
Exploiting Correlated Keywords to Improve
Approximate Information Filtering

Christian Zimmer, Christos Tryfonopoulos, and Gerhard Weikum
Databases and Information Systems Department

Max-Planck Institut for Informatics
66123 Saarbrücken, Germany

{czimmer, trifon, weikum}@mpi-inf.mpg.de

ABSTRACT
Information filtering, also referred to as publish/subscribe,
complements one-time searching since users are able to sub-
scribe to information sources and be notified whenever new
documents of interest are published. In approximate infor-
mation filtering only selected information sources, that are
likely to publish documents relevant to the user interests in
the future, are monitored. To achieve this functionality, a
subscriber exploits statistical metadata to identify promising
publishers and index its continuous query only in those pub-
lishers. The statistics are maintained in a directory, usually
on a per-keyword basis, thus disregarding possible correla-
tions among keywords. Using this coarse information, poor
publisher selection may lead to poor filtering performance
and thus loss of interesting documents.1

Based on the above observation, this work extends query
routing techniques from the domain of distributed informa-
tion retrieval in peer-to-peer (P2P) networks, and provides
new algorithms for exploiting the correlation among key-
words in a filtering setting. We develop and evaluate two
algorithms based on single-key and multi-key statistics and
utilize two different synopses (Hash Sketches and KMV syn-
opses) to compactly represent publishers. Our experimental
evaluation using two real-life corpora with web and blog data
demonstrates the filtering effectiveness of both approaches
and highlights the different tradeoffs.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—
Selection process, Information filtering

General Terms
Algorithms, Design, Performance

Keywords
Peer-to-Peer (P2P), information systems, approximate pub-
lish/subscribe, distributed information filtering (IF), distinct-
value (DV) estimation
1This work has been partly supported by the EU project
AEOLUS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08,July 20–24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

1. INTRODUCTION
In an information filtering (IF) scenario a subscriber sub-

mits a continuous query (or subscription) and waits to be
notified from the system about certain events of interest that
take place (i.e., about newly published documents relevant
to the continuous query). Most approaches to IF taken so
far have the underlying hypothesis of potentially delivering
notifications from every information producer to subscribers
[26, 25, 2]. This exact publish/subscribe model imposes an
information overload burden on the user, and also creates
an efficiency and scalability bottleneck that is probably not
desirable in applications like news or blog filtering.

In approximate information filtering only a few carefully
selected, specialized, and promising publishers store the user
query and are monitored for new publications. Thus, the
user query is replicated to these sources and only published
documents from these sources are forwarded to the sub-
scriber. The system is responsible for managing the user
query, discovering new potential sources and moving queries
to better or more promising sources. Since in an IF scenario
the data is originally highly distributed residing on millions
of sites (e.g., with people contributing to blogs), approxi-
mate IF seems an ideal candidate for such a setting. This
is also supported by the fact that exact IF functionality has
proven expensive for such distributed environments [26, 25,
2]. Thus, approximate IF achieves much better scalability
of such systems by trading faster response times and lower
message traffic for a moderate loss in recall.

In approximate IF the publisher selection for a given con-
tinuous query with multiple keywords is driven by statisti-
cal summaries that are stored by the system. These sum-
maries are provided to the directory by the publishers and
can be managed in different ways ranging from centralized
solutions like servers or server farms, to super-peer or pure
peer-to-peer (P2P) solutions in the form of a distributed
P2P directory built on top of a DHT [1, 24] or other kinds
of overlay networks. For scalability, the summaries have
publisher granularity, not document granularity, thus cap-
turing the best publisher for certain keywords (also referred
to as keys) but not for specific documents. This, together
with per-key organization of the directory that disregards
keyword correlations (also referred to as key sets) are two
of the basic reasons that may possibly lead to insufficient
recall. On the other hand, considering statistics for all pos-
sible key sets is clearly not possible due to the explosion in
the feature space.

As an example scenario, consider a user Bob who wants
to follow the discussion about the presidential elections in
the US, and wants to receive notifications from a number
of different sites like news agencies, portals, and user blogs.
Clearly, Bob would be interested in monitoring a variety of
publishers but is not interested in receiving all the articles
published by all sources, as it would be the case for exact
IF. Thus, in an approximate IF scenario, Bob would sub-

mit the continuous query US presidential elections to the
filtering system. The basic approach would decompose the
continuous query into the three individual keys and use the
statistics from the directory to compute a combined score
(e.g., intersection or some other kind of aggregation of in-
dividual key scores) for each key and publisher. This score
would represent the probability of each source to publish
documents about US presidential elections in the near fu-
ture. This approach may lead to poor filtering quality as
the top-ranked publishers for the complete query may not
be among the top selected publishers. In the worst case, a
selected publisher may deliver many documents for each sin-
gle keyword, but no single document matching all keywords,
since this information is not present in the directory.

In this paper, we develop and evaluate two approaches
that use correlations among keys to improve filtering qual-
ity in the scenario described above. The first algorithm
(coined USS) uses existing single-key synopses stored in the
directory to estimate the publishing behavior of informa-
tion sources for key sets, while the second (coined CSS) en-
hances the directory to explicitly maintain statistical meta-
data about selectively chosen key sets.

Our work builds upon previous work in the area of infor-
mation retrieval (IR) over P2P networks [18] and extends it
to the approximate IF setting in various novel ways. Our
contribution can be summarized as follows:

• In contrast to distributed IR settings for one-time search-
ing where sources are ranked according to their docu-
ment collections, in approximate IF the publishers are
ranked according to their probability to publish rele-
vant documents in the near future, which poses dif-
ferent requirements for the maintenance of statistics.
This is the first paper to develop algorithms for ex-
ploiting keyword correlations in such an IF setting.

• We extend the approach of [18] for two-key queries, to
the case of multi-key continuous queries for an arbi-
trary number of keys. We also provide new algorithms
to approximate multi-key statistics by combining the
statistics of arbitrary subsets.

• We show that Hash Sketches, used in [18] for com-
pactly representing the documents, yield inaccurate
results when considering continuous queries with more
than two keys. We, thus, propose the usage of very
recent state-of-the-art techniques for compact repre-
sentation of multisets [6]. These new techniques allow
us to compute accurate synopses for multi-key queries,
and improve the filtering effectiveness.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces background information on Hash Sketches,
and KMV synopses. Section 3 discusses the architecture of
our approximate IF system. In Section 4 we outline mea-
sures of correlation for keywords and present the two pro-
posed algorithms. Section 5 shows our experimental results.
Section 6 discusses related research. Finally, Section 7 con-
cludes the paper.

2. BACKGROUND
Synopses for compact approximation of sets, multisets,

and their statistical properties have recently received great
attention in the context of sensor networks, data streams,
content delivery, and estimation issues in structured databases
[10]. The methods under consideration include Bloom filters
[7], Hash Sketches [13], min-wise independent permutations
[8], and KMV synopses [6], all of which are hash-based but
differ in their strengths and limitations of representing var-
ious kinds of properties. The latter include set membership
testing, set cardinality estimation, estimating the number of
distinct elements in a multiset, forming intersections, unions,

differences, etc. As shown in [18], these compact represen-
tations are a necessary component also for distributed IR
approaches, since they assist in lowering the volume of data
transferred over the network and thus increase system scala-
bility. Following this line, we also utilize these techniques for
compactly disseminating statistics about the publishers. In
this section we give brief background information on Hash
Sketches and KMV synopses that are utilized by our algo-
rithms.

2.1 Hash Sketches
Hash Sketches denote a well-known statistical tool for

probabilistically estimating the cardinality of a multiset S.
This distinct-value estimation technique was proposed in
[13] and further improved in [11]. Hash Sketches rely on the
existence of a pseudo-uniform hash function which spreads
input values pseudo-uniformly over its output values.

A key property of Hash Sketches lies in the ability to com-
bine them. We can derive the Hash Sketch of the union of
an arbitrary number of multisets from the Hash Sketches of
each multiset by taking their bit-wise OR. Thus, given the
compact synopses of a set of multisets, one can instantly
estimate the number of distinct items in the union of these
multisets.

Furthermore, Hash Sketches can be used to estimate the
cardinality of the intersection (overlap) of two sets. First,
recall that |A∩B| = |A|+ |B|−|A∪B|. Second, by utilizing
the union method outlined above, one can derive the Hash
Sketch for A ∪B, and thus compute the cardinality of |A ∩
B|. However, it is not possible to create the Hash Sketch
synopsis of the intersection for future use. The above can
be generalized to more than two sets, using the inclusion-
exclusion principle and the sieve formula by Poincaré and
Sylvester. Obviously, to compute the intersection of a huge
number of Hash Sketches, the relative error is propagated
and the distinct-value estimation is getting inaccurate. Even
regarding the overlap of three multisets, the sieve formula
needs a high computation complexity.

2.2 KMV Synopses
In [6], the KMV synopses and appropriate DV estima-

tors are introduced. The main difference to Hash Sketches
are constituted in the lower computational costs and the
more accurate DV estimation. Especially, the main focus of
KMVs is on arbitrary multiset operations including union,
intersection, and differences. First, we explain the main mo-
tivation behind the DV estimators. Then, we introduce the
KMV data structure and the basic DV estimator. Using the
KMV synopses and the basic estimator, the multiset opera-
tions union and intersection can be applied.

Assume that D points are placed randomly and uniformly
on the unit interval. The expected distance between two
neighboring points is 1/(D + 1) ≈ 1/D, such that the ex-
pected value of Uk, the k-th smallest point, is E[Uk] ≈ k/D.
Thus D ≈ k/E[Uk]. If we know Uk itself, a basic estimator
for the number of points as proposed in [4] is

D̂b
k = k/Uk (1)

In the DV estimation problem, we have an enumeration
of distinct values v1, v2, . . . , vD in dataset A with domain
θ(A). Using a hash function h : θ(A) 7→ {0, 1, . . . , M} such
that the sequence h(v1), h(vn), . . . , h(vD) looks like a se-
quence of independent and identically distributed samples
from the discrete uniform distribution on {0, 1, . . . , M}. As-
suming that M sufficiently greater than D, the sequence
U1 = h(v1)/M, U2 = h(v2)/M, . . . , UD = h(vD)/M will ap-
proximate the realization of a sequence of samples from the
continuous uniform distribution on [0, 1]. The requirement
that M is much larger than D avoids collisions and ensures
with high probability, h(vi) 6= h(vj) for all i 6= j.

2.2.1 Creating KMV Synopsis and DV Estimator
Using the idea of the basic estimator introduced in [4],

a KMV synopsis for a multiset S is created as described
in [6]: by applying the hash function h() to each value of
θ(S), the k smallest of the hashed values are recorded. This
simple synopsis (e.g., set LS of hashed values) is called KMV
synopsis (for k minimum values).

In [6], the DV estimator for KMV synopses extends the
basic estimator 1 and uses the following computation:

D̂k = (k − 1)/Uk (2)

It is shown that, under the assumption that D > k, this

estimator is unbiased (in contrast to Equation 1) and D̂k

is used for the multiset operations described below. But, if
D ≤ k, then it is easily possible to detect this situation and
return the exact value of D from the synopsis.

2.2.2 Multiset Operations on KMV Synopsis
So far, we have an estimator for KMV synopses. Now,

we focus on multiset operations using two or more KMV
synopses in combination with estimating the compound set
and present the union and intersection operation.

Throughout, all synopses are created using the same hash
function h : θ 7→ {0, 1, . . . , M} where θ denotes the data
value domain appearing in the synopses and M = O(|θ|2).
Ordinary set operations are denoted by {∪,∩} and multiset
operations by {∪m,∩m}.

Union Operation: We assume two multisets A and B
with their KMV synopses LA and LB of size kA and kB ,
respectively. The goal is to estimate the number of distinct
values in the union of A and B as D∪ = |θ(A∪m B|). Here,
θ(S) denotes the set of DVs in multiset S. Thus, D∪ can
also be interpreted as D∪ = |θ(A) ∪ θ(B)|.

Let L = LA ⊕ LB be defined as the set including the k
smallest values in LA ∪ LB , where k = min(kA, kB) and L
is the KMV synopsis of size k describing LA ∪m LB . Thus,
by applying the DV estimator for KMV synopses, D∪ is
estimated by following equation:

D̂∪ = (k − 1)/Uk (3)

Using the symmetric and associative operator ⊕, this re-
sult can be extended to multiple sets: L = LA1⊕LA2⊕· · ·⊕
LAn estimates the number of DVs in A1∪m A2∪m · · ·∪m An.

Intersection Operation: As before, consider two mul-
tisets A and B with corresponding KMV synopses LA and
LB of sizes kA and kB , respectively. The goal is to estimate
D∩ = |θ(A ∩m B)| = |θ(A) ∩ θ(B)|. Set L = LA ⊕ LB

with L = {h(v1), h(v2), . . . , h(vk)}, where k = min(kA, kB).
Each value vi is an element of θ(A) ∪ θ(B). Also set VL =
{v1, v2, . . . , vk} and K∩ as follows:

K∩ = |{v ∈ VL : v ∈ θ(A) ∩ θ(B)}| (4)

Obviously, v ∈ θ(A) ∩ θ(B) if and only if h(v) ∈ LA ∩ LB

such that K∩ can be computed from LA and LB alone. K∩
is utilized to estimate D∩ using the Jaccard Distance ρ =
D∩/D∪ estimated by ρ̂ = K∩/k, the fraction of sampling
elements in VL ⊆ θ(A ∪ B) that belong to θ(A ∩ B). This
leads to the proposed estimator:

D̂∩ = (K∩/k) · (k − 1)/Uk (5)

3. SYSTEM ARCHITECTURE
Our approximate IF architecture consists of three com-

ponents: the directory, the publishers and the subscribers.
The notation used in the following sections is summarized
in Table 1.

Symbol Explanation

|X| Number of distinct documents in a multiset X
D Set of documents in the system

Di Set of documents on publisher pi

a, b Individual keys
ab Key set (both of a and b)

D(a) Set of documents in D containing key a
Di(a) Set of documents in Di containing key a
df(a) Frequency of key a in D (= |D(a)|)

dfi(a) Frequency of key a in Di (= |Di(a)|)
SY N(a) Synopsis representing documents in D(a)

SY Ni(a) Synopsis representing documents in Di(a)
d(a) Directory node responsible for key a

Table 1: Summary of Notation

Publishers. Publishers are information sources that want
to expose their content to the IF system, and can be user
blogs, digital libraries, or peers with local crawlers that per-
form focused crawling at portals of their interest. Each pub-
lisher exposes its content to the system in the form of per-key
statistics (called posts) about its local index. These statistics
consist of inverted lists of documents relevant to the corre-
sponding key, and are made available to the directory. The
posts contain contact information about publishers, together
with statistics to calculate quality measures for a given key
(e.g., frequencies). Typically, such statistics include also the
length of the inverted list and other quality measures to
support the publisher ranking procedure carried out by sub-
scribers. Specifically, the size of the inverted list for a key –
that is, the frequency for key a, or dfi(a) – can be maintained
in the form of a Hash Sketch or KMV synopsis; a publisher
inserts an identifer for each document contained in its col-
lection into a local Hash Sketch or KMV synopsis for this
key to obtain SY Ni(a). The publishers have to update the
directory statistics after a certain number of publications by
sending the new summaries to the directory. Finally, pub-
lishers are responsible for locally storing continuous queries
submitted by subscribers and matching them against new
documents they publish. More than one publisher may be
used to expose the contents of large digital libraries, portals
or blog hosting sites.

Directory. The main functionality of the directory is to
store compact, aggregated metadata about the publishers’
local indexes, and make these statistics available when re-
quested by the subscribers. This information will be used by
the subscribers to determine which publishers are promising
candidates to satisfy a given continuous query in the future.
There are different ways to implement this type of directory,
ranging from centralized solutions that emphasize accuracy
in statistics and rely on server farms, to two-tier architec-
tures, as in super-peer systems, that emphasize scalability
and fault-tolerance. In our approach, we utilize a distributed
directory maintained by super-peers that are organized us-
ing a Chord DHT [24] forming a conceptually global, but
physically distributed directory that manages the statistics
provided by the publishers in a scalable manner with good
properties regarding system dynamics (e.g., churn). The
DHT is used to partition the key space, such that every
super-peer is responsible for the statistics of a randomized
subset of keys within the directory. Since there is a well-
defined directory node responsible for each key (through the
DHT hash function), the synopses representing the index
lists of all publishers for a particular key a are all sent to
the same directory node d(a). Thus, d(a) can compute a
moving-window estimate for the global df value of a – df(a)
– by performing an union operation for all synopses SY Ni(a)
sent by every publisher pi for key a.

Subscribers. Subscribers are information consumers that
seek to satisfy their long-term information needs by sub-
scribing to publishers that will publish interesting docu-
ments in the future. To subscribe to a potentially promising
publisher p, a subscriber forwards to p the related contin-
uous query, which is stored at the publisher side, and is
matched with every new publication that takes place. Sub-

scribers utilize directory statistics to score and rank pub-
lishers, and this scoring is based on appropriate publisher
selection and behavior prediction strategies [29] that utilize
time-series analysis of statistics. To follow the changes in the
publishing behavior of information producers, subscribers
periodically re-rank publishers by obtaining fresh statistics
from the directory, and use the new publisher ranking to
reposition their continuous queries.

3.1 Subscription Protocol
Let us assume that a subscriber s wants to subscribe with

a continuous query containing multiple keywords. To do
so, s needs to determine which publishers in the network
are promising candidates to satisfy the continuous query
q = {k1, k2, . . . , kn} with appropriate documents published
in the future.

To collect statistics about the publishers, s needs to con-
tact the directory to retrieve statistics for all keys ki, 1 ≤
i ≤ n. Based on the collected statistics, a ranking of pub-
lishers is determined and the highest ranked publishers are
candidates for storing q. Thus, only publications occurring
in those publishers will be matched against q and create ap-
propriate notifications. Publishers that make available doc-
uments relevant to q, but not indexing q, will not produce
any notification, since they are not aware of q. When the
publishers that will store q have been determined, s sends
the continuous query to them. A publisher p receiving q,
will store q in its local database using appropriate query
indexing mechanisms such as [28].

This baseline approach intersects the statistics for the sin-
gle keys, i.e., sends the continuous query only to (a subset
of) the publishers that published (or will publish) statistics
for all queried keys. However, this approach may lead to re-
duced recall, since a publisher appearing in publisher lists for
both keys ki and kj will not necessarily publish documents
containing both ki and kj . Thus, to select an appropriate
publisher for q, we have to consider the statistics of the key
set to determine more accurately its future publishing be-
havior. Obviously, the larger the subset of q we maintain
statistics for, the more accurate our prediction about the
behavior of the publisher will be.

Finally, notice that filtering and publisher selection are
dynamic processes, and therefore periodic query reposition-
ing, based on user-set preferences, is necessary to adapt to
changes in publisher’s behavior. To reposition an already in-
dexed query q, a subscriber would re-execute the subscrip-
tion protocol, acquire new publisher statistics, compute a
new ranking, and appropriately modify the set of publishers
that will index q.

3.2 Publication and Notification Protocol
When a document d is published by p, it is matched

against p’s local query database using an appropriate algo-
rithm [28] to determine which subscribers should be notified.
Then, for each subscriber s, p sends a notification to s using
the contact address associated with the stored query.

4. ALGORITHMS FOR CORRELATION
In this section we summarize the existing measures for

correlated key pairs, extend these measures for capturing
relatedness among keys in key sets, and explain the correla-
tion model that will drive the extended synopses construc-
tion and publisher selection. Subsequently, we present two
new algorithms, coined USS and CSS, for exploiting the cor-
relations among key sets in IF scenarios.

4.1 Correlation measures
In [18], the conditional probability that a random docu-

ment contains a key a given that it contains a key b was
introduced as an asymmetric measure of relatedness. Using

this measurement, there is no need for knowing or estimat-
ing the total number of documents, since the estimator for
key sets with two keys a and b is given by:

P̂ (A|B) =
df(ab)/|D|
df(b)/|D| =

df(ab)

df(b)
(6)

Subsequently, [18] proposes methods to identify sufficiently
frequent and interesting key sets, and select those that present
the lowest correlation. The output of this process would then
be used to guide query routing to appropriate nodes.

Here, we modify the approach summarized above to con-
sider arbitrary numbers of keys and propose an approach
to identify appropriate key sets in an information filtering
scenario. Thus, to consider an arbitrary number of keys in
a correlated key set S = {k0, k1, . . . , kn−1} and to compute
the probability estimator that a random document contains
k0 given that it contains all other keys, the previous formula
has to be modified as follows:

P̂ (K0|K1 . . . Kn−1) =
df(k0k1 . . . kn−1)

df(k1 . . . kn−1)
(7)

Notice that, in an information filtering setting, the con-
tinuous queries are actually long-standing queries that will
be assessed several times in the future. Thus, all continu-
ous queries can be effectively considered as candidate key
sets for harvesting multi-key statistics. Should a more se-
lective system behavior be intended (e.g., for performance
reasons), the submitted continuous queries can be further
analyzed using frequent itemset mining techniques [3, 12] to
discover the most common ones.

To identify either uncorrelated key pairs or negatively cor-
related key pairs, additional statistics are needed to find the
best publishers to index a multi-key continuous query. To
clarify this need, consider a key pair ab that has no cor-
relation. For these keys, there are only few publishers in
the network that have the potential to publish in the future
relevant documents that would contain both a and b, and
we cannot locate these publishers by selecting and combin-
ing the statistics for key a and key b alone. The conclusion
from this is that we consider a pair ab as interesting if both

P̂ (A|B) and P̂ (B|A) are below some threshold β within the
documents. Extending the above to a key set S with an
arbitrary number of keys using the conditional probability
in Equation 7, we have to estimate for each key k0 the value

of P̂ (K0|K1 . . . Kn−1). The key set S is of interest if all
estimated probabilities are below some threshold β.

4.2 The Algorithm USS
In this section we present the algorithm USS (Unique Syn-

opses Storage) that uses single-key synopses already stored
in the directory to estimate the publishing behavior for key
sets. As the distributed statistics of a publisher pi regard-
ing a key a contain the synopsis SY Ni(a) (to represent the
documents of pi), it is possible to compute the number of
documents containing all keys of a given key set S. For this,
we use the intersection operation for multisets as explained
in Section 2 as an estimation for the frequency of the whole
key set in pi’s collection (dfi(S)). Together with prediction
techniques presented in [27], the most promising publishers
can be selected by applying appropriate scoring functions
based on publisher behavior prediction.

Consider a subscriber s subscribing a multi-key continu-
ous query q = {k1, k2, . . . , kn} containing n distinct keys.
According to the USS algorithm the following steps are ex-
ecuted:

1. For each key kj , 1 ≤ k ≤ n in q, subscriber s contacts
the directory node d(kj) and retrieves the statistical
summaries published individually for all keys, includ-
ing the synopses SY Ni(kj) produced by publisher pi.

2. For each publisher pi appearing in all statistics, s com-
putes an estimation for dfi(q) using synopses inter-
section techniques, and applies prediction techniques
based on time-series analysis to compute a behavior
prediction score as described in [27]. This score indi-
cates pi’s potential to provide appropriate published
documents in the future.

3. Subscriber s sends the continuous query q to the top-
ranked publishers with the highest prediction scores.
Only these publishers will index q and in the future
notify s about matching documents. Obviously, non-
selected publishers will not notify s for published match-
ing documents, since they are not aware of q.

4. Due to publisher churn and dynamics in publishing
behavior s has to reposition q by repeating steps 1 to
3 in a periodic way.

The USS approach has the major advantage that it can
be performed for all possible key sets and queries in the
directory, while the CSS approach, presented in the next
section, uses multi-key statistics of judiciously selected key
sets, and can only be applied to these predefined key set
collections. Below, we list some important issues about the
USS approach:

• Higher Network Load: To exploit the single-key
statistics for a given key set, the directory has to send
long lists of statistics to the requesting subscriber. In
contrast, given multi-key statistics in the directory,
only the statistics of the top-ranked publishers have
to be retrieved.

• Inaccuracy: While both Hash Sketches and KMV
synopses allow to estimate the number of distinct val-
ues in the intersection of multisets, it is inaccurate
to create a synopsis for the intersection that repre-
sents the documents containing all keys. In the case of
Hash Sketches an estimation for a key set with more
than two keys suffers from a significant degrading in
accuracy due to its indirect way to compute the sieve
formula, whereas the KMV synopses provide better
cardinality estimation for multiple set intersections.

• Prediction Errors: Considering single-key statistics
to predict publisher behavior introduces additional er-
rors. The subscriber has to perform time-series analy-
sis of estimated values thus increasing the probability
of prediction errors whereas prediction on accurate val-
ues showed very promising results [27].

4.3 The Algorithm CSS
To overcome the problems of algorithm USS, we introduce

the algorithm CSS (Combined Synopses Storage) that iden-
tifies valuable key combinations, enhances the directory to
explicitly maintain these multi-key statistics, and exploits
these statistics to improve publisher selection.

We have already discussed in Section 4.1 that uncorrelated
or negatively correlated keys are of interest to collect multi-
key statistics. Our CSS algorithm aims at addressing the
following questions: (i) how to decide which key sets are of
interest to disseminate additional multi-key statistics; (ii)
how to disseminate multi-key statistics of publishers to the
directory; (iii) how to exploit the additional statistics to
improve publisher selection; (iv) how to deal with multi-key
statistics for subsets of the complete continuous query.

4.3.1 Assessing Key-Sets
Given a key set S = {k1, k2, . . . , kn}, we employ a de-

terministic function (e.g., by selecting the lexicographically
highest or lowest key) to select one directory node that has

to assess the relatedness among the keys of S and be respon-
sible for this key set. To achieve this, the CSS approach uses
the following steps to assess a candidate key set S where d(S)
is the directory node responsible for the decision:

1. Initially, d(S) contacts all directory nodes responsi-
ble for the other keys kj ∈ S to retrieve the synopsis
SY N(kj) for k representing all documents containing
the key. The answering directory nodes for a key kj

compute locally the synopsis SY N(kj) by using the
union operation over all individual publisher synopses
SY Ni(kj) (see Sections 2.1 and 2.2).

2. Subsequently d(S) computes the intersections among
the synopses, to retrieve the estimated cardinality of
documents containing all keys (df(S)).

3. Using Equation 7, d(S) then computes the conditional
probabilities for each key kj .

Small values for the conditional probabilities show that
the occurrence of all keys in the documents are largely in-
dependent, meaning that publisher selection decisions can
strongly benefit from the existence of available multi-key
statistics. Thus, CSS initiates the creation of these addi-
tional summaries if the conditional probabilities for all keys
kj ∈ S are below some threshold β.

To further optimize message traffic between directory nodes
we introduce a threshold α, such that if the conditional prob-
ability of a key kj is above α, publisher selection strategy
does not have to consider the single-key statistics of that
key. The idea behind this is that kj is contained in almost
all documents containing the rest of the keys S\{kj}, mak-
ing this key set a candidate for multi-key statistics.

4.3.2 Disseminating Multi-Key Statistics
As soon as a key set has been assessed as a useful can-

didate that is worth collecting multi-key statistics for, pub-
lishers have to learn this fact. Especially in an information
filtering scenario, where statistics have to get updated, the
continuous process of directory refreshment can be used to
disseminate the knowledge about multi-key sets.

Let us assume that a directory node d(S) responsible for
a key k identified key set S as useful. According to our
algorithm, d(S) is also responsible to maintain the multi-key
statistics for the complete key set S. Whenever a publisher p
updates its statistics for key k, d(S) can inform the publisher
about the new key set. In this way p will compute its local
statistics for the set S and disseminate them to the directory
node d(S). This procedure does not incur any additional
messages compared to the baseline approach described in
Section 3.1, since additional statistics can be piggybacked
on messages that need to be sent anyway.

4.3.3 Exploiting Multi-Key Statistics
Let us assume that a subscriber s submitting a continuous

query q asks the directory nodes responsible for the keys in
q to provide the related statistics. Since q is included in
the request message, a directory node that stores statistics
about a key set S, where S ⊆ q, will return the statistics
for S together with the single-key statistics it is responsible
for. In the following section we explain how to compute the
statistics for a multi-key query by combining statistics from
subsets available in the directory.

Subsequently, the subscriber collects the multi-key statis-
tics and uses them to perform publisher ranking. Note that
the subscriber is based on multi-key statistics, and is thus
able to predict the publishing behavior of sources more ac-
curately. Contrary, the baseline algorithm of Section 3.1
performs a separate prediction for each single key.

We also have to mention that if no summaries for the key
set (or subsets, see 4.3.4) have been published, the base-
line procedure using single-key summaries is still applicable
without contacting additional directory nodes.

4.3.4 Combining Multi-Key Statistics
A usual case for continuous queries with more than two

keys is that there are no statistics for the full key set S of
the query, because the assessment step did not consider the
full key set as sufficiently useful. However there might be
available statistics for several multi-key subsets of S. In this
case, by design, all of these subsets can be found by the
subscriber by simply asking the directory nodes responsible
for the single keys as explained in the previous section.

To give an example, assume that the directory maintains
the multi-key statistics of S1 = {a, b, c} and S2 = {b, c, d}.
Then, for a given five-key query S = {a, b, c, d, e}, we have
several options at hand. In our CSS approach, we propose
to select all maximal subsets among the available multi-key
summaries. This is efficient in terms of network costs be-
cause the entire continuous query will be sent to all single-
key directory nodes anyway. But this consideration opens
up a space of optimization strategies; Combining such in-
comparable but mutually related multi-key statistics is rem-
iniscent of the recent work on multidimensional histograms
with incomplete information [16], but our setting has the
additional complexity of very-high-dimensional key space.

To combine the different multi-key statistics, we weight
them depending on the size of the multi-key subset. The
scoring function to calculate a publisher score is given by:

scoreS(p) =
∑

Si⊆S

|Si| · predScoresi(p) (8)

Si is a subset of the key set S contained in the continuous
query, |Si| is its cardinality, and predScoresi(p) represents
the likelihood that p will produce a document containing Si

in the future. This score is produced using time-series anal-
ysis techniques similarly to [27]. Thus, to obtain a publisher
score, we sum-up all prediction scores for the subsets Si that
we have received from the directory nodes such there is no Sj

with Si ⊂ Sj . The intuition behind weighting the prediction
score with the size of the key set |Si| is that the prediction
score for small subsets dominates the sum. This happens
because the number of documents containing all the keys of
small key sets is higher, resulting in higher prediction scores.
In the next section, we experimentally investigate different
scenarios where multi-key statistics for the full continuous
query are not available, but a combination of the statistics
of subsets is possible.

5. EXPERIMENTAL EVALUATION
In this section we evaluate the USS and CSS algorithms

using two real-life corpora with web and blog data. Since it is
difficult to find real-life continuous queries except by obtain-
ing proprietary data (e.g., from CNN’s news or Springer’s
journal alert system), we used the popular web queries con-
tained in the Zeitgeist query-log, and treated them as sub-
scriptions (e.g., assuming that a user is interested in staying
informed about his favorite pop star). We compare the fil-
tering performance of our algorithms with different synopses
and against a baseline algorithm that computes publisher
scores using single-key frequencies to predict the publishing
behavior of information producers. Our prediction mecha-
nisms have an average prediction error of 10%.

5.1 Experimental Setup
Data sets. For the experimental setup we use a re-

cently proposed benchmark [19] designed specifically for use
in the evaluation of distributed and P2P settings. Briefly,
the benchmark consists of more than 800, 000 web docu-
ments drawn from the Wikipedia corpus, and an algorithm
to distribute the documents among 1, 000 publishers with
controlled overlap that mimics the real-world behavior. The
Zeitgeist query-log contains queries with one, two, and three

keys. To investigate filtering quality depending on the con-
ditional probabilities, we use the set of distinct single-keys in
all queries to create two-, three, and four-key queries. Dur-
ing query evaluation, a continuous query is indexed in up to
25% of the publishers. We use the concept of publication
rounds to simulate the time properties of the published doc-
uments; in our experiments a publisher publishes around 400
documents in each round, which could represent the weekly
publications of a digital library or news portal.

Our second data set focuses on crawled blog data. Out
of the more than one million blogs, we selected about 1, 000
blogs that published more than 300 postings each during a
time period of three weeks, and assigned them to 1, 000 pub-
lishers. Again, we used the same Zeitgeist query-log to eval-
uate the filtering performance, while our query repositioning
algorithm was executed to simulate one query repositioning
per week.

Quality measure. We use recall to evaluate the filter-
ing performance of our algorithms. Recall in our IF setting
is defined as the ratio of the total number of notifications
received by subscribers to the total number of published doc-
uments matching the subscriptions. In our experiments, we
consider the average recall over several publication rounds.

5.2 Experimental Results
Figure 1(a) (resp. 1(b)) shows the filtering quality for all

two-key (resp. three-key) continuous queries from our web
query-log. We compare a baseline publisher selection algo-
rithm based on behavior prediction for single-key statistics
[27], with the CSS approach of multi-key statistics main-
tained in the directory, and with the USS approach using
two different synopses (Hash Sketches and KMV synopsis).

The results show the recall improvements obtained by our
algorithms. For two-key queries, 24% publishers have to be
monitored to reach a recall level of 0.5 in the baseline ap-
proach, whereas, using the CSS approach, the subscriber
only has to monitor 19% of the network. The CSS out-
performs both USS approaches, because it offers more ac-
curate and explicit statistics for the key-pairs. Comparing
the two USS approaches, the use of KMV synopses slightly
improves filtering quality when compared to Hash Sketches.
Considering the results for the three-key query set, the im-
provements are much higher. The CSS approach reaches a
recall of 0.79 by subscribing to 15% of all publishers. In
contrast, the baseline approach reaches a recall of 0.44 by
monitoring the same number of publishers. Using this query
set, we see a considerable difference between the results of
the two USS approaches. The USS-KMV approach that
uses KMV synopses almost reaches the result quality of the
multi-key approach, while USS-HS suffers from the inac-
curacy of combining Hash Sketches of more than two sets.
Recall that KMV synopses uses a direct way to intersect
multisets, whereas Hash Sketches reside on an indirect com-
putation that causes loss in accuracy.

To investigate the filtering quality of our approaches for
four-key continuous queries, we created queries using the
single keys from the real-world query set. Out of the full set
of all possible four-key queries, we selected the 500 combi-
nations with the highest number of matching documents in
our web collection. Examples of resulting queries are time
war unit world and day nation world game.

In our first experimental series with this query set, we in-
vestigated the general filtering quality of our CSS and USS
approaches. Figure 1(c) shows that CSS outperforms the
baseline approach and both USS approaches. When Hash
Sketches are used to represent documents the filtering per-
formance is worse even from the baseline approach due to the
inaccuracy of multiset operations. Contrary, the use of KMV
synopses improves the filtering quality because it guaranties
better distinct-value estimations for the intersections of mul-
tiple sets. Notice that our selected four-key queries do not

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Nodes

baseline
CSS

USS-HS
USS-KMV

(a) Two-key queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Nodes

baseline
CSS

USS-HS
USS KMV

(b) Three-key queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Nodes

baseline
CSS

USS-HS
USS-KMV

(c) Four-key queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Nodes

baseline
CSS

CSS-1
CSS-2
CSS-3
CSS-4
CSS-5

(d) Combining multi-key statistics

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Nodes

baseline 2-Key-Low
CSS 2-Key-Low

baseline 2-Key-High
CSS 2-Key-High

baseline 2-Key-All-High
CSS 2-Key-All-High

(e) Effect for two-key queries

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
ve

ra
ge

 R
ec

al
l

Percentage of Monitored Publisher Nodes

baseline 3-Key-Low
CSS 3-Key-Low

baseline 3-Key-High
CSS 3-Key-High

baseline 3-Key-All-High
CSS 3-Key-All-High

(f) Effect for three-key queries
Figure 1: Average recall for multi-key queries from Zeitgeist on the Wikipedia collection.

fully show the improvement margins of the CSS algorithm,
since more selective key sets with less matching documents
benefit more from multi-key statistics. The three-key queries
in Figure 1(b) are more selective with less matching docu-
ments resulting in higher improvements.

Using the set of four-key continuous queries described
above, we measured the filtering quality for combining multi-
key statistics as proposed in Section 4.3.4. Figure 1(d) il-
lustrates the improvements for several scenarios of available
multi-key statistics in comparison to the baseline approach:
all four three-key statistics (CSS-1), all six two-key statistics
(CSS-2), two two-key statistics (CSS-3), one three-key plus
one single-key statistics (CSS-4), and one two-key plus one
three-key statistics (CSS-5). The results show that all com-
binations improve the baseline approach, but cannot reach
the filtering quality of the CSS approach.

Figures 1(e) and 1(f) demonstrate the improvements in
filtering performance over the baseline algorithm, when us-
ing our correlation measures for multi-key statistics. To con-
duct this experiment, we created all possible two- and three-
key queries using the single-keys from our Zeitgeist query-log
and selected three query sets (with a size of 100 each) with
the following properties: (i) Low-Corr includes those key
sets where all keys have a low conditional probability; (ii)
High-Corr consists of key sets with high conditional proba-
bility for at least one key; (iii) All-High-Corr consists of key
sets with high conditional probabilities for all keys. Table 2
shows example three-key queries for the query sets described
above (∗ denotes high conditional probabilities).

keyA, keyB , keyC P (A|BC) P (B|AC) P (C|AB)

british, sport, star 0.13 0.21 0.22
time, face, friend 0.83∗ 0.25 0.22
nation, unit, world 0.54∗ 0.47∗ 0.45∗

Table 2: Relatedness of three-key queries.

As already explained, subscribing to key sets where all
keys have low conditional probabilities yields to the high-
est filtering result improvements when monitoring the same
percentage of publisher nodes. Thus, when monitoring only
10% of the publishers, 3-Key-Low-Corr has an recall im-
provement from 0.44 to 0.65 whereas 3-Key-All-High-Corr
only improves filtering quality from 0.25 to 0.28. Similar

results hold for two-key queries leading us to the conclusion
that the CSS algorithm has no significant effect for key sets
where all keys are highly correlated, while it significantly
improves filtering for key sets with low correlations.

Analyzing the results for key sets where one key is highly
correlated to all others (High-Corr), we observe an smaller
improvement compared to unrelated keys. Here, the use of
the CSS approach is possible, but we propose an alternative
strategy: a high conditional probability for a key k means
that there is almost no additional information included in
multi-key statistics for the full key sets in comparison to the
key set without k. As an example, the multi-key statistics
for key set time face friend yield to similar filtering results
than the multi-key statistics for face friend because the con-
ditional probability P (time|face, friend) is high (83% of all
documents containing face and friend also contain time).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
ve

ra
ge

 R
ec

al
l

Number of Monitored Blogs

baseline
CSS

USS-HS
USS-KMV

Figure 2: Average recall for blog data.

Figure 2 shows experimental results from our blog data
experiment. Our observations lead to similar conclusions
with the web data corpus, with CSS outperforming USS
and baseline. For space reasons, we only present the results
for all two-, and three-key queries from the Zeitgeist query-
log. Again, the KMV synopses perform better than Hash
Sketches. Notice that, contrary to the web data collection,
a smaller number of blogs have to be monitored to acquire
a sufficiently high recall. This happens because all blogs are
highly specialized and thus only a small number of them
contribute new posts matching the continuous queries.

6. RELATED WORK
In this section, we present related work in the context

of information retrieval and filtering, focusing on advances
on distributed and P2P settings, and discuss the usage of
correlation among keys within these settings.

Recent work on P2P IR is related to earlier research on
distributed IR or metasearch engines [17], but this older
work assumed a small and static set of document collec-
tions among which a query had to choose. In contrast,
P2P systems consider a much larger scale and also face
high dynamics, which rules out comprehensive and com-
plex statistical models for query routing. The most impor-
tant routing methods in the literature are CORI [9], the
decision-theoretic framework (DTF) [14], and the overlap-
aware method [5].

All these methods organize the statistics about nodes,
which drive the query routing decisions, on a per-key basis
disregarding key correlations. The only recent works that
consider key correlations in the context of P2P search are
[18] and [23]. [18] considers frequent key combinations in
query logs and documents for P2P IR, where [21] proposes a
framework for discriminative keys, which includes correlated
key combinations; however, it does not give any algorithms
for managing the corresponding statistics in a distributed
setting and for correlation-aware query routing.

In the area of distributed and P2P IF, new approaches
that use a DHT as the routing infrastructure to build fil-
tering functionality have lately been developed. Scribe [22]
is a topic-based publish/subscribe system based on Pastry.
Hermes [20] is similar to Scribe because it uses the same
underlying DHT but it allows more expressive subscriptions
by supporting the notion of an event type with attributes.
In [25], pFilter uses a hierarchical extension of CAN DHT to
filter unstructured documents and relies on multi-cast trees
to notify subscribers. Finally, supporting prefix and suffix
queries in string attributes is the focus of the DHTStrings
system [2], which utilizes a DHT-agnostic architecture to
develop algorithms for efficient multi-dimensional event pro-
cessing. In [27], two systems for exact and approximate in-
formation filtering (coined DHTrie and MAPS respectively)
are compared where the approximate approach also uses an
distributed directory of metadata concerning publishers.

P2P-DIET [15] and LibraRing [26] where the first ap-
proaches that tried to support both retrieval and filtering
in a single unifying framework. P2P-DIET utilizes an ex-
pressive query language based on IR concepts and is imple-
mented as an unstructured P2P network with routing tech-
niques based on shortest paths and minimum-weight span-
ning trees. LibraRing was the first approach to provide
protocols for the support of both IR and IF functionality
in digital libraries using DHTs. Contrary to LibraRing, in
MinervaDL [29] the Chord DHT is used to disseminate and
store statistics or metadata about the publishers rather than
the documents themselves. Avoiding per-document indexing
granularity allows to improve scalability by trading recall for
lower message traffic. This approximate retrieval and filter-
ing approach relaxes the assumption of potentially delivering
notifications from every producer and amplifies scalability.
The work in this paper shares the concept of approximate IF
with the MinervaDL system and uses IF techniques similar
to the ones described there.

7. CONCLUSIONS
In this paper, we presented two algorithms, coined USS

and CSS, that capture and exploit statistics about corre-
lated key sets to improve the filtering performance in ap-
proximate IF scenarios. To improve efficiency we also used
Hash Sketches and KMV synopses to compactly represent
publisher content. Our experimental studies showed that al-
gorithm CSS outperforms the competitors and achieves an
average recall of around 70% while monitoring only 10% of
the publishers. Additionally, the usage of the more accu-

rate KMV synopses, instead of Hash Sketches, enables the
usage of USS also for multi-key queries, since its filtering
effectiveness is greatly improved. Finally, we observed that,
multi-key queries with keys that are uncorrelated show the
highest gains in terms of recall.

8. REFERENCES
[1] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P

Information Systems. In CoopIS, 2001.
[2] I. Aekaterinidis and P. Triantafillou. Internet Scale String

Attribute Publish/Subscribe Data Networks. In CIKM, 2005.
[3] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

Association Rules between Sets of Items in Large Databases. In
SIGMOD, 1993.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting Distinct Elements in a Data Stream. In
RANDOM, 2002.

[5] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Improving Collection Selection with Overlap
Awareness in P2P Search Engines. In SIGIR, 2005.

[6] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for Distinct-Value Estimation Under
Multiset Operations. In SIGMOD, 2007.

[7] B. H. Bloom. Space/Time Trade-offs in Hash Coding with
Allowable Errors. CACM, 1970.

[8] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher.
Min-Wise Independent Permutations. JCSS, 2000.

[9] J. P. Callan, Z. Lu, and W. B. Croft. Searching Distributed
Collections with Inference Networks. In SIGIR, 1995.

[10] G. Cormode and M. N. Garofalakis. Sketching Streams
Through the Net: Distributed Approximate Query Tracking. In
VLDB, 2005.

[11] M. Durand and P. Flajolet. Loglog Counting of Large
Cardinalities (Extended Abstract). In ESA, 2003.

[12] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and
J. D. Ullman. Computing Iceberg Queries Efficiently. In VLDB,
1998.

[13] P. Flajolet and G. N. Martin. Probabilistic Counting
Algorithms for Data Base Applications. JCSS, 1985.

[14] N. Fuhr. A decision-theoretic approach to database selection in
networked ir. ACM TOIS, 1999.

[15] S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET:
An Extensible P2P Service that Unifies Ad-hoc and Continuous
Querying in Super-Peer Networks. In SIGMOD, 2004.

[16] V. Markl, N. Megiddo, M. Kutsch, T. M. Tran, P. J. Haas, and
U. Srivastava. Consistently Estimating the Selectivity of
Conjuncts of Predicates. In VLDB, 2005.

[17] W. Meng, C. T. Yu, and K.-L. Liu. Building Efficient and
Effective Metasearch Engines. ACM Computing Surveys, 2002.

[18] S. Michel, M. Bender, N. Ntarmos, P. Triantafillou,
G. Weikum, and C. Zimmer. Discovering and Exploiting
Keyword and Attribute-Value Co-occurrences to Improve P2P
Routing Indices. In CIKM, 2006.

[19] T. Neumann, M. Bender, S. Michel, and G. Weikum. A
Reproducible Benchmark for P2P Retrieval. In ExpDB, 2006.

[20] P. R. Pietzuch and J. Bacon. Hermes: A Distributed
Event-Based Middleware Architecture. In DEBS, 2002.

[21] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer.
Scalable Peer-to-Peer Web Retrieval with Highly Discriminative
Keys. In ICDE, 2007.

[22] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and
P. Druschel. SCRIBE: The Design of a Large-Scale Event
Notification Infrastructure. In Networked Group
Communication, 2001.

[23] G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, and K. Aberer.
Web Text Retrieval with a P2P Query-Driven Index. In SIGIR,
2007.

[24] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In SIGCOMM, 2001.

[25] C. Tang and Z. Xu. pFilter: Global Information Filtering and
Dissemination Using Structured Overlay Networks. In FTDCS,
2003.

[26] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. LibraRing:
An Architecture for Distributed Digital Libraries Based on
DHTs. In ECDL, 2005.

[27] C. Tryfonopoulos, C. Zimmer, G. Weikum, and M. Koubarakis.
Architectural Alternatives for Information Filtering in
Structured Overlays. IEEE Internet Computing (IC), 2007.

[28] T. Yan and H. Garcia-Molina. The SIFT Information
Dissemination System. ACM TODS, 1999.

[29] C. Zimmer, C. Tryfonopoulos, and G. Weikum. MinervaDL: An
Architecture for Information Retrieval and Filtering in
Distributed Digital Libraries. In ECDL, 2007.

