
Query Processing in Super-Peer Networks
with Languages Based on Information Retrieval:

The P2P-DIET Approach�

Stratos Idreos1, Christos Tryfonopoulos1, Manolis Koubarakis1, and Yannis Drougas2

1 Intelligent Systems Laboratory, Dept. of Electronic and Computer Engineering,
University of Crete, Greece

{sidraios,trifon,manolis}@intelligence.tuc.gr
2 Dept. of Computer Science and Engineering, University of California Riverside, USA

drougas@cs.ucr.edu

Abstract. This paper presents P2P-DIET, an implemented resource sharing sys-
tem that unifies one-time and continuous query processing in super-peer net-
works. P2P-DIET offers a simple data model for the description of network
resources based on attributes with values of type text and a query language based
on concepts from Information Retrieval. The focus of this paper is on the main
modelling concepts of P2P-DIET (metadata, advertisements and queries), the rout-
ing algorithms (inspired by the publish/subscibe system SIENA) and the scalable
indexing of resource metadata and queries.

1 Introduction

We consider the problem of selective dissemination of information (SDI) or publish/
subscribe in peer-to-peer (P2P) networks [2, 7, 10, 14]. In an SDI scenario, a user posts
a continuous query or profile to the system to receive notifications whenever certain
resources of interest are published. Our work has culminated in the implementation of
P2P-DIET [9, 11], a service that unifies one-time and continuous query processing in
P2P networks with super-peers.

P2P-DIET combines one-time querying as found in other super-peer networks [16]
and SDI as proposed in DIAS [10]. P2P-DIET has been implemented on top of the
open source DIET Agents Platform1 and it is currently available at http://www.
intelligence.tuc.gr/p2pdiet. The new concept (in the data model) is that
of advertisement. Other new features that distinguish P2P-DIET from DIAS and other
recent systems [2, 7, 14] (client migration, dynamic IP addresses, stored notifications and
rendezvous, fault-tolerance mechanisms, and message authentication and encryption) are
not discussed and can be found in [8]. The contributions of this paper are the following:

� This work was supported in part by the European Commission projects DIET (5th Frame-
work Programme IST/FET) and Evergrow (6th Framework Programme IST/FET). Christos
Tryfonopoulos is partially supported by a Ph.D. fellowship from the program Heraclitus of the
Greek Ministry of Education.

1 http://diet-agents.sourceforge.net/

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 496–505, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://www.
intelligence.tuc.gr/p2pdiet
http://diet-agents.sourceforge.net/

Query Processing in Super-Peer Networks 497

– We briefly present our super-peer architecture, the protocols for handling advertise-
ments, publications, queries, answers and notifications and discuss how they relate
to the protocols of SIENA [2] and EDUTELLA [13].

– We introduce the new filtering algorithm BestFitTrie used by super-peers in P2P-
DIET for matching textual resource metadata with continuous queries. We compare
BestFitTrie with appropriate extensions of the algorithms used by SIFT [15], and
discuss their relative strengths and weaknesses.

The rest of the paper is organized as follows. Section 2 briefly presents the meta-
data model and query language used for describing and querying resources in the current
implementation of P2P-DIET. Section 3 discusses the protocols for processing advertise-
ments, publications, queries, answers and notifications. Section 4 presents BestFitTrie
and compares it with other alternatives. Section 5 concludes the paper. There is no related
work section; instead, comparison of P2P-DIET with related systems is interspersed with
our presentation.

2 The Data Model AWP
In [12] we presented the data model AWP for specifying queries and textual resource
metadata. Here, we give a brief description of the main concepts of AWP since it is
the data model used in the rest of the paper. AWP is based on the concept of attributes
with values of type text. The query language of AWP offers Boolean and proximity
operators on attribute values as in the work of [3] which is based on the Boolean model
of IR.

Let Σ be a finite alphabet. A word is a finite non-empty sequence of letters from Σ.
Let A be a countably infinite set of attributes called the attribute universe. In practice
attributes will come from namespaces appropriate for the application at hand, e.g., from
the set of Dublin Core Metadata Elements2. If A ∈ A then VA denotes a set of words
called the vocabulary of attribute A. A text value s of length n over a vocabulary V is a
total function s : {1, 2, . . . , n} → V .

A publication n is a set of attribute-value pairs (A, s) where A ∈ A, s is a text value
over VA, and all attributes are distinct. The following is a publication:

{ (AUTHOR,“John Smith”),(TITLE,“Information dissemination in P2P systems”),

(ABSTRACT,“In this paper we show that ...”) }

A query is a conjunction of atomic formulas of the form A = s or A � wp, where
wp is a word pattern containing conjunctions of words and proximity formulas with only
words as subformulas, for example:

AUTHOR = “John Smith” ∧ TITLE � p2p ∧ (information ≺[0,0] dissemination)

The above query requests all resources that have John Smith as their author, and their
title contains the word p2p and a word pattern where the word information is immediately
followed by the word dissemination.

2 http://purl.org/dc/elements/1.1/

http://purl.org/dc/elements/1.1/

498 S. Idreos et al.

ad-hoc / continuous query

resource metadata

notification /answer

rendezvous /
stored notification

TCP/IP
P2P-DIET CP

request / send resource

(a)

Client Application Specific Agents

Agent Communication Protocols Extensions

Filtering Algorithms

Application Language

Agent Communication Protocols

Profile/Resource/Notification Directories

Routing mechanism

Network topology

Fault-tolerance mechanism

Application
Layer

Core Layer

DIET Agents Platform
DIET Layer

Graphic User Interface

(b)

Fig. 1. The architecture and the layered view of P2P-DIET

Advertisements in P2P-DIET come in two kinds and are used to prune the paths of
queries broadcasted in the super-peer network. An attribute advertisement is a subset of
the attribute universe A. An attribute/value advertisement is a set of pairs (A, {s1, . . . ,
sn}) where every A ∈ A and every s1, . . . , sn are text values. Intuitively, advertisements
are intentional descriptions of the content a peer expects to publish to the network. In this
matter we follow SIENA [2] and EDUTELLA [13]. The former kind of advertisement
gives only the attributes used by a peer to describe its content (e.g., a peer might use
only TITLE and AUTHOR), while the latter also lists the expected values of certain
attributes (e.g., a peer might have only John Smith, John Brown and Tom Fox as authors).
Attribute/value advertisements can be interpreted as disjunctions of equalities of the form
A = si.

3 Architecture, Routing and Query Processing

A high-level view of the P2P-DIET architecture and its software layers is shown in Figure
1. There are two kinds of nodes: super-peers and clients. All super-peers are equal and
have the same responsibilities, thus the super-peer subnetwork is a pure P2P network (it
can be an arbitrary undirected graph). Each super-peer serves a fraction of the clients
and keeps indices on the resources of those clients.

Resources (e.g., files in a file-sharing application) are kept at client nodes, although
it is possible in special cases to store resources at super-peer nodes. Clients request
resources directly from the resource owner client. A client is connected to the network
through a single super-peer node, which is the access point of the client. It is not neces-
sary for a client to be connected to the same access point continuously; client migration
is supported in P2P-DIET. Clients can connect, disconnect or even leave from the system
silently at any time. To enable a higher degree of decentralization and dynamicity, we
also allow clients to use dynamic IP addresses. If clients are not on-line, notifications
matching their interests are stored for them by their access points and delivered once

Query Processing in Super-Peer Networks 499

clients reconnect. If resource owners are not on-line, requesting clients can set up a
rendezvous to obtain the required resources. Additionally, P2P-DIET supports a simple
fault-tolerance protocol based on are-you-alive messages between super-peers, and be-
tween super-peers and their clients. Finally, P2P-DIET provides message authentication
and message encryption using public key cryptography.

The super-peer subnetworks in P2P-DIET are expected to be more stable than typical
pure P2P networks such as Gnutella.As a result, we have chosen to use routing algorithms
appropriate for such networks, shortest path trees and reverse path forwarding [5].

Advertisements. P2P-DIET clients advertise the resources they expect to publish in
the system by sending an advertisement message to their access point. Advertisements
are then forwarded in the super-peer backbone. Whenever a resource is published by a
client, P2P-DIET makes sure that it satisfies the advertisements made previously by the
same client or else a new advertisement message, that contains the extra information for
this client must be submitted to the client’s access point and forwarded in the super-peer
backbone.

One-Time Queries. In the typical one-time query scenario, a client C can pose a query q
to its access point AP through a query message. The message contains the identifier of
C, the IP address and port of C and the query q. AP broadcasts q to all super-peers using
reverse path forwarding. The advertisements present at each super-peer are used to prune
broadcasting paths. An attribute advertisement a blocks further propagation of query q
if a does not cover q. An attribute/value advertisement a blocks further propagation
of query q if q and a are inconsistent. Answers are produced for all matching network
resources, by the super-peers that hold the appropriate resource metadata. A super-peer
that generates an answer a, forwards a directly to C using the IP address and port
of C included in the query q. Each super-peer can be understood to store a relation
resource(ID, A1, A2, . . . , An) where ID is a resource identifier and A1, A2, . . . , An

are the attributes of A used by the super-peer. In our implementation, relation resource
is implemented by keeping an inverted file index for each attribute Ai. The index maps
every word w in the vocabulary of Ai to the set of resource IDs that contain word w in
their attribute Ai. Query evaluation at each super-peer is then implemented efficiently
by utilizing these indices in the standard way [1].

Continuous Queries. Clients may subscribe to their access point with a continuous
query. Super-peers forward posed queries to other super-peers. Thus, matching a query
with metadata of a published resource takes place at a super-peer that is as close as
possible to the origin of the resource. A continuous query published by a client C is
identified by the identifier of C and a very large random number, query id assigned by C
at the time that the query was generated. A notification is generated at the access point
AP1 where the resource was published, and travels to the access point AP2 of every
client that has posted a continuous query matching this notification following the shortest
path from AP1 to AP2. Then, the notification is delivered to the interested clients for
further processing.

Each super-peer manages an index over its continuous queries. Using this index, a
super-peer can generate notifications when resource metadata items are published by its

500 S. Idreos et al.

clients. Additionally, each super-peer manages a continuous query poset that keeps track
of the subsumption relations among the continuous queries posted to the super-peer by
its clients or forwarded by other super-peers. This poset is again inspired by SIENA [2]
and it is used to minimize network traffic: in each super-peer no continuous query that
is less general than one that has already been processed is actually forwarded.

4 Filtering Algorithms

In this section we present and evaluate BestFitTrie, a main memory algorithm that solves
the filtering problem for conjunctive queries in AWP . Because our work extends and
improves previous algorithms of SIFT [15], we adopt terminology from SIFT in many
cases.

BestFitTrie uses two data structures to represent each published document d: the
occurrence table OT (d) and the distinct attribute list DAL(d). OT (d) is a hash table
that uses words as keys, and is used for storing all the attributes of the document in
which a specific word appears, along with the positions that each word occupies in the
attribute text. DAL(d) is a linked list with one element for each distinct attribute of d.
The element of DAL(d) for attribute A points to another linked list, the distinct word
list for A (denoted by DWL(A)) which contains all the distinct words that appear in
A(d).

To index queries BestFitTrie utilises an array, called the attribute directory (AD),
that stores pointers to word directories. AD has one element for each distinct attribute in
the query database. A word directory WD(Bi) is a hash table that provides fast access
to roots of tries in a forest that is used to organize sets of words – the set of words in wpi

(denoted by words(wpi)) for each atomic formula Bi � wpi in a query. The proximity
formulas contained in each wpi are stored in an array called the proximity array (PA). PA
stores pointers to trie nodes (words) that are operands in proximity formulas along with
the respective proximity intervals for each formula. Another hash table, called equality
table (ET) indexes text values si that appear in atomic formulas of the form Ai = si.

When a new query q arrives, the index structures are populated as follows. For each
attribute Ai = si, we hash text value si to obtain a slot in ET where we store the value
Ai. For each attribute Bj � wpj , we compute words(wpj) and insert them in one of
the tries with roots indexed by WD(Bj). Finally, we visit PA and store pointers to trie
nodes and proximity intervals for the proximity formulas contained in wpj .

We now explain how each word directory WD(Bj) and its forest of tries are organ-
ised. The idea is to store sets of words compactly by exploiting their common elements,
to preserve memory space and to accelerate the filtering process.

Definition 1. Let S be a set of sets of words and s1, s2 ∈ S with s2 ⊆ s1. We say that s2
is an identifying subset of s1 with respect to S iff s2 = s1 or � r ∈ S such that s2 ⊆ r.

The sets of identifying subsets of two sets of words s1 and s2 with respect to a set S
is the same if and only if s1 is identical to s2.

The sets of words words(wpj) are organised in the word directory WD(Bj) as
follows. Let S be the set of sets of words currently in WD(Bj). When a new set of
words s arrives, BestFitTrie selects an identifying subset t of s with respect to S and

Query Processing in Super-Peer Networks 501

uses it to organise s in WD(Bj). The algorithm for choosing t depends on the current
organization of the word directory and will be given below.

Throughout its existence, each trie T of WD(Bj) has the following properties.
The nodes of T store sets of words and other data items related to these sets. Let
sets-of -words(T) denote the set of all sets of words stored by the nodes of T . A
node of T stores more than one set of words iff these sets are identical. The root of T (at
depth 0) stores sets of words with an identifying subset of cardinality one. In general, a
node n of T at depth i stores sets of words with an identifying subset of cardinality i+1.
A node n of T at depth i storing sets of words equal to s is implemented as a structure
consisting of the following fields:

– Word(n): the i+1-th word wi of identifying subset {w0, . . . , wi−1, wi} of s where
w0, . . . , wi−1 are the words of nodes appearing earlier on the path from the root to
node n.

– Query(n): a linked list containing the identifier of query q that contained word
pattern wp for which {w0, . . . , wi} is the identifying subset of sets-of -words(T).

– Remainder(n): if node n is a leaf, this field is a linked list containing the words of
s that are not included in {w0, . . . , wi}. If n is not a leaf, this field is empty.

– Children(n): a linked list of pairs (wi+1, ptr), where wi+1 is a word such that
{w0, . . . , wi, wi+1} is an identifying subset for the sets of words stored at a child
of wi and ptr is a pointer to the node containing the word wi+1.

The sets of words stored at node n of T are equal to {w0, . . . , wn}∪Remainder(n),
where w0, . . . , wn are the words on the path from the root of T to n. An identifying
subset of these sets of words is {w0, . . . , wn}. The purpose of Remainder(n) is to allow
for the delayed creation of nodes in trie. This delayed creation lets us choose which word
from Remainder(n) will become the child of current node n depending on the sets of
words that will arrive later on.

The algorithm for inserting a new set of words s in a word directory is as follows.
The first set of words to arrive will create a trie with the first word as the root and the rest
stored as the remainder. The second set of words will consider being stored at the existing
trie or create a trie of its own. In general, to insert a new set of words s, BestFitTrie
iterates through the words in s and utilises the hash table implementation of the word
directory to find all candidate tries for storing s: the tries with root a word of s. To
store sets as compactly as possible, BestFitTrie then looks for a trie node n such that the
set of words ({w0, . . . , wn} ∪ Remainder(n)) ∩ s, where {w0, . . . , wn} is the set of
words on the path from the root to n, has maximum cardinality. There may be more than
one node that satisfies this requirements and such nodes might belong to different tries.
Thus BestFitTrie performs a depth-first search down to depth |s| − 1 in all candidate
tries in order to decide the optimal node n. The path from the root to n is then extended
with new nodes containing the words in τ = (s \ {w0, . . . , wn}) ∩ Remainder(n).
If s ⊆ {w0, . . . , wn} ∪ Remainder(n), then the last of these nodes l becomes a new
leaf in the trie with Query(l) = Query(n) ∪ {q} (q is the new query from which
s was extracted) and Remainder(l) = Remainder(n) \ τ . Otherwise, the last of
these nodes l points to two child nodes l1 and l2. Node l1 will have Word(l1) = u,
where u ∈ Remainder(n) \ τ, Query(l1) = Query(n) and Remainder(l1) =
Remainder(n) \ (τ ∪ {u}). Similarly node l2 will have Word(l2) = v, where v ∈

502 S. Idreos et al.

s \ ({w0, . . . , wn} ∪ τ), Query(l2) = q and Remainder(l2) = s \ ({w0, . . . , wn} ∪
τ ∪ {u}). The complexity of inserting a set of words in a word directory is linear in the
size of the word directory but exponential in the size of the inserted set. This exponential
dependency is not a problem in practice because we expect queries to be small and the
crucial parameter to be the size of the query database.

The filtering procedure utilises two arrays named Total and Count. Total has one
element for each query in the database and stores the number of atomic formulas con-
tained in that query. Array Count is used for counting how many of the atomic formulas
of a query match the corresponding attributes of a document. Each element of array
Count is set to zero at the beginning of the filtering algorithm. If at algorithm termina-
tion, a query’s entry in array Total equals its entry in Count, then the query matches the
published document, since all of its atomic formulas match the corresponding document
attributes.

When a document d is published, BestFitTrie hashes the text value C(d) contained
in each document attribute C and probes the ET to find matching atomic formulas with
equality. Then for each attribute C in DAL(d) and for each word w in DWL(C), the
trie of WD(C) with root w is traversed in a breadth-first manner. Only subtrees having
as root a word contained in C(d) are examined, and hash table OT (d) is used to identify
them quickly. At each node n of the trie, the list Query(n) gives implicitly all atomic
formulas C � wp that can potentially match C(d) if the proximity formulas in wp are
also satisfied. This is repeated for all the words in DWL(C), to identify all the qualifying
atomic formulas for attribute C. Then the proximity formulas for each qualifying query
are examined using the polynomial time algorithm prox from [12]. For each atomic
formula satisfied by C(d), the corresponding query element in array Count is increased
by one. At the end of the filtering algorithm the equal entries in arrays Total and Count
give us the queries satisfied by d.

To evaluate the performance of BestFitTrie we have also implemented algorithms
BF, SWIN and PrefixTrie. BF (Brute Force) has no indexing strategy and scans the
query database sequentially to determine matching queries. SWIN (Single Word INdex)
utilises a two-level index for accessing queries in an efficient way. PrefixTrie is an
extension of the algorithm Tree of [15] appropriately modified to cope with attributes
and proximity information. Tree was originally proposed for storing conjunctions of
keywords in secondary storage in the context of the SDI system SIFT. Following Tree,
PrefixTrie uses sequences of words sorted in lexicographic order for capturing the words
appearing in the word patterns of atomic formulas (instead of sets used by BestFitTrie).
A trie is then used to store sequences compactly by exploiting common prefixes [15].

Algorithm BestFitTrie constitutes an improvement over PrefixTrie. Because Prefix-
Trie examines only the prefixes of sequences of words in lexicographic order to identify
common parts, it misses many opportunities for clustering. BestFitTrie keeps the main
idea behind PrefixTrie but searches exhaustively the current word directory to discover
the best place to introduce a new set of words. This allows BestFitTrie to achieve better
clustering as PrefixTrie introduces redundant nodes that are the result of using a lexi-
cographic order to identify common parts. This node redundancy can be the cause of
deceleration of the filtering process as we will show in the next section. The only way
to improve beyond BestFitTrie would be to consider re-organizing the word directory

Query Processing in Super-Peer Networks 503

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.5 1 1.5 2 2.5 3

F
ilt

er
in

g
T

im
e

(m
se

c)

Millions of queries

BestFitTrie
BF

PrefixTrie
SWIN

Fig. 2. Effect of the query database size in filtering time

every time a new set of words arrives, or periodically. We have not explored this approach
in any depth.

4.1 Experimental Evaluation

We evaluated the algorithms presented above experimentally using a set of documents
downloaded from ResearchIndex3 and originally compiled in [6]. The documents are
research papers in the area of Neural Networks and we will refer to them as the NN corpus.
Because no database of queries was available to us, we developed a methodology for
creating user queries using words and technical terms (phrases) extracted automatically
from the ResearchIndex documents using the C-value/NC-value approach of [6].

All the algorithms were implemented in C/C++, and the experiments were run on a
PC, with a Pentium III 1.7GHz processor, with 1GB RAM, running Linux. The results
of each experiment are averaged over 10 runs to eliminate any fluctuations in the time
measurements.

The first experiment targeted the performance of algorithms under different query
database sizes. In this experiment, we randomly selected one hundred documents from
the NN corpus and used them as incoming documents in query databases of different
sizes. The size and the matching percentage for each document used was different but
the average document size was 6869 words, whereas on average 1% of the queries stored
matched the incoming documents.

As we can see in Figure 2, the time taken by each algorithm grows linearly with the
size of the query database. However SWIN, PrefixTrie and BestFitTrie are less sensi-
tive than Brute Force to changes in the query database size. The trie-based algorithms
outperform SWIN mainly due to the clustering technique that allows the exclusion of
more non-matching atomic queries. We can also observe that the better exploitation of
the commonalities between queries improves the performance of BestFitTrie over Pre-
fixTrie, resulting in a significant speedup in filtering time for large query databases.

3 http://www.researchindex.com

http://www.researchindex.com

504 S. Idreos et al.

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

K
B

 /
se

c)

Total Input Size (KB)

BF-1M
BestFitTrie-1M
PrefixTrie-1M

SWIN-1M

BF-2M
BestFitTrie-2M
PrefixTrie-2M

SWIN-2M

BF-3M
BestFitTrie-3M
PrefixTrie-3M

SWIN-3M

Fig. 3. Throughput for some algorithms for AWP

Figure 3 shows that BestFitTrie gives the best filtering performance by processing a load
of about 150KB (about 9 ResearchIndex papers) per second for a query database of 3
million queries.

In terms of space requirements BF needs about 15% less space than the trie-based
algorithms, while the rate of increase for the two trie-based algorithms is similar to that
of BF, requiring a fixed amount of extra space each time. Thus it is clear that BestFitTrie
speeds up the filtering process with a small extra storage cost, and proves faster than
the rest of the algorithms, managing to filter user queries about 10 times faster than
the sequential scan method. Finally, the query insertion rate that the two trie-based
algorithms can support is about 40 queries/second for a database containing 2.5 million
queries.

We have also evaluated the performance of the algorithms under two other parame-
ters: document size and percentage of queries matching a published document. Finally
we have developed various heuristics for ordering words in the tries maintained by Pre-
fixTrie and BestFitTrie when word frequency information (or word ranking) is available
as it is common in IR research [1]. The details of these experiments are omitted due to
space considerations.

5 Conclusions

We presented P2P-DIET, a service that unifies one-time and continuous query processing
in P2P networks with super-peers. Currently our work concentrates on implementing
the super-peer subnetwork of P2P-DIET using topologies with better properties and
compare it analytically and experimentally with our current implementation. Our first
steps in this direction are presented in [4].

Query Processing in Super-Peer Networks 505

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, 1999.
2. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area Event

Notification Service. ACM TOCS, 19(3):332–383, August 2001.
3. C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting for Translating

Boolean Queries in a Heterogeneous Information System. ACM TOIS, 17(1):1–39, 1999.
4. P.A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Publish/Subscribe for RDF-based P2P

Networks. In Proceedings of ESWS 2004, May 2004.
5. Y.K. Dalal and R.M. Metcalfe. Reverse Path Forwarding of Broadcast Packets. CACM,

21(12):1040–1048, December 1978.
6. L. Dong. Automatic term extraction and similarity assessment in a domain specific document

corpus. Master’s thesis, Dept. of Computer Science, Dalhousie University, Halifax, Canada,
2002.

7. B. Gedik and L. Liu. PeerCQ:A Decentralized and Self-Configuring Peer-to-Peer Information
Monitoring System. In Proceedings of the 23rd ICDCS, May 2003.

8. S. Idreos and M. Koubarakis. P2P-DIET: A Query and Notification Service Based on Mobile
Agents for Rapid Implementation of P2P Applications. Technical report, TR-ISL-2003-01,
Intelligent Systems Laboratory, Dept. of Electronic and Computer Engineering, Technical
University of Crete, June 2003.

9. S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET: Ad-hoc and Continuous Queries
in Super-peer Networks. In Proceedings of EDBT 2004, volume 2992 of LNCS, pages 851–
853, March 2004.

10. M. Koubarakis, T. Koutris, P. Raftopoulou, and C. Tryfonopoulos. Information Alert in Dis-
tributed Digital Libraries: The Models, Languages and Architecture of DIAS. In Proceedings
of ECDL 2002, volume 2458 of LNCS, pages 527–542.

11. M. Koubarakis, C. Tryfonopoulos, S. Idreos, and Y. Drougas. Selective Information Dissem-
ination in P2P Networks: Problems and Solutions. ACM SIGMOD Record, Special issue on
Peer-to-Peer Data Management, K. Aberer (editor), 32(3), September 2003.

12. M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris. Data models and languages
for agent-based textual information dissemination. In Proceedings of CIA 2002, volume 2446
of LNCS, pages 179–193, September 2002.

13. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and A. Loser.
Super-peer based routing and clustering strategies for RDF-based peer-to-peer networks. In
Proceedings of the 12th WWW Conference, 2003.

14. P.R. Pietzuch and J. Bacon. Peer-to-Peer Overlay Broker Networks in an Event-Based Mid-
dleware. In Proceedings of DEBS’03, June 2003.

15. T.W.Yan and H. Garcia-Molina. Index Structures for Selective Dissemination of Information
Under the Boolean Model. ACM TODS, 19(2):332–364, 1994.

16. B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proceedings of ICDE
2003, March 5–8 2003.

	Introduction
	The Data Model AWP
	Architecture, Routing and Query Processing
	Filtering Algorithms
	Experimental Evaluation

	Conclusions

