NIR corresponds
to models trained with RGB and the NIR channel, B02-B12
is our normal setup and finally MM combines both B02-B12
channels of Sentinel-2 and VV-VH channels of Sentinel-1.

5.5. Model explainability
We use Gradient-weighted Class Activation Mapping

(Grad-CAM), as in Selvaraju et al. (2017), in order to un-
derstand some of the image classification accuracy discrep-
ancies observed in the benchmark. Grad-CAM produces
‘interpretable’ explanations for the classification decisions
of our resulting model. It exploits the gradients of logits
for the different classes of the final convolutional layer to
produce a map that highlights the important regions in the
image, used for predicting a specific class.

In Figure 10 we have selected two challenging Sentinel-2
image patches, one in each row, that contain several LULC
classes. We also show the Grad-CAM output for the True
Positive classes predicted, with the associated probability P
that a specific LULC is contained in the patch. If P > 0.5 we
assign this class to the patch. On the top of Figure 10 is an
image patch with urban, agricultural, vegetated and marine
areas, and all different classes are correctly resolved, while
the classification decision seems to focus on the appropriate
parts of the image. On the bottom of Figure 10 is an image
patch with some rare classes, e.g. Beaches, dunes, sands and
Transitional woodland, shrub, which are predicted with high
probabilities, and again focusing on the correct part of each
image.

In Figure 11 we provide False Positive samples and the
corresponding Grad-CAM output. Investigating these Grad-
CAM outputs and relying on the visual content of the visible
spectral channels only, it can be argued that it is challenging
for the human eye to reject the predicted False Positive
LULC classes as well. For example, the Urban fabric pre-
dicted class in Figure 11, indeed focuses on settlements or
individual buildings that exist in the original image patch.
Similarly, the Pastures predicted class cannot be easily dis-
missed, especially when not all image spectral content is
visualized. FP class Arable land is attributed to patches that
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Figure 10: Examples of two challenging image patches, correctly classified. The first patch in Examples A & B is the original
Sentinel-2 image patch with the different LULC classes contained. The other patches are the output of Grad-CAM (Selvaraju
et al., 2017) that we adopt to interpret which parts of the image were used by our network for deciding on each specific True
Positive LULC class. P stands for the probability a specific LULC is contained in the patch.
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Figure 11: Examples of image pairs with False Positive LULC scene classification. For each pair we show on the left the original
Sentinel-2 image patch with all the LULC classes contained, and we show on the right the Grad-CAM (Selvaraju et al., 2017)
output for a False Positive class. Red areas correspond to the part of the image patch used to make the False Positive prediction.
P stands for the probability a specific LULC is contained in the patch.

according to Grad-CAM output indeed focus on agricultural-
like areas. In this case, the higher level category is correct,
i.e. agricultural areas, while the more detailed LULC class
in the taxonomy is not correct, i.e. Arable land is predicted
instead of Land principally occupied by agriculture, with
significant areas of natural vegetation. The last sample in
Figure 11 contains an Inland waters FP class prediction, and
the network focuses on the upper left part of the patch which
indeed could be attributed to a water body. Overall, it could
be argued that the FP predictions are within the error margin
even of an experienced remote sensing photo-interpreter.

Finally, in Figure 12 we show an example of an image
patch that contains seven different LULC classes, of which
five are correctly predicted and two are False Negatives.
Grad-CAM outputs for the TP classes again focus visually
on the correct parts of the patch. The Inland waters class

especially has a Grad-CAM output that could be poten-
tially used directly for image segmentation. Investigating
hundreds Grad-CAM samples in our test dataset, the same
can be inferred for several other LULC predictions. The
FN LULC classes are hard to predict, even for an expert in
satellite image photointerpretation. Indicatively, while Grad-
CAM focuses on densely vegetated areas in Figure 12, our
network correctly predicts the Broad-leaved forest class but
not the Mixed forest class. These two classes, however, are
almost indistinguishable considering their spectral signa-
tures. Therefore it could be worth investigating creating a
new taxonomy by merging of LULC classes, for which the
spectral content and spatial patterns are so similar that even
deep neural networks cannot confidently resolve.
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Figure 12: Example of an image patch with True Positive and False Negative LULC scene classification. The top-right image is
the original Sentinel-2 image patch with all the LULC classes contained. The other images are the output of Grad-CAM (Selvaraju
et al., 2017) for interpreting which parts of the original patch were used by our network for deciding on each specific True Positive
(green font) or False Negative (red font) LULC class.P stands for the probability a specific LULC is contained in the patch.

5.6. Transfer learning
BigEarthNet revolves around a specific RS task, LULC

scene classification with a specific set of classes. In other
RS tasks that use Sentinel-2 imagery, researchers are de-
veloping new training datasets on an ad-hoc basis. Creat-
ing an independent, unique, labeled dataset for each RS
problem is not feasible, given the plethora of tasks in the
RS domain. The paradigm in the Computer Vision com-
munity is different. The publicly available models trained
on ImageNet natural images have been successfully and
extensively used in various transfer learning applications.
Motivated by the impact of this approach, we believe that
a similar logic should be adopted by the remote sensing
community. However, transferring knowledge from such a
different domain is not optimal. Having this in mind, we
provide a Sentinel-2 domain-relevant pre-trained model zoo,
which can be subsequently used to the fullest for different
transfer learning RS applications.

We put this argument to the test, with an extensive study
on the performance of our models pretrained on BigEarthNet
for new RS tasks. We split our investigation in two experi-
ments on two different datasets: EUROSAT (Helber et al.,
2019) and SEN12MS (Schmitt and Wu, 2021), introduced
in Section 2.2. EUROSAT is a Sentinel-2 based dataset
addressing the task of land cover classification. Given that
there is no standard dataset split, we divide EUROSAT in
three sets for training, validation and testing with a ratio of
80/10/10. SEN12MS is the second Sentinel based dataset

we use for this study, which contains both Sentinel-1 and
Sentinel-2 modalities. With SEN12MS, we evaluate our
models on a multi-label scene classification problem, and
it is a more challenging dataset compared to EUROSAT.
The current state of the art reported in (Schmitt and Wu,
2021) achieves at most 69.9% F-Score, when using only the
Sentinel-2 modality as input to a ResNet50 and 72.0% with a
DenseNet121 when combining both Sentinel-1 and Sentinel-
2. Furthermore, the authors notice the importance of the
multispectral information, observing a drop in performance
when ignoring it. On the other hand, the authors of (Helber
et al., 2019) achieve very high accuracy on EUROSAT,
i.e. 98.56% using solely the RGB channels as input to a
ResNet50 model. Moreover, their experiments show that one
can achieve very high accuracy > 90% while using only
one band making the multispectral information redundant.
A reason for this could be the choice of the classes in
EUROSAT, consisting mainly of high level categories that
could be discriminated by the shapes, texture and color e.g.
Sea&Lake versus Highway. On the contrary, SEN12MS,
similar to BigEarthNet, aims to identify land use and land
cover in a more fine-grained manner, containing classes such
as Grassland, Cropland and Shrubland.

In our experiments, we investigate a) the quality of
representations learnt on BigEarthNet compared to the re-
spective representations of ImageNet, b) the benefit of the
introduction of pretrained models that can exploit the full
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BigEarthNet class BigEarthNet Our
ResNet50 WRN-B4-ECA

Urban fabric 74.84 75.17
Industrial or commercial

units
48.55 49.14

Arable land 83.85 86.25
Permanent crops 51.91 65.49

Pastures 72.38 76.27
Complex cultivation

patterns
66.03 70.27

Land principally occupied
by agriculture, with
significant areas of
natural vegetation

60.94 65.89

Agro-forestry areas 70.49 77.89
Broad-leaved forest 74.05 80.48
Coniferous forest 85.41 86.97

Mixed forest 79.44 81.24
Natural grassland and

sparsely vegetated areas
47.55 51.28

Moors, heathland and
sclerophyllous vegetation

59.41 62.54

Transitional
woodland-shrub

53.47 68.1

Beaches, dunes, sands 61.46 66.67
Inland wetlands 60.64 58.47
Coastal wetlands 47.71 63.16

Inland waters 83.69 86.06
Marine waters 97.53 98.57

Average 67.33 71.8

Table 6
BigEarthNet class-based F-scores (%) for our best performing
WRN-B4-ECA model according to Table 5, and a ResNet50
baseline CNN model.

multispectral information, and c) the capacity of these mod-
els for good performance in low data regimes. Overall, we
observe a consistent improvement induced by the usage of
weights learnt on BigEarthNet.

We begin our study by comparing the models pretrained
on ImageNet and the same architectures pretrained on
BigEarthNet to prove the superiority of in-domain learnt
features. We use common architectures with existing Ima-
geNet pretrained weights, i.e. ResNet50 and DenseNet121.
Additionally, we include our top performing model WRN-
B4-ECA to examine its performance on different datasets.
Since our derived model is introduced in this work there are
no weights pretrained on ImageNet. Given that ImageNet
contains only RGB images, we include in our study the
respective setting pretrained on BigEarthNet. For our first
experiment then, summarized in Figure 13, we finetune our
pretrained models on SEN12MS and EUROSAT examining
three pretraining schemes: pretraining on ImageNet, pre-
training on BigEarthNet using solely the RGB channels
as input, and pretraining on BigEarthNet using the full
multispectral information as done in Table 3. We allow all
layers to be trainable in the finetuning phase. The superiority
of the models pretrained on BigEarthNet is a fact for all

experiments (Figure 13), even when the models were trained
solely with RGB inputs. All models benefit by the transition
from ImageNet to BigEarthNet pretraining scheme. WRN-
B4-ECA seems to consistently perform the best, achieving
the best results when fed with multispectral inputs. This
information could not be harnessed by models pretrained
on ImageNet without any architecture modification. Nev-
ertheless, these results are achieved after training on full,
curated datasets. To evaluate the impact of in-domain trans-
fer learning for RS scenarios where creating a new large
annotated dataset is not feasible, we have to investigate the
performance of our models in different data-regimes.

(a) (b)
Figure 13: Finetuning of ResNet50, DenseNet121 and WRN-
B4-ECA under different pretraining schemes. We present the
results of the evaluation on SEN12MS and EUROSAT in a)
and b) respectively.

Hence, in our second experiment, we follow this intuition
and investigate the behaviour of our models in lower data
regimes. For this examination we focus on ResNet50 and
WRN-B4-ECA trained on variants of SEN12MS with the
multispectral channels as input. SEN12MS’s volume allows
us to examine a wider range of dataset sizes. We attempt to
learn the classification task defined in SEN12MS using the
1%, 10%, 20%, 50% and 100% of the training dataset and
observe the difference in performance when compared to
random initialization. In both initialization settings, we train
the whole network. The results of this experiment are shown
in 14. As expected, pretraining on large curated datasets such
as BigEarthNet can significantly improve performance for
related data. Both models pretrained on BigEarthNet per-
form consistently better than their randomly initialized coun-
terparts. When training with very small training datasets,
the performance boost induced by pretraining is very high
for both architectures. Impressively, WRN-B4-ECA is able
to achieve state-of-the art performance (71.1% F-Score)
with just 10% of the dataset. Naturally, as the dataset size
increases the need for pretrained weights is limited and
the difference between random initialization and pretraining
diminishes.

These findings highlight the fact that the pretrained
model-zoo can be beneficial for RS tasks with small labeled
sets, as well as for research labs with low computational
resources. Furthermore, by providing a large enough and
reproducible benchmark, the evaluation of future methods
becomes more transparent. Finally, the usage of pretrained
models as well as a common reference benchmark alleviates
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Figure 14: Investigation of transfer learning on low data
regimes on SEN12MS. We indicate the ResNet50 with red
and the WRN-B4-ECA with blue. The dashed lines show the
performance of the models pretrained on BigEarthNet(BE)
while the solid lines the performance of models trained from
scratch.

the need for repeating expensive experiments leading to
reduced carbon footprint.

6. Conclusion
We address the multi-label, multi-class LULC single

Sentinel-2 image classification problem and benchmark sev-
eral popular deep learning architectures and more sophisti-
cated models, such as ViT. We develop and use a distributed
learning implementation, and create a model zoo of 60
trained models, which we make publicly available in order
to boost research in diverse tasks that exploit multispec-
tral imagery. Considering the challenges in training on big
satellite datasets, we seek to optimize model performance
jointly in terms of training time, inference rate and classi-
fication accuracy. We find that through compound scaling
of lightweight Wide Residual Networks we achieve the best
overall performance. Our lightweight Wide Residual Net-
work model with an Efficient Channel Attention mechanism
and scaled by adapting the EfficientNet compound scaling
methodology performs best in our benchmark. It achieves
4.5% higher averaged f-score classification accuracy for all
19 LULC classes or a 2% increase in overall micro f-score,
and is trained two times faster compared to a ResNet50
baseline model. Finally, our benchmark reveals that con-
ventional CNN models that perform costly convolutions can
be matched by Multilayer Perceptron feedforward artificial
neural networks that are more lightweight, much simpler,
and faster to train.

Our findings imply that efficient lightweight deep learn-
ing models that are fast to train when appropriately scaled
for depth, width, and input data resolution can provide
comparable and even higher image classification accuracies.
This is especially important in remote sensing where the
volume of data coming from the Sentinel family but also

other satellite platforms is very large and constantly increas-
ing. We believe that our approach for designing light and
scalable models can go beyond the specific LULC scene
classification problem addressed herein, and could be tested
in different application scenarios, e.g. in food security at
large scales, and other tasks, such as semantic segmenta-
tion and object detection in satellite imagery. However, the
potential for transfer learning of the DL models has to be
thoroughly investigated, especially considering the spatio-
temporal nature of satellite data. As discussed by Sykas et al.
(2022), the classification generalisation capacity to different
years and geographic locations remains a great challenge in
RS, and domain adaptation strategies should be adopted to
bridge the inherent gaps.

We hope that this extended benchmark will serve as a
quick and robust way for the evaluation of new methods, and
the produced model zoo will propel deep learning research
in currently, untouched, applications of remote sensing.
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