
Distributed Resource Sharing using Self-Organized Peer-to-Peer

Networks and Languages from Information Retrieval∗

Christos Tryfonopoulos† Manolis Koubarakis

Dept. of Electronic and Computer Engineering,
Technical University of Crete, 73100 Chania, Crete, Greece

{trifon,manolis}@intelligence.tuc.gr

Abstract

A useful computational problem that can be solved
effectively and efficiently through self-organization
techniques is distributed resource sharing in the
Web. The architecture we envision supports both
query and publish/subscribe functionality using
languages from Information Retrieval. We propose
to approach this problem using ideas from self-
organized peer-to-peer networks and especially dis-
tributed hash tables like Chord. This paper con-
centrates only on how to offer the envisaged pub-
lish/subscribe functionality and discusses our cur-
rent results.

1 Introduction

A useful computational problem that can be solved
effectively and efficiently through self-organization
techniques is distributed resource sharing in the
Web. Figure 1 presents an architecture for dis-
tributed resource sharing which has been adopted in
our previous work [5, 3, 7, 2]. There are two kinds of
basic functionality that we expect the architecture
of Figure 1 to offer:

• One-time querying: a user utilizes his client
to pose a query (e.g., “I want papers on self-
organization”) and the system returns a list of
pointers to matching resources owned by other
clients in the network.

∗This work is partially supported by Integrated Project
Evergrow (Contract No 001935) funded by the Complex Sys-
tems initiative of the FP6/IST/FET Programme of the Eu-
ropean Commission.

†The author is partially supported by a Ph.D. fellowship
from the program Heraclitus of the Greek Ministry of Edu-
cation.

client

 


 


 
 super

peer


super

peer


super

peer
 super


peer


client


client
publication
notification


continuous

query


notification


client


 


information

provider


information

provider


publication


continuous

query


Figure 1: An architecture for distributed resource
shring

• Publish/subscribe (pub/sub): In a pub/sub sce-
nario, a user posts a continuous query to the
system to receive a notification whenever cer-
tain events of interest take place (e.g., when a
paper on self-organization becomes available).

In this paper we show how to solve the problem
of building pub/sub functionality in the architec-
ture of Figure 1 using ideas from self-organized dis-
tributed hash tables (DHTs) like Chord [6].

In our architecture we have two kinds of nodes:
super-peers and clients. All super-peers are equal
and have the same responsibilities, thus the super-
peer subnetwork is a pure P2P network. Each
super-peer serves a fraction of the clients. It is very
easy to modify our proposal to work in the case of
pure P2P networks where all nodes are equal.

We will use the the data model AWP inspired
from Information Retrieval for specifying queries
and resource metadata [5]. For the purposes of this
paper, a (resource) publication is a set of attribute-
value pairs (A, s) where A is a named attribute, s
is a text value and all attributes are distinct. The

1



following is an example of a publication:

{ (AUTHOR, “John Smith”),
(TITLE, “Information dissemination in P2P systems”),

(ABSTRACT, “In this paper we show that ...”) }
The query language of AWP offers Boolean and

word proximity operators on attribute values. The
following is an example of a conjunctive AWP
query:

AUTHOR = “John Smith” ∧
TITLE w p2p ∧ (information ≺[0,0] dissemination)

The query requests resources that have John Smith
as their author, and their title contains the word p2p
and a word pattern where the word information is
immediately followed by the word dissemination.

2 The DHTrie protocols

We implement a distributed resource sharing by a
set of protocols called the DHTrie protocols (from
the words DHT and trie). The DHTrie protocols use
three levels of indexing to store continuous queries
submitted by clients. The first level corresponds to
the partitioning of the global query index to dif-
ferent super-peers using DHTs as the underlying
infrastructure. Each super-peer is responsible for
a fraction of the submitted user queries through a
mapping of attribute-value combinations to super-
peer identifiers. The DHT infrastructure is used to
define the mapping scheme and also manages the
routing of messages between different super-peers.

The other two levels of our indexing mechanism
are managed by each one of the super-peers, as they
are used for indexing the user queries that a peer
is responsible for. In the second level each super-
peer uses a hash table to index the attributes con-
tained in a query, whereas in the third level a trie-
like structure that exploits common words in atomic
queries is utilised.

2.1 Self-organisation in the Chord
ring

We use a Chord-like DHT to implement our super-
peer network. Chord [6] uses consistent hashing to
map keys to nodes. Each node and data item is as-
signed an k-bit identifier, where k should be large
enough to avoid the possibility of different items
hashing to the same identifier. Identifiers can be
thought of as being placed on a circle from 0 to
2k − 1, called the identifier circle or Chord ring.

Data items and nodes self-organize in the Chord
ring as follows. A new data item r is stored at the
node with identifier H(r) if this node exists, given
that H is the hash function used. Alternatively, r is
stored at the node whose identifier is the first identi-
fier clockwise in the Chord ring starting from H(r).
This node is called the successor of node H(r) and is
denoted by successor(H(r)). We will say that this
node is responsible for data item r. Node identifiers
are assigned to nodes by hashing their respective
IP addresses using a cryptographic hash function.
When a node joins the Chord ring, its predecessor
finds out that a new node has joined and makes this
node responsible for data items hashing in identi-
fiers between itself and the new node. Discovering
that a node has joined is achieved through a self-
stabilisation protocol that every node runs periodi-
cally. The idea behind self-stabilisation is to keep a
node informed about its immediate successor in the
Chord ring.

2.2 Subscribing with a continuous
query

Let us assume that a client C wants to submit a con-
tinuous query q of the form A1 = s1 ∧ ... ∧ Am =
sm ∧ Am+1 w wpm+1 ∧ ... ∧ An w wpn. C con-
tacts a super-peer S (its access point) and sends it
a message SubmitCQuery(id(C), q), where id(C)
is a unique identifier assigned to C by S in their
first communication. When S receives q, it se-
lects a random attribute Ai, 1 ≤ i ≤ n contained
in q and a random word wj from text value si

or word pattern wpi (depending on what kind of
atomic formula of query q attribute Ai appears in).
Then S forms the concatenation Aiwj of strings Ai

and wj and computes H(Aiwj) to obtain a super-
peer identifier. Finally, S creates message Fwd-
CQuery(id(S), id(q), q) and forwards it to super-
peer with identifier H(Aiwj) using the routing in-
frastructure of the DHT.

When a super-peer receives a message FwdC-
Query containing q, it inserts q in its local data
structures using the insertion algorithm of BestFit-
Trie described briefly in [7, 4].

2.3 Publishing a resource

When client C wants to publish a resource,
it constructs a publication p of the form
{(A1, s1), (A2, s2), . . . , (An, sn)}, it contacts a
super-peer S and sends S a message PubRe-

2



source(id(C), p). When S receives p, it computes
a list of super-peer identifiers that are provably a
superset of the set of super-peer identifiers respon-
sible for queries that match p. This list is computed
as follows. For every attribute Ai, 1 ≤ i ≤ n in p,
and every word wj in si, S computes H(Aiwj) to
obtain a list of super-peer identifiers that, accord-
ing to the DHT mapping function, store continuous
queries containing word wj in the respective text
value si or word pattern wpi of attribute Ai. S
then sorts this list in ascending order starting
from id(S) to obtain list L and creates a message
FwdResource(id(S), id(p), p, L), where id(p) is
a unique metadata identifier assigned to p by S,
and sends it to super-peer with identifier equal
to head(L). This forwarding is done as follows:
message FwdResource is sent to a super-peer S′,
where id(S′) is the greatest identifier contained in
the finger table of S, for which id(S′) ≤ head(L)
holds.

Upon reception of a message FwdResource by
a super-peer S, head(L) is checked. If id(S) =
head(L) then S removes head(L) from list L and
makes a copy of the message. The publication part
of this message is then matched with the super-
peer’s local query database and subscribers are no-
tified (the details of this are presented in Section
2.4). Finally, S forwards the message to super peer
with identifier head(L). If id(S) is not in L, then it
just forwards the message as described in the pre-
vious paragraph.

2.4 Notifying interested subscribers

Let us now examine how notifications about pub-
lished resources are sent to interested subscribers.
When a message FwdResource containing a pub-
lication p of a resource arrives at a super-peer S, the
continuous queries matching p are found by utilising
its local index structures and using the algorithm
BestFitTrie presented in [7].

Once all the matching queries have been retrieved
from the database, S creates a notification message
of the form CQNotification(id(C), l(r), L, T ),
where l(r) is a link to the resource, L is a list of
identifiers of the super-peers that are intended re-
cipients of the notification message, and T is a list
containing the query identifiers of the queries that
matched p. List L is created as follows. S finds
all super-peers that have at least one client with
a query q satisfied by p. Then it sorts the list in
ascending order starting from id(S) and removes

duplicate entries. The notification message is then
forwarded according to the algorithm described in
Section 2.3.

Upon arrival of a message CQNotification at
a super-peer S, head(L) is checked to find out
whether S is an intended recipient of the message.
If it is not, S just forwards the message to an-
other super-peer using information from its finger
table and the algorithm described in Section 2.3. If
head(L) = id(S), then S scans T to find the set U
of query identifiers that belong to clients that have
S as their access point, by utilising a hash table
that associates query identifiers with client identi-
fiers. For each distinct query identifier in set U ,
a message MatchingResource(id(S), id(q), l(r))
is created and forwarded to the appropriate client.
Finally S removes head(L) from L and U from T ,
and forwards message CQNotification according
to the algorithm described in Section 2.3.

We are currently implementing the protocols de-
scribed in Sections 2.2-2.4 to evaluate their perfor-
mance and scalability. The results of the evaluation
will be presented at the workshop.

3 Load balancing

A key problem that arises when trying to partition
the query space among the different super-peers in
our overlay network is load balancing. The idea here
is to avoid having overloaded peers i.e., peers having
to handle a great number of posted queries.

In addition, we would like to have a way to deal
with the load balancing problem posed to super-
peers that are responsible for pairs (A, w), where
word w appears frequently in text values involving
A. We expect the frequency of occurrence of words
appearing in a query within an atomic formula with
attribute A to follow a non-uniform distribution
(e.g., a skewed distribution like the Zipf distribution
[9]). We do not know of any study that has shown
this by examining collections of user queries; how-
ever, such an assumption seems intuitive especially
in the light of similar distributions of words in text
collections [1]. As an example, in a digital library
application we would expect distinguished author
names to appear frequently in queries with the AU-
THOR attribute, or popular topics to appear fre-
quently in queries with the TITLE attribute. Thus
in our case, uniformity of data items (i.e., queries)
as traditionally assumed by DHTs is not applicable.

We are currently working on addressing the above
load balancing problems by utilizing ideas from the

3



algorithm LCWTrie described in detail in [7, 4]
where queries are indexed under infrequent words;
we also use a form of controlled replication to deal
with overloading due to notification processing.

4 Word frequency computa-
tion in a distributed setting

Computing the frequency of occurrence of words
in a distributed setting is a crucial problem for
query processing1 and for providing load balanc-
ing as shown above. There are mainly two ap-
proaches to the word frequency computation in a
distributed setting; (a) a global ranking scheme that
assumes a central authority that maintains the fre-
quency information or a message-intensive update
mechanism that notifies every peer in the network
about changes in frequency information or (b) a lo-
cal ranking scheme that computes word frequencies
of peer pi based solely on frequencies of words in
documents that are published at pi.

We are currently developing a distributed word
ranking algorithm that is a hybrid form of the two
approaches described earlier. We provide an algo-
rithm that is based on local information, but it also
tries to combine this information with the global
“truth” through an updating and estimation mech-
anism.

5 Conclusions

We presented our current work on the problem
of distributed resource sharing using self-organised
P2P networks and languages from Information Re-
trieval.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison Wesley, 1999.

[2] P. A. Chirita, S. Idreos, M. Koubarakis, and W. Ne-
jdl. Publish/Subscribe for RDF-based P2P Net-
works. In Proceedings of the 1st European Semantic
Web Symposium, May 2004.

[3] S. Idreos, M. Koubarakis, and C. Tryfonopou-
los. P2P-DIET: Ad-hoc and Continuous Queries
in Super-Peer Networks. In Proceedings of the
IX International Conference on Extending Database

1Word frequencies are useful for processing queries in
AWP [7] but also vector space queries [8].

Technology (EDBT04), pages 851–853, Heraklion,
Crete, Greece, 14–18 March 2004.

[4] S. Idreos, C. Tryfonopoulos, M. Koubarakis, and
Y. Drougas. Query Processing in Super-Peer Net-
works with Languages Based on Information Re-
trieval: the P2P-DIET Approach. In Proceedings
of P2P & DB 2004, 2004.

[5] M. Koubarakis and T. Koutris and P. Raftopoulou
and C. Tryfonopoulos. Information Alert in Dis-
tributed Digital Libraries: The Models, Languages
and Architecture of DIAS. In Proceedings of the
6th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL 2002), vol-
ume 2458 of Lecture Notes in Computer Science,
pages 527–542, September 2002.

[6] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In Pro-
ceedings of the ACM SIGCOMM ’01 Conference,
San Diego, California, August 2001.

[7] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas.
Filtering Algorithms for Information Retrieval Mod-
els with Named Attributes and Proximity Opera-
tors. In Proceedings of the 27th Annual ACM SI-
GIR Conference, Sheffield, United Kingdom, July
25-July 29 2004. Forthcoming.

[8] T.W. Yan and H. Garcia-Molina. The SIFT infor-
mation dissemination system. ACM Transactions
on Database Systems, 24(4):529–565, 1999.

[9] G. K. Zipf. Human Behaviour and Principle of Least
Effort. Addison Wesley, Cambridge, Massachusetts,
1949.

4


