
Implementing Publish/Subscribe Systems with Languages from

Information Retrieval on Top of Structured Overlay Networks∗

Christos Tryfonopoulos† Manolis Koubarakis

Dept. of Electronic and Computer Engineering,
Technical University of Crete, 73100 Chania, Crete, Greece

{trifon,manolis}@intelligence.tuc.gr

Abstract

We study the problem of distributed resource shar-
ing in wide-area networks such as the Internet and
the Web. The architecture that we envision sup-
ports both query and publish/subscribe functional-
ity using data models and languages from Informa-
tion Retrieval. We propose to approach this prob-
lem using ideas from self-organized overlay networks
and especially distributed hash tables like Chord.
This paper concentrates only on how to offer the
envisaged publish/subscribe functionality and dis-
cusses our on-going work.

1 Introduction

We study the problem of distributed resource shar-
ing in wide-area networks such as the Internet and
the Web. Figure 1 presents a high-level architec-
ture that has been adopted from our previous work
[9, 6, 11, 4] and captures the problem to be solved
successfully. There are two kinds of basic function-
ality that we expect this architecture to offer:

• One-time querying: a user utilizes his client
to pose a query (e.g., “I want papers on self-
organization”) and the system returns a list of
pointers to matching resources owned by other
clients in the network.

• Publish/subscribe (pub/sub): In a pub/sub sce-
nario, a user posts a continuous query to the

∗This work is partially supported by Integrated Project
Evergrow (Contract No 001935) funded by the Complex Sys-
tems initiative of the FP6/IST/FET Programme of the Eu-
ropean Commission.

†The author is partially supported by a Ph.D. fellowship
from the program Heraclitus of the Greek Ministry of Edu-
cation.

client

 super
peer

super
peer

super
peer super

peer

client

clientpublicationnotification

continuous
query

notification

client

information
provider

information
provider

publication

continuous
query

Figure 1: An architecture for distributed resource
sharing

system to receive a notification whenever cer-
tain events of interest take place (e.g., when a
paper on self-organization becomes available).

Our first solution to this problem is the sys-
tem P2P-DIET [9, 6, 11, 4] which is now fully
implemented and available from http://www.
intelligence.tuc.gr/p2pdiet. In this paper we
build on the lessons learned from P2P-DIET and
show how to solve the problem of building pub/sub
functionality in the architecture of Figure 1 using
ideas from self-organized overlay networks such as
distributed hash tables (DHTs).1

In our architecture we have two kinds of nodes:
super-peers and clients. All super-peers are equal
and have the same responsibilities, thus the super-
peer subnetwork is a pure P2P network. Each
super-peer serves a fraction of the clients. It is very
easy to modify our proposal to work in the case of

1P2P-DIET did not utilize DHTs; it followed the pub/sub
system SIENA [3] and used arbitrary graphs and standard
network routing algorithms based on shortest paths and min-
imum weight spanning trees.

1

pure P2P networks where all nodes are equal.
We will use the the data model AWP inspired

from Information Retrieval for specifying queries
and resource metadata [9]. For the purposes of this
paper, a (resource) publication is a set of attribute-
value pairs (A, s) where A is a named attribute, s
is a text value and all attributes are distinct. The
following is an example of a publication:

{ (AUTHOR, “John Smith”),
(TITLE, “Information dissemination in P2P systems”),

(ABSTRACT, “In this paper we show that ...”) }
The query language of AWP offers Boolean and

word proximity operators on attribute values. The
following is an example of a conjunctive AWP
query:

AUTHOR = “John Smith” ∧
TITLE w p2p ∧ (information ≺[0,0] dissemination)

The query requests resources that have John Smith
as their author, and their title contains the word p2p
and a word pattern where the word information is
immediately followed by the word dissemination.

We implement a distributed resource sharing by
a set of protocols called the DHTrie protocols (from
the words DHT and trie). The DHTrie protocols use
three levels of indexing to store continuous queries
submitted by clients. The first level corresponds to
the partitioning of the global query index to dif-
ferent super-peers using DHTs as the underlying
infrastructure. Each super-peer is responsible for
a fraction of the submitted user queries through a
mapping of attribute-value combinations to super-
peer identifiers. The DHT infrastructure is used to
define the mapping scheme and also manages the
routing of messages between different super-peers.
The set of protocols that regulate peer interactions
are described in Section 2.

The other two levels of our indexing mechanism
are managed locally by each one of the super-peers,
as they are used for indexing the user queries that
a peer is responsible for. In the second level each
super-peer uses a hash table to index the attributes
contained in a query, whereas in the third level a
trie-like structure that exploits common words in
atomic queries is utilised. The algorithm and the
experimental evaluation are briefly described in Sec-
tion 3.

2 The DHTrie protocols

In this section we describe DHTrie, a set of proto-
cols that allow the partitioning of the global query

index among the super-peers, using a DHT infras-
tructure.

2.1 Mapping keys to super-peers

We use a Chord-like DHT to implement our super-
peer network. Chord [10] uses consistent hashing
to map keys to nodes. Each node and data item is
assigned an k-bit identifier, where k should be large
enough to avoid the possibility of different items
hashing to the same identifier. Identifiers can be
thought of as being placed on a circle from 0 to
2k − 1, called the identifier circle or Chord ring.
Data items are mapped to nodes in the Chord ring
as follows. A new data item r is stored at the node
with identifier H(r) if this node exists, given that
H is the hash function used. Alternatively, r is
stored at the node whose identifier is the first identi-
fier clockwise in the Chord ring starting from H(r).
This node is called the successor of node H(r) and is
denoted by successor(H(r)). We will say that this
node is responsible for data item r. Node identifiers
are assigned to nodes by hashing their respective
IP addresses using a cryptographic hash function.
When a node joins the Chord ring, its predecessor
finds out that a new node has joined and makes this
node responsible for data items hashing in identi-
fiers between itself and the new node. Discovering
that a node has joined is achieved through a stabil-
isation protocol that every node runs periodically.
The idea behind stabilisation is to keep a node in-
formed about its immediate successor in the Chord
ring.

2.2 Subscribing with a continuous
query

Let us assume that a client C wants to submit a con-
tinuous query q of the form A1 = s1 ∧ ... ∧ Am =
sm ∧ Am+1 w wpm+1 ∧ ... ∧ An w wpn. C con-
tacts a super-peer S (its access point) and sends it
a message SubmitCQuery(id(C), q), where id(C)
is a unique identifier assigned to C by S in their
first communication. When S receives q, it se-
lects a random attribute Ai, 1 ≤ i ≤ n contained
in q and a random word wj from text value si

or word pattern wpi (depending on what kind of
atomic formula of query q attribute Ai appears in).
Then S forms the concatenation Aiwj of strings Ai

and wj and computes H(Aiwj) to obtain a super-
peer identifier. Finally, S creates message Fwd-
CQuery(id(S), id(q), q) and forwards it to super-

2

peer with identifier H(Aiwj) using the routing in-
frastructure of the DHT.

When a super-peer receives a message FwdC-
Query containing q, it inserts q in its local data
structures using the insertion algorithm of BestFit-
Trie described briefly in Section 3 and also in [11, 7].

2.3 Publishing a resource

When client C wants to publish a resource,
it constructs a publication p of the form
{(A1, s1), (A2, s2), . . . , (An, sn)}, it contacts a
super-peer S and sends S a message PubRe-
source(id(C), p). When S receives p, it computes
a list of super-peer identifiers that are provably a
superset of the set of super-peer identifiers respon-
sible for queries that match p. This list is computed
as follows. For every attribute Ai, 1 ≤ i ≤ n in p,
and every word wj in si, S computes H(Aiwj) to
obtain a list of super-peer identifiers that, accord-
ing to the DHT mapping function, store continuous
queries containing word wj in the respective text
value si or word pattern wpi of attribute Ai. S
then sorts this list in ascending order starting
from id(S) to obtain list L and creates a message
FwdResource(id(S), id(p), p, L), where id(p) is
a unique metadata identifier assigned to p by S,
and sends it to super-peer with identifier equal
to head(L). This forwarding is done as follows:
message FwdResource is sent to a super-peer S′,
where id(S′) is the greatest identifier contained in
the finger table of S, for which id(S′) ≤ head(L)
holds.

Upon reception of a message FwdResource by
a super-peer S, head(L) is checked. If id(S) =
head(L) then S removes head(L) from list L and
makes a copy of the message. The publication part
of this message is then matched with the super-
peer’s local query database and subscribers are no-
tified (the details of this are presented in Section
2.4). Finally, S forwards the message to super peer
with identifier head(L). If id(S) is not in L, then it
just forwards the message as described in the pre-
vious paragraph.

2.4 Notifying interested subscribers

Let us now examine how notifications about pub-
lished resources are sent to interested subscribers.
When a message FwdResource containing a pub-
lication p of a resource arrives at a super-peer S, the
continuous queries matching p are found by utilising

its local index structures and using the algorithm
BestFitTrie presented in [11].

Once all the matching queries have been retrieved
from the database, S creates a notification message
of the form CQNotification(id(C), l(r), L, T),
where l(r) is a link to the resource, L is a list of
identifiers of the super-peers that are intended re-
cipients of the notification message, and T is a list
containing the query identifiers of the queries that
matched p. List L is created as follows. S finds
all super-peers that have at least one client with
a query q satisfied by p. Then it sorts the list in
ascending order starting from id(S) and removes
duplicate entries. The notification message is then
forwarded according to the algorithm described in
Section 2.3.

Upon arrival of a message CQNotification at
a super-peer S, head(L) is checked to find out
whether S is an intended recipient of the message.
If it is not, S just forwards the message to an-
other super-peer using information from its finger
table and the algorithm described in Section 2.3. If
head(L) = id(S), then S scans T to find the set U
of query identifiers that belong to clients that have
S as their access point, by utilising a hash table
that associates query identifiers with client identi-
fiers. For each distinct query identifier in set U ,
a message MatchingResource(id(S), id(q), l(r))
is created and forwarded to the appropriate client.
Finally S removes head(L) from L and U from T ,
and forwards message CQNotification according
to the algorithm described in Section 2.3.

We are currently implementing the protocols de-
scribed in Sections 2.2-2.4 to evaluate their perfor-
mance and scalability.

3 Local Filtering Algorithms

In this section we present and evaluate BestFit-
Trie, a main memory algorithm that solves the fil-
tering problem for conjunctive queries in AWP.
Algorithm BestFitTrie is run locally by each of
the super-peers, and provides efficient matching
of stored continuous queries against published re-
sources. Because our work extends and improves
previous algorithms of SIFT [12], we adopt termi-
nology from SIFT in many cases. The material of
this section appears in more detail in [11].

BestFitTrie uses two data structures to repre-
sent each published resource d: the occurrence ta-
ble OT (d) and the distinct attribute list DAL(d).
OT (d) is a hash table that uses words as keys, and

3

is used for storing all the attributes of the resource
in which a specific word appears, along with the
positions that each word occupies in the attribute
text. DAL(d) is a linked list with one element for
each distinct attribute of d. The element of DAL(d)
for attribute A points to another linked list, the dis-
tinct word list for A (denoted by DWL(A)) which
contains all the distinct words that appear in A(d).

To index queries BestFitTrie utilises an array,
called the attribute directory (AD), that stores
pointers to word directories. AD has one element
for each distinct attribute in the query database. A
word directory WD(Bi) is a hash table that pro-
vides fast access to roots of tries in a forest that is
used to organize sets of words – the set of words in
wpi (denoted by words(wpi)) for each atomic for-
mula Bi w wpi in a query. The proximity formulas
contained in each wpi are stored in an array called
the proximity array (PA). PA stores pointers to trie
nodes (words) that are operands in proximity for-
mulas along with the respective proximity intervals
for each formula. Another hash table, called equal-
ity table (ET) indexes text values si that appear in
atomic formulas of the form Ai = si.

When a new query q arrives, the index structures
are populated as follows. For each attribute Ai =
si, we hash text value si to obtain a slot in ET
where we store the value Ai. For each attribute
Bj w wpj , we compute words(wpj) and insert them
in one of the tries with roots indexed by WD(Bj).
Finally, we visit PA and store pointers to trie nodes
and proximity intervals for the proximity formulas
contained in wpj .

We now explain how each word directory
WD(Bj) and its forest of tries are organised. The
idea is to store sets of words compactly by exploiting
their common elements, to preserve memory space
and to accelerate the filtering process.

Definition 1 Let S be a set of sets of words and
s1, s2 ∈ S with s2 ⊆ s1. We say that s2 is an
identifying subset of s1 with respect to S iff s2 = s1

or @ r ∈ S such that s2 ⊆ r.

The sets of identifying subsets of two sets of words
s1 and s2 with respect to a set S is the same if and
only if s1 is identical to s2.

The sets of words words(wpj) are organised in the
word directory WD(Bj) as follows. Let S be the set
of sets of words currently in WD(Bj). When a new
set of words s arrives, BestFitTrie selects an identi-
fying subset t of s with respect to S and uses it to
organise s in WD(Bj). The algorithm for choosing

t depends on the current organization of the word
directory and will be given below.

Throughout its existence, each trie T of WD(Bj)
has the following properties. The nodes of T store
sets of words and other data items related to these
sets. Let sets-of -words(T) denote the set of all
sets of words stored by the nodes of T . A node of T
stores more than one set of words iff these sets are
identical. The root of T (at depth 0) stores sets of
words with an identifying subset of cardinality one.
In general, a node n of T at depth i stores sets of
words with an identifying subset of cardinality i+1.
A node n of T at depth i storing sets of words equal
to s is implemented as a structure consisting of the
following fields:

• Word(n): the i + 1-th word wi of iden-
tifying subset {w0, . . . , wi−1, wi} of s where
w0, . . . , wi−1 are the words of nodes appearing
earlier on the path from the root to node n.

• Query(n): a linked list containing the identifier
of query q that contained word pattern wp for
which {w0, . . . , wi} is the identifying subset of
sets-of -words(T).

• Remainder(n): if node n is a leaf, this field is
a linked list containing the words of s that are
not included in {w0, . . . , wi}. If n is not a leaf,
this field is empty.

• Children(n): a linked list of pairs
(wi+1, ptr), where wi+1 is a word such
that {w0, . . . , wi, wi+1} is an identifying subset
for the sets of words stored at a child of wi

and ptr is a pointer to the node containing the
word wi+1.

The sets of words stored at node n of T are equal
to {w0, . . . , wn}∪Remainder(n), where w0, . . . , wn

are the words on the path from the root of T to
n. An identifying subset of these sets of words is
{w0, . . . , wn}. The purpose of Remainder(n) is to
allow for the delayed creation of nodes in trie. This
delayed creation lets us choose which word from
Remainder(n) will become the child of current node
n depending on the sets of words that will arrive
later on.

The algorithm for inserting a new set of words
s in a word directory is as follows. The first set
of words to arrive will create a trie with the first
word as the root and the rest stored as the remain-
der. The second set of words will consider being
stored at the existing trie or create a trie of its own.

4

In general, to insert a new set of words s, Best-
FitTrie iterates through the words in s and utilises
the hash table implementation of the word direc-
tory to find all candidate tries for storing s: the
tries with root a word of s. To store sets as com-
pactly as possible, BestFitTrie then looks for a trie
node n such that the set of words ({w0, . . . , wn} ∪
Remainder(n)) ∩ s, where {w0, . . . , wn} is the set
of words on the path from the root to n, has max-
imum cardinality. There may be more than one
node that satisfies this requirements and such nodes
might belong to different tries. Thus BestFitTrie
performs a depth-first search down to depth |s| − 1
in all candidate tries in order to decide the op-
timal node n. The path from the root to n is
then extended with new nodes containing the words
in τ = (s \ {w0, . . . , wn}) ∩ Remainder(n). If
s ⊆ {w0, . . . , wn} ∪ Remainder(n), then the last
of these nodes l becomes a new leaf in the trie with
Query(l) = Query(n) ∪ {q} (q is the new query
from which s was extracted) and Remainder(l) =
Remainder(n) \ τ . Otherwise, the last of these
nodes l points to two child nodes l1 and l2. Node l1
will have Word(l1) = u, where u ∈ Remainder(n)\
τ, Query(l1) = Query(n) and Remainder(l1) =
Remainder(n) \ (τ ∪ {u}). Similarly node l2 will
have Word(l2) = v, where v ∈ s \ ({w0, . . . , wn} ∪
τ), Query(l2) = q and Remainder(l2) = s \
({w0, . . . , wn} ∪ τ ∪ {u}). The complexity of insert-
ing a set of words in a word directory is linear in the
size of the word directory but exponential in the size
of the inserted set. This exponential dependency is
not a problem in practice because we expect queries
to be small and the crucial parameter to be the size
of the query database.

The filtering procedure utilises two arrays named
Total and Count. Total has one element for each
query in the database and stores the number of
atomic formulas contained in that query. Array
Count is used for counting how many of the atomic
formulas of a query match the corresponding at-
tributes of a resource. Each element of array Count
is set to zero at the beginning of the filtering algo-
rithm. If at algorithm termination, a query’s entry
in array Total equals its entry in Count, then the
query matches the published resource, since all of its
atomic formulas match the corresponding resource
attributes.

When a resource d is published, BestFitTrie
hashes the text value C(d) contained in each re-
source attribute C and probes the ET to find
matching atomic formulas with equality. Then for

each attribute C in DAL(d) and for each word
w in DWL(C), the trie of WD(C) with root w
is traversed in a breadth-first manner. Only sub-
trees having as root a word contained in C(d) are
examined, and hash table OT (d) is used to iden-
tify them quickly. At each node n of the trie, the
list Query(n) gives implicitly all atomic formulas
C w wp that can potentially match C(d) if the
proximity formulas in wp are also satisfied. This
is repeated for all the words in DWL(C), to iden-
tify all the qualifying atomic formulas for attribute
C. Then the proximity formulas for each qualify-
ing query are examined using the polynomial time
algorithm prox from [8]. For each atomic formula
satisfied by C(d), the corresponding query element
in array Count is increased by one. At the end of
the filtering algorithm the equal entries in arrays
Total and Count give us the queries satisfied by d.

To evaluate the performance of BestFitTrie we
have also implemented algorithms BF, SWIN and
PrefixTrie. BF (Brute Force) has no indexing strat-
egy and scans the query database sequentially to de-
termine matching queries. SWIN (Single Word IN-
dex) utilises a two-level index for accessing queries
in an efficient way. PrefixTrie is an extension of
the algorithm Tree of [12] appropriately modified
to cope with attributes and proximity information.
Tree was originally proposed for storing conjunc-
tions of keywords in secondary storage in the con-
text of the SDI system SIFT. Following Tree, Prefix-
Trie uses sequences of words sorted in lexicographic
order for capturing the words appearing in the word
patterns of atomic formulas (instead of sets used by
BestFitTrie). A trie is then used to store sequences
compactly by exploiting common prefixes [12].

Algorithm BestFitTrie constitutes an improve-
ment over PrefixTrie. Because PrefixTrie exam-
ines only the prefixes of sequences of words in
lexicographic order to identify common parts, it
misses many opportunities for clustering. Best-
FitTrie keeps the main idea behind PrefixTrie but
searches exhaustively the current word directory to
discover the best place to introduce a new set of
words. This allows BestFitTrie to achieve better
clustering as PrefixTrie introduces redundant nodes
that are the result of using a lexicographic order to
identify common parts. This node redundancy can
be the cause of deceleration of the filtering process
as we will show in the next section. The only way
to improve beyond BestFitTrie would be to consider
re-organizing the word directory every time a new
set of words arrives, or periodically. We have not

5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.5 1 1.5 2 2.5 3

F
ilt

er
in

g
T

im
e

(m
se

c)

Millions of queries

BestFitTrie
BF

PrefixTrie
SWIN

Figure 2: Effect of the query database size in filter-
ing time

explored this approach in any depth.

3.1 Experimental Evaluation

We evaluated the algorithms presented above ex-
perimentally using a set of documents downloaded
from ResearchIndex2 and originally compiled in [5].
The documents are research papers in the area
of Neural Networks and we will refer to them as
the NN corpus. Because no database of queries
was available to us, we developed a methodology
for creating user queries using words and technical
terms (phrases) extracted automatically from the
ResearchIndex documents using the C-value/NC-
value approach of [5].

All the algorithms were implemented in C/C++,
and the experiments were run on a PC, with a Pen-
tium III 1.7GHz processor, with 1GB RAM, run-
ning Linux. The results of each experiment are av-
eraged over 10 runs to eliminate any fluctuations in
the time measurements.

The first experiment targeted the performance of
algorithms under different query database sizes. In
this experiment, we randomly selected one hundred
documents from the NN corpus and used them as
incoming resources in query databases of different
sizes. The size and the matching percentage for each
resource used was different but the average resource
size was 6869 words, whereas on average 1% of the
queries stored matched the incoming resources.

As we can see in Figure 2, the time taken by each
algorithm grows linearly with the size of the query
database. However SWIN, PrefixTrie and BestFit-
Trie are less sensitive than Brute Force to changes

2http://www.researchindex.com

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

K
B

 /
se

c)

Total Input Size (KB)

BF-1M
BestFitTrie-1M
PrefixTrie-1M

SWIN-1M

BF-2M
BestFitTrie-2M
PrefixTrie-2M

SWIN-2M

BF-3M
BestFitTrie-3M
PrefixTrie-3M

SWIN-3M

Figure 3: Throughput achieved as a function of to-
tal input size

in the query database size. The trie-based algo-
rithms outperform SWIN mainly due to the clus-
tering technique that allows the exclusion of more
non-matching atomic queries. We can also observe
that the better exploitation of the commonalities
between queries improves the performance of Best-
FitTrie over PrefixTrie, resulting in a significant
speedup in filtering time for large query databases.
Figure 3 shows that BestFitTrie gives the best fil-
tering performance by processing a load of about
150KB (about 9 ResearchIndex papers) per second
for a query database of 3 million queries.

In terms of space requirements BF needs about
15% less space than the trie-based algorithms, while
the rate of increase for the two trie-based algo-
rithms is similar to that of BF, requiring a fixed
amount of extra space each time. Thus it is clear
that BestFitTrie speeds up the filtering process with
a small extra storage cost, and proves faster than
the rest of the algorithms, managing to filter user
queries about 10 times faster than the sequential
scan method. Finally, the query insertion rate that
the two trie-based algorithms can support is about
40 queries/second for a database containing 2.5 mil-
lion queries.

We have also evaluated the performance of the al-
gorithms under two other parameters: resource size
and percentage of queries matching a published re-
source. Finally we have developed various heuristics
for ordering words in the tries maintained by Prefix-
Trie and BestFitTrie when word frequency informa-
tion (or word ranking) is available as it is common
in IR research [2]. The details of these experiments
are omitted due to space considerations.

6

4 Work in Progress

Performance evaluation in the distributed
case. To evaluate the performance and scalability
of DHTrie we are currently implementing the algo-
rithms of Section 2. We plan to evaluate DHTrie
by considering its behaviour (mainly expressed in
terms of message load between super-peers) under
various parameters (query and resource size, arrival
rates of queries and resources, number of super-
peers, etc.), and also by comparing it to other alter-
natives such as flooding and schema-based routing
of queries and resources. The results of the evalua-
tion will be presented at the workshop.
Load balancing. A key problem that arises when
trying to partition the query space among the dif-
ferent super-peers in our overlay network is load bal-
ancing. The idea here is to avoid having overloaded
peers i.e., peers having to handle a great number of
posted queries (this is what [1] calls storage load bal-
ancing ; although the paper [1] is not in a pub/sub
setting, the concept is the same).

In addition, we would like to have a way to deal
with the load balancing problem posed to super-
peers that are responsible for pairs (A,w), where
word w appears frequently in text values involving
A. We expect the frequency of occurrence of words
appearing in a query within an atomic formula with
attribute A to follow a non-uniform distribution
(e.g., a skewed distribution like the Zipf distribution
[13]). We do not know of any study that has shown
this by examining collections of user queries; how-
ever, such an assumption seems intuitive especially
in the light of similar distributions of words in text
collections [2]. As an example, in a digital library
application we would expect distinguished author
names to appear frequently in queries with the AU-
THOR attribute, or popular topics to appear fre-
quently in queries with the TITLE attribute. Thus
in our case, uniformity of data items (i.e., queries)
as traditionally assumed by DHTs is not applicable.

We are currently working on addressing the above
load balancing problems by utilizing ideas from the
algorithm LCWTrie described in detail in [11, 7]
where queries are indexed under infrequent words;
we also use a form of controlled replication to deal
with overloading due to notification processing. It
would be interesting to compare this approach to
what is advocated in [1].
Word frequency computation in a dis-
tributed setting. Computing the frequency of oc-
currence of words in a distributed setting is a cru-

cial problem if one wants to support vector space
queries or to provide for load balancing among peers
as showed above. There are mainly two approaches
to the word frequency computation in a distributed
setting; (a) a global ranking scheme that assumes
a central authority that maintains the frequency
information or a message-intensive update mecha-
nism that notifies every peer in the network about
changes in frequency information or (b) a local
ranking scheme that computes word frequencies of
peer pi based solely on frequencies of words in doc-
uments that are published at pi. It is clear that the
first approach affects the scalability and efficiency
of the system while the second approach can be mis-
leading due to peer specialisation.

In related work we present a distributed word
ranking algorithm that is a hybrid form of the two
approaches described earlier. It provides an algo-
rithm that is based on local information, but also
tries to combine this information with the global
“truth” through an updating and estimation mech-
anism.
Reducing network traffic. We can reduce net-
work traffic by compressing publications. In the full
version of the paper we describe a gap compression
technique that allows the matching of a compressed
publication against a database of user queries using
algorithm BestFitTrie.

References

[1] K. Aberer, A. Datta, and M. Hauswirth. Mul-
tifaceted Simultaneous Load Balancing in DHT-
based P2P systems: A new game with old balls and
bins. Technical Report IC/2004/23, Swiss Federal
Institute of Technology Lausanne (EPFL), 2004.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern In-
formation Retrieval. Addison Wesley, 1999.

[3] A. Carzaniga, D.-S. Rosenblum, and A.L Wolf. De-
sign and evaluation of a wide-area event notifica-
tion service. ACM TOCS, 19(3):332–383, August
2001.

[4] P. A. Chirita, S. Idreos, M. Koubarakis, and
W. Nejdl. Publish/Subscribe for RDF-based P2P
Networks. In Proceedings of the 1st European Se-
mantic Web Symposium, May 2004.

[5] L. Dong. Automatic term extraction and similarity
assessment in a domain specific document corpus.
Master’s thesis, Dept. of Computer Science, Dal-
housie University, Halifax, Canada, 2002.

[6] S. Idreos, M. Koubarakis, and C. Tryfonopou-
los. P2P-DIET: Ad-hoc and Continuous Queries

7

in Super-Peer Networks. In Proceedings of the IX
International Conference on Extending Database
Technology (EDBT04), pages 851–853, Heraklion,
Crete, Greece, 14–18 March 2004.

[7] S. Idreos, C. Tryfonopoulos, M. Koubarakis, and
Y. Drougas. Query Processing in Super-Peer Net-
works with Languages Based on Information Re-
trieval: the P2P-DIET Approach. In Proceedings
of P2P & DB 2004, 2004.

[8] M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou,
and T. Koutris. Data models and languages for
agent-based textual information dissemination. In
Proceedings of CIA 2002, volume 2446 of LNCS,
pages 179–193, September 2002.

[9] M. Koubarakis and T. Koutris and P. Raftopoulou
and C. Tryfonopoulos. Information Alert in Dis-
tributed Digital Libraries: The Models, Languages
and Architecture of DIAS. In Proceedings of the 6th
European Conference on Research and Advanced
Technology for Digital Libraries (ECDL 2002), vol-
ume 2458 of Lecture Notes in Computer Science,
pages 527–542, September 2002.

[10] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek,
and H. Balakrishnan. Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications. In
Proceedings of the ACM SIGCOMM ’01 Confer-
ence, San Diego, California, August 2001.

[11] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas.
Filtering Algorithms for Information Retrieval
Models with Named Attributes and Proximity Op-
erators. In Proceedings of the 27th Annual ACM SI-
GIR Conference, Sheffield, United Kingdom, July
25-July 29 2004. Forthcoming.

[12] T.W. Yan and H. Garcia-Molina. Index structures
for selective dissemination of information under the
boolean model. ACM TODS, 19(2):332–364, 1994.

[13] G. K. Zipf. Human Behaviour and Principle of
Least Effort. Addison Wesley, Cambridge, Mas-
sachusetts, 1949.

8

