Query Reorganisation Algorithms for Efficient
Boolean Information Filtering

Lefteris Zervakis, Christos Tryfonopoulos, Spiros Skiadopoulos, Manolis Koubarakis

Abstract—In the information filtering paradigm, clients subscribe to a server with continuous queries that express their information
needs and get notified every time appropriate information is published. To perform this task in an efficient way, servers employ indexing
schemes that support fast matches of the incoming information with the query database. Such indexing schemes involve (i)
main-memory trie-based data structures that cluster similar queries by capturing common elements between them and (ii) efficient
filtering mechanisms that exploit this clustering to achieve high throughput and low filtering times. However, state-of-the-art indexing
schemes are sensitive to the query insertion order and cannot adopt to an evolving query workload, degrading the filtering
performance over time. In this paper, we present an adaptive trie-based algorithm that outperforms current methods by relying on
query statistics to reorganise the query database. Contrary to previous approaches, we show that the nature of the constructed tries,
rather than their compactness, is the determining factor for efficient filtering performance. Our algorithm does not depend on the order
of insertion of queries in the database, manages to cluster queries even when clustering possibilities are limited, and achieves more
than 96% filtering time improvement over its state-of-the-art competitors. Finally, we demonstrate that our solution is easily extensible

to multi-core machines.

Index Terms—Information filtering, user profiles and alert services, indexing methods, dissemination.

1 INTRODUCTION

N recent years, information filtering (IF) applications (also

known as information dissemination or publish/subscribe),
such as news alerts, weather monitoring, and stock quotes,
have gained popularity. Such applications assist users to
cope with the information avalanche and the cognitive
overload associated with it. For the case of news alerts,
digital libraries, or RSS feeds, where the data of interest is
mostly textual, users express their needs using information
retrieval languages (e.g., Boolean combinations of keywords
[1] or text excerpts under the Vector Space Model — VSM [1])
and submit continuous queries (or profiles) to a server, thus,
subscribing to newly appearing documents that will satisfy
the query conditions. The server will then be responsible
for notifying the subscribed users automatically whenever
a new document that matches their information needs is
published. Publishers can be news feeds, digital libraries,
or even users who post new items to blogs, social media,
and Internet communities. This functionality is very differ-
ent from information retrieval (IR) applications like search
engines [1]. Specifically, in IR when a query is posed, a single
search is executed and the current matching data items are
presented to the user. Contrary, in IF the server indexes
the user queries rather than the data and evaluates newly
published data items against the stored continuous queries.

In more detail, the problem of information filtering may
be defined as follows: given a database DB of continuous
queries that reside on a server and an incoming document d,
retrieve all queries g€ DB that match d. The filtering prob-
lem is of high importance and needs to be solved efficiently,

o L. Zervakis, C. Tryfonopoulos and S. Skiadopoulos are with the Depart-
ment of Informatics and Telecommunications, University of the Pelopon-
nese, Tripolis, Greece. e-mail: {zervakis, trifon, spiros}@uop.gr

e M. Koubarakis is with the Department of Informatics and Telecommuni-
cations, National and Kapodistrian University of Athens, Athens, Greece.
e-mail: koubarak@di.uoa.gr

since servers are expected to handle millions of user queries
and high rates of published documents. Efficiency issues
were identified by many researchers that proposed tree and
trie-based algorithms for supporting fast filtering under var-
ious data models (e.g., flat attribute-based, semi-structured
XML) and query languages (e.g., Boolean, VSM), both for
main-memory [2]-[4] and secondary storage [5]. However,
all these approaches use a greedy clustering method that is
sensitive to the insertion order of submitted queries and do
not consider that an evolving query workload might require
the reorganisation of the query database to achieve efficient
filtering performance.

In this work, we concentrate on textual IF and present a
novel trie-based, main-memory algorithm for Boolean IF that
is able to match incoming documents against millions of
queries in a few milliseconds. Our method uses linguisti-
cally motivated concepts, such as words, to support contin-
uous queries that are comprised of conjunctions of keywords
and may be used as a basis for query languages that support
not only basic Boolean operators, but also more complex
constructs, such as proximity operators and attributes. We
believe that offering an efficient Boolean filtering service
(possibly alongside a more popular model like VSM) is
a valuable addition to any text filtering setup. Boolean
IR/IF is still the model of choice of advanced users that
want total control of their results and is widely supported
in systems of major stakeholders like Google’s advanced
search/alert mechanisms, Oracle’s text extender module,
and in Apache’s text search engine. Such systems, that are
meant to cope with a high workload and are designed for
efficiency, are possible applications for our work.

Our algorithm, coined STAR (acronym for STAtistical Re-
organisation), is the first in the literature to consider database
reorganisation (through appropriate word/query statistics) to
achieve efficient textual IF under the Boolean model. The

main idea behind the proposed algorithm is to use tries to
capture common elements of queries, similarly to [3]-[5].
However, the key differences with these approaches lie in ()
the collection and utilisation of statistics on the importance
of keywords in the indexed queries, (ii) the reorganisation
of the query database according both to word and query
importance, and (iii) the demonstration that the nature of the
trie forest is more important than its compactness when it
comes to filtering efficiency. Interestingly, all previous works
[3]-[5] were aiming at minimising the size of the trie forest,
since there was an implicit conjecture that a small forest
would result in lower filtering times due to less node visits.
In this work, we demonstrate that forest size is not the
dominating optimisation factor when it comes to filtering
efficiency; contrary, the focus should be put on the nature
of the tries and on qualitative characteristics (expressed
through heuristics).

In the light of the above, our contributions may be
summarised as follows:

e We present a novel query indexing and reorganisation
algorithm that supports Boolean IF up to 96% faster than
state-of-the-art competitors. Query reorganisation is also
efficient; 500K queries (in a database of millions) can be
reorganised in only a few seconds on a commodity PC.

o We identify different reorganisation options for the trie
indexes and demonstrate the importance of query inser-
tion order in the construction of the indexing structure.
We also show that constructing tries with rare words at
the higher level of the trie leads to improved filtering
performance due to early pruning at filtering time.

e We demonstrate, contrary to previous works, that the
nature of the constructed tries, rather than their com-
pactness, is the determining factor for efficient filtering
performance, especially in datasets with rare clustering
opportunities.

e We experimentally evaluate different reorganisation
strategies and showcase their effect in filtering efficiency
using two different real-world datasets and both synthetic
and real query sets.

o We extend the presented algorithm implementation by
parallelising the filtering process to suit modern multi-
core processors. We identify two different parallelisation
options and experimentally evaluate their performance.

The rest of the paper is organised as follows. Section 2
surveys related work. Section 3 presents Algorithm STAR
and discusses possible extensions, while Section 4 presents
our experimental evaluation and comparison against exist-
ing approaches. Finally, Section 5 provides future directions.

2 RELATED WORK

One of the first filtering systems based on the Boolean model
to address performance was LMDS [6] that relied on least
frequent trigrams for query indexing. In LMDS, profiles are
indexed under the least frequent trigram, whereas docu-
ments are represented as a sequence of trigrams. At filtering
time a table lookup determines which profiles match the
incoming document. Since false positives may incur, a sec-
ond stage is necessary to determine the actual matches. In

2

a similar spirit, [7] presents a scalable IF system where a
server receives documents at a high rate and the proposed
algorithms support VSM queries by improving Algorithm
SQI of [8]. InRoute [9] was another influential system based
on inference networks and belief propagation techniques
with emphasis on filtering efficiency. Recently, [10] utilised
graph structures to locate and index the subsumption re-
lationships between continuous VSM queries and deliver
the top-k most relevant notifications. Although [10] aims
at filtering efficiency, its approach and index structures are
not appropriate for Boolean IF as their focus is on the
aggregation function needed to cover VSM semantics.

Most of the work on IF efficiency in the database lit-
erature has its origins in [11] and the DBIS system [12].
Publish/subscribe (pub/sub) in the database field focused
on the performance of systems with data models based
on attribute-value pairs and query languages based on at-
tributes with arithmetic/string comparison operators (e.g.,
[2], [13]-[15]). BE-Tree [16], [17] is the most recent work
in the area that utilises space partitioning techniques and
adaptive tree structures to create subsumption hierarchies
of continuous boolean expressions and filter them against
incoming events. However, this data structure is designed
for arithmetic and string operations and is not applica-
ble in textual IF. Other works concentrated on XML and
XPath/XQuery-based query models (e.g., [18]-[21]).

In our approach, the concept of list tries [22] is used
and extended for constructing the data structures described
in the following sections. Our work is heavily influenced
by IF systems, such as SIFT [5], [23] and DIAS [24], and
the algorithms closest to STAR are TREE [5], BESTFITTRIE
[3], and RETRIE [4], which are trie-based indexing algo-
rithms for textual Boolean queries. The main idea behind
these algorithms was to cluster queries by exploiting their
common elements. In Algorithm TREE [5], a query was
considered as a sequence of words sorted in lexicographic
order and a trie was used to index queries by exploiting
common prefixes. Algorithm BESTFITTRIE [3] improves on
TREE [5] by handling query words as a set rather than as a
sorted sequence and by exhaustively searching the forest of
tries to discover the best place to store a new query. These
algorithms are heavily influenced by query insertion order.

The first algorithm to identify the importance of query
insertion order and its influence in the filtering time was Al-
gorithm RETRIE [4]. Algorithm RETRIE introduced the con-
cept of query relocation; identified poorly indexed queries
and re-indexed them in better positions, achieving a limited
form of re-organisation in the query database. The downside
in this approach was twofold: (i) although it was beneficial
for a part of the indexed queries, it degraded clustering in
other parts of the query database (e.g., in the tries initially
indexing the relocated queries), and (ii) it was still heavily
dependent on the initial creation of the tries, which in turn
was influenced by query insertion order. Contrary to the
aforementioned approaches, our proposal is the first in the
literature that emphasises on the reorganisation of the query
database and addresses the issue of query insertion order.

Finally, many IF efforts focused more on appropriate rep-
resentations of user interests [25], [26] and on improving fil-
tering effectiveness [27], [28]. In [25], behaviour monitoring
and substring indexing are used to decide which documents

‘ ‘ KEY (olympic) ‘ ‘

‘ KEY (france)

¢1 = {olympic, games}
g2 = {olympic, games, rio}
gs = {olympic}

qs = {olympic, rio}
gs = {olympic, committee}
geé = {olympic, committee, president}
g7 = {olympic, rio, stadium}
gs = {olympic, congress, rio}
qo = {euro, cup, france, paris}
q10 = {olympic, c(or)nmittee}
a

FOREST

Qo: euro,
cup, paris

Fig. 1. (a) Queries and (b) their organisation in the indexing phase of Algorithm STAR

match user interests. Moreover, [27], [28] explores an ensem-
ble of methods from machine learning, aiming at increasing
filtering effectiveness in an IF setup. Other approaches in-
cluded statistical filtering systems, such as [29] that uses
Latent Semantic Indexing to filter incoming documents and
[30] that utilises network-based profile representations to
better identify user interests and cope with the curse of
dimensionality in VSM. Adaptive filtering [31], [32] focuses
also on profile effectiveness and considers the adaptation of
VSM queries and their dissemination thresholds. In order to
enhance user information discovery, [33] developed a novel
statistical latent class model that applies user/item group-
ing to deliver better content recommendations/predictions.
Moreover, sophisticated user profiling has also been used to
promote personalised IR systems (e.g., [34]) that focus on
improving retrieval effectiveness.

Our work relates (at a higher level) to the studies pre-
sented since users’ information needs are expressed through
profiles. However, these works’ focus is on the effectiveness
of the user profiles/modelling to facilitate the creation of
more relevant notifications, while in our setup the focus is
on efficiency: i.e., given a set of (automatically/manually
generated) user profiles determine which match an incom-
ing event quickly. Notice that the semantics and filtering
effectiveness of our approach are given by the Boolean
model and are well studied in the literature (e.g., [36]).

3 THE ALGORITHM STAR

In this section, we consider queries that comprise of con-
junctions (i.e., sets) of keywords, as in Fig. 1(a), and present
Algorithm STAR that relies on the reorganisation of the
query database to achieve low filtering times. Subsequently,
we outline existing trie-based solutions and discuss exten-
sions of our algorithm to support more expressive queries.

The key idea of Algorithm STAR is to collect statistics
on the importance of keywords in the indexed queries and
reorganise the query database according both to keyword
and query importance. This results in four variations of the
algorithm that are described later in this section. Algorithm
STAR operates in two phases:

o The indexing phase (Section 3.1), where (initial) query
indexing takes place. The pseudocode for the indexing
phase of Algorithm STAR is performed by INDEX and is
shown below.

o The reorganisation phase (Section 3.2), where only newly
indexed queries in the database are reorganised by utilis-
ing the statistics collected during the indexing phase.

Note that during the indexing phase new queries are stored
only temporarily waiting for the reorganisation phase; thus,
no statistical information is used during the initial query
placement (indexing phase) as the final placement of queries
based on query statistics will be decided later (reorganisa-
tion phase). For scalability reasons, Algorithm STAR does
not reorganise the complete query database, but, only a
tunable amount of newly indexed queries.

3.1 Query indexing phase

To index queries, Algorithm STAR uses two data structures:
a forest of tries that organises the keywords of queries and
a hash table that provides efficient access to the roots of the
tries in the forest. For instance, the queries of Fig. 1(a) are
organised in the structures of Fig. 1(b). Each trie node n:

e Stores a keyword of a query, denoted by kwrd(n).

o If the keywords in a path from the root to node n spell
out a query ¢ then n also stores a reference to ¢. The list
of all references stored in node n is denoted by id(n).

e If n is a leaf node then n also stores one list for each
query ¢, denoted by uexp(n, ¢), containing the keywords
of query q that are not already included in the path from
the root to n.

For instance consider Fig. 1(b), where kwrd(ni) =
olympic and node n; stores one reference to query g;.
Consider also node ny of trie 75 that stores query
qo = {euro, cup, france, paris}. Since kwrd(ny) = {france},
we have that uexzp(ng, g9) = {euro, cup, paris}. Finally, note
that ny contains all keywords of gy (since g9 = kwrd(ng) U
uezp(na, o)), thus, it also maintains a reference to gg. The
purpose of list uezp(n, q) is to allow for the delayed creation
of nodes in a trie; this allows us to choose which keywords
from the wexp(n,q) list will become the child of current
node n depending on the queries that will arrive (and be
indexed in this trie) later on. Note that the intersection of
all uexp lists stored at a node n is the empty set, since if
there was a common keyword among them it would have
been expanded to a new node. Additionally, for all uexp lists
|uexp(n, q)| > 1 holds, i.e., lists with exactly one keyword
are automatically expanded to trie nodes.

The forest of tries is populated in order to store queries
compactly by exploiting their common keywords. When a new
query q arrives, Algorithm STAR considers its keywords and
inserts them in a (new or existing) trie in the forest. For
this task, STAR selects the best trie T in the forest and the
best node n in that trie to insert g (the insertion process
is described later in the section). To this end, STAR uses

Algorithm: INDEX

Input: A query ¢ = {k1, ..., k¢}

Result: Store g in FOREST

currentNR < 0;

position < Null;

// For all candidate tries T

foreach trie T with root(T) = k € q do

// DFS traversal for all possible storage positions

[

w

4 foreach node n € T such as kwd(n) € q do
5 calculate (nr(q, T));

// If a better position is found store it
6 if currentNR < nr(q, T) then

7 currentNR < nr(q,T);

8 position <— n;

// If q cannot be indexed in any existing trie
9 if position = Null then

10 create trie T with root(T") such as kwrd(T') € ¢;
1 id(root(T")) < q; // Index q in root(T")
12 uexp(T’, q) < g\ kwrd(T'); // Put the rest in wexp(T’,q)
13 else
// I1f there are not common keywords
14 if uexp(position,p) N q = @ then
15 id(position) < id(position) U q; // Index q in position
// Put the rest in uexp(position,q)
16 uexp(position, q) < q \ {k1,....,ky};
17 else // Else expand the common keywords
18 expand uexp(position,p) N q;
19 id(m) <~ qUp; // Index q and p at the leaf node
// Remove p from id(position)
20 id(position) < id(position) \ p;
// Put the rest in two new uexp lists
21 | uexp(m,q) < g\ {k1,.... ks };

22 gatherStats(q); // Gather statistics for query reorganisation

the concept of node reusability, denoted by nr(q,T), that
quantifies the percentage of ¢’s keywords that are stored
in a path starting from the root of 7" and also used by
other queries. More formally, nr(q, T') = 2 I(; tlh‘ , where |path|
is the size of the longest path from the root of trie T' that
contains only keywords of ¢ participating to other queries
and |g| is the number of keywords in ¢. It follows that
0 <nr(q,T) <1, and generally when nr(g,T) is close to
0, trie T" is considered as a poor candidate for ¢ because
only a small fraction of terms in ¢ will be stored in existing
nodes of T. Contrary when nr(g,T') is close to 1, trie T
is considered as a good candidate, because a large fraction
of terms in ¢ will be stored in existing nodes of 7. Node
reusability extends the clustering ratio concept [4] with the
constraint that keywords should be present in other queries
and promotes frequent/rare keywords towards trie roots.

Example 1. Let us consider the queries and their organisa-
tion illustrated in Fig. 1. We have nr(q1,T1) = %, since
the 2 keywords of ¢; are both stored in a path starting
from the root of T and also used in a different query (i.e.,
q2). We also have nr(gq,T1) = %, since only 2 keywords
of g2 (out of 3) are stored in a path starting form the
root of T and also used in a different query (i.e., q1), as
keyword rio is used solely for gs.

The algorithm for inserting a new query proceeds as
follows. The first query that arrives, creates a trie with
a randomly chosen keyword as the root; the remaining
keywords are stored at the uezp list of the root. The second
query will consider being stored at the existing trie or create
a new trie. In general, to insert a new query g, STAR iterates
through its keywords and utilises the hash table to find all
candidate tries; i.e., tries having a root storing a keyword of
g. To compactly store g, STAR then chooses the trie 7' among
the candidates for which ¢ insertion maximises nr (g, T). To

4

compute nr(q,T), STAR performs a depth-limited search
with depth limit |¢| — 1 in all candidate tries. This search
finds node n in T where ¢ should be inserted. Note that the
chosen path from the root to n is the longest path in 7' that
exclusively contains keywords of ¢. If more than one tries
maximise nr(g,T"), STAR randomly chooses one.

To complete insertion, the path from the root of trie T" to
node n, that already stores the identifier of a query p and the
set of keywords K, is then extended with new child nodes
having as keywords the intersection of uezp(n,p) and ¢ \ K.
If all keywords in ¢ are contained in K U uezp(n, p) then (a)
the keywords in ¢ \ K are expanded to trie nodes to create
a path from node n to a trie node m, (b) node m becomes
a new leaf in trie T, (c) id(m) will contain the reference
to query p (previously stored in id(n)) plus a reference to g,
and (d) reference to p is removed from id(n). In this way, list
uezp(n, p) is fully expanded to trie nodes, query ¢ is indexed
in this subtrie under all its keywords, and node m now
indexes two query identifiers, namely g and p. Otherwise,
if some keywords of ¢ are not contained in K U uezp(n,p),
then the common keywords are expanded to trie nodes to
create a path from node n to node m, and node m will
store two new uezp lists, namely uexp(m, p) and uwezp(m, q).
Additionally, id(m) will contain references to both p and ¢,
while p is removed from id(n). Notice that uezp(m,p) will
contain the remaining set of keywords of K U uexp(n, p)
that are not contained in ¢ and uexp(m, q) will contain the
remaining set of keywords of ¢ that are not contained in
K U uexp(n,p). Also due to this node expansion process,
uezp(m, p) N uezp(m,q) = 0. Finally, if no keywords of ¢
are contained in uezp(n,p), then a new wezp(n,q) list is
created in node n and a reference to ¢ is added in id(n).

Example 2. Fig. 1(b) shows the forest of tries created when
inserting the queries ¢, ...,qi0 (shown in Fig. 1(a)) in
that order. The first query ¢; creates trie 77 and is
indexed under the (randomly chosen) keyword games.
The second query g2 does not create a new trie, but, is in-
dexed under 717, since this maximises its node reusability
nr(qz, T1). The third query g3 cannot be indexed in T,
since it does not contain the keyword games, thus, a new
trie T is created and g3 is indexed under the keyword
olympic. Similarly, STAR inserts the remaining queries.

The time complexity of Algorithm STAR when indexing
a new query ¢ with ¢ distinct words is O(t), since STAR
uses a depth-first search strategy (with the maximum depth
bound by the number of distinct query words) and visits
only sub-tries that have one of the query words as root.

During the indexing phase, Algorithm STAR collects
statistics about the frequency of occurrence of keywords in
queries, which are then utilised in the reorganisation phase
(described in the next section).

3.2 Query reorganisation phase

Reorganisation is a periodic procedure that initiates at given
time intervals, after a given number of query insertions, or
when a criterion is met (e.g., when a certain percentage of
queries have low node utilisation). Any of the above options
may be implemented in the context of Algorithm STAR; for
simplicity we have selected to reorganise the query database
after the insertion of () new queries. It should be noted
that, contrary to Algorithm RETRIE [4] which relocates only

‘ KEY (france)

[Query g; [score(q:) |[Query ¢; [score(g:) |

q1 11 de6 13
q2 15 qr 14 &
g3 9 qs 14 8
qa 13 Q9 4
[*}53 12 q10 12

(a)

T3 0o

Qo: euro,
[cup, paris

Fig. 2. (a) Query scores and (b) the data structure after the reorganisation phase of Algorithm STAR-LR for the queries of Fig. 1(a)

TABLE 1
Statistics of keywords gathered from the keywords of queries in Fig. 1

[Keyword k [sprt(k) |[Keyword k | spri(k) |

olympic 9 president 1
games 2 euro 1
rio 4 cup 1
committee 3 france 1
stadium 1 paris 1
congress T

poorly indexed queries, STAR reorganises only those queries
inserted since the last database reorganisation.

To reorganise queries, Algorithm STAR utilises a scoring
mechanism to modify the order of insertion of queries in the
database and to favour the indexing of queries under fre-
quent or infrequent keywords in the tries. It utilises the sup-
port of a keyword k (denoted by sprt(k)), which represents
the number of queries in the forest that contain the keyword
k, to identify the frequent and infrequent keywords among
the queries indexed in the forest. Using the support of its
keywords, we define the score of a query ¢ = {k1,...,k},
denoted by score(q), as score(q) = Si_, sprt(k;). As we
show later on, the score of a query plays an important role
to the reorganisation phase. Note that we do not normalise
score(q), as the size of a query ¢ plays an important role in
the reorganisation phase since it affects trie construction.

Example 3. Let us consider the queries and the index
of Fig. 1, and assume that Algorithm STAR collected
the frequencies illustrated in Table 1. According to
these frequencies, we have score(q1) = sprt(olympic) +
sprt(games) = 9 + 2 = 11. Fig. 2(a) shows the total score
of queries ¢1, ..., q1o.

To maintain sprt (resp. score), Algorithm STAR utilises a
hash table, denoted by statSprt (resp. statSco), that con-
tains keywords k (resp. queries gq) as keys and support
of keywords sprt(k) (resp. scores of queries score(q)) as
values (similarly to Table 1). STAR employs these statistics
to reorganise newly inserted queries in the query database
as follows. STAR re-indexes the newly inserted queries
{q1,...,qs} from the existing forest by sorting them in
descending order according to score(q;), where score(qq) >
score(q;) > score(qs). Thus, queries with the highest score
are inserted first in the forest; this variation of STAR is
identified as STAR-H. Respectively, Algorithm STAR could
re-index all the newly inserted queries by sorting them in
ascending order according to score(q;), where score(qy) <
score(q;) < score(qs). Thus, queries with the lowest score
are inserted first in the forest; this variation of STAR is

identified as STAR-L. According to STAR-H, the new order
of insertion will be g2, g7, s, g4, 46, 45, 410, 41, g3, 9, While
STAR-L uses the inverse order. As we will show in Section 4,
the problem of query insertion order is important; the first
queries to be indexed define the clustering opportunities for
the subsequent ones.

Apart from defining the insertion order of queries, STAR
also utilises the support of a keyword sprt to influence
the construction of tries in the following way. The query
insertion algorithm described in the previous section is
modified so that when a query ¢ = {k1, ..., k:} is indexed
in a new trie T' (because there is no other trie having a
root with a keyword in {ki,...,k:}), the most frequent
keyword in ¢ is chosen as the root of 7", while the rest of
the keywords remain in the wexp list. Additionally, when
a query ¢ is indexed under a node n of trie T because
it maximises its node reusability nr(g,T), the path from
the root to n is extended with nodes containing the most
frequent keyword from the uezp(n, q) list. In this way, STAR
creates tries that index the most frequent keywords near
the roots, while the rare keywords are pushed deeper in
the trie. It is important to note that node reusability is still
the criterion for deciding where to index a query, while
keyword support is used to solve ties between equally good
(or poor) positions in existing tries and to enforce roots of
new tries. This indexing scheme creates a new variation for
Algorithm STAR, identified as STAR-F. In the same spirit,
Algorithm STAR is modified to influence the insertion of
query g based on its most rare keywords. In this case, the
most rare keyword of a query ¢ is chosen as the root of a new
trie T" and new paths with nodes containing the most rare
keywords from the uexp lists are created. The last variation
of Algorithm STAR, is identified as STAR-R.

The above options that define the indexing order of
the queries and influence the construction of tries by us-
ing keyword frequency, provide four distinct variations for
Algorithm STAR, identified as STAR-HF, STAR-HR, STAR-
LF, and STAR-LR, each with its own characteristics. All
these options, along with the filtering performance of each
variation are discussed in Section 4. Fig. 2(b) shows the
FOREST data structure after the reorganisation phase of
Algorithm STAR-LR is executed. Notice that compared to
the previous forest of Fig. 1, all queries are now indexed
under two tries and utilise one trie node less (10 trie nodes
in the initial forest vs. 9 trie nodes in the reorganised one).

Finally, notice that node reusability of ¢; is reduced from
nr(q,T1) = % (Fig. 1) to nr(q1,T2) = % (Fig. 2), while it
remained the same for the rest of the queries. As we will

Algorithm: FILTER
Input: A document d = {k1,...,k¢}
Output: A list of queries match = {q;, ...
1 match < Null;
// Use a linked list for distinct keywords of d
foreach distinct keyword k € d do
foreach trie T with root(T) = k € d do
foreach node n € T do
if kwrd(n) € dthen // Use a hash table
representation of d to check this
6 if uexp(n, q) C d then
L // The queries stored here match d

15}

match < match U id(n);
n < children(n); // Traverse trie in DFS

else
10 L prune n; // Else do not search in sub-tries

11 return match

demonstrate in Section 4, the most important factor for the
filtering performance of the algorithms is the nature of the
created forest and the way it is constructed, rather than trie
compactness and high node reusability values.

The time complexity of Algorithm STAR when reorganis-
ing a set of newly indexed queries (), with at most ¢ distinct
words each, is bound by O(QlogQ + Qt"), since STAR has
to sort the queries according to their score and reinsert them
in the trie forest.

3.3 Filtering incoming documents

When a document d is published, the filtering procedure
for Algorithm STAR is illustrated in Algorithm FILTER. For
each distinct keyword k; of d (maintained in a linked list
created at the preprocessing step of d), the trie of FOREST
that has keyword k; as root is traversed in a depth-first
search manner. Notice that only subtries having as root the
keyword k; contained in document d are examined (since
only these may contain potentially matching queries), and
a hash table (also created at the preprocessing step of d)
that indexes all distinct keywords of d is used to identify
them quickly. At each node n of a trie, the id(n) list gives
implicitly all queries that match the incoming document d.
To identify all qualifying queries, this procedure is repeated
for all the keywords of d.

The time complexity of filtering for Algorithm STAR is
O(t?) for a document d with ¢ distinct words, since STAR
uses a depth-first search strategy (with the maximum depth
bound by the number of distinct words in the document)
and visits only sub-tries that have one of the document
words as root. For this traversal, STAR performs O(t')
probes to the hash table representation of document d; this
leads to an overall filtering time complexity of O(t").

In a pub/sub system the publication events are more
frequent compared to the subscription events, i.e., the in-
formation flow is constantly high, contrary to subscriptions
that are updated at a lower rate. Additionally, the filtering
procedure is a process that does not affect the structure of
the FOREST and is executed in a serialised manner. In the
following section, we present and investigate two paralleli-
sation variations of STAR that speedup filtering.

3.4 Parallelisation of the filtering process

An elegant way of enhancing the performance of Algo-
rithm STAR is by parallelising the filtering process. Such an
improvement is critical as filtering algorithms are expected

6

to process high volumes of incoming information as effi-
ciently as possible. Here we identify two proof-of-concept
parallelisation variations of Algorithm STAR.

Document parallelisation (DOCPAR) is a straightforward
solution where a free thread Thy, of the processor is as-
signed to execute the filtering process for an incoming
document d;. Thread Thy, executes the filtering process for
d; as described in Algorithm FILTER; if a new document d,,
arrives at the system it is assigned to another unoccupied
thread. Thereby, every available thread in the system can be
utilised to improve the filtering performance. In this way,
we avoid the sequential filtering of a queue of incoming
publications and significantly reduce their service time.

Contrary to the document parallelisation approach, root
parallelisation (ROOTPAR) assigns a set of available threads
{Th;,...,Th,} to serve the FOREST during the filtering
time. Each thread Thy, is dedicated to a random sub-set
of roots {7}, ..., Ty} of the FOREST. When, a document d;
is published the filtering procedure is executed as described
in Algorithm FILTER, while the only difference being that,
when a trie T' with root(T') = k € d,; is located the traversal
of that trie is handled by the thread that is assigned to trie
T (Line 3 of Algorithm FILTER). Thus, the FOREST can be
searched simultaneously by more than one threads.

Both approaches extend STAR to multi-core environ-
ments and allow it to exploit shared memory capabilities
of modern hardware to perform faster filtering.

3.5 Competitors

To evaluate our algorithm, we implemented two trie-based
competitors from the existing state-of-the-art solutions in
the literature: (i) Algorithm RETRIE [4] that employs partial
query reorganisation for poorly clustered queries and (ii)
Algorithm TREE [5] that does not employ any form of query
reorganisation and indexes queries in a deterministic way
(i.e., based on the order of insertion).

Algorithm RETRIE [4] organises queries into tries and
maintains a data structure that monitors the number of
poorly clustered queries in the system (i.e., queries with
only a few words clustered in the trie). When a certain
threshold of poorly clustered queries is reached, the re-
organisation process is triggered and all poorly indexed
queries are examined and re-indexed. By choosing to reposi-
tion only poorly indexed queries, Algorithm RETRIE misses
many available reorganisation options and is bound to use
the existing tries (new trie creation is very rare). Time
complexity for Algorithm RETRIE is O(t!) for the query
indexing phase and O(Qt") for query reorganisation, where
@ is the number of queries to be reorganised and ¢ is
the number of distinct query words. Similarly the time
complexity of filtering is O(t'), where ¢ is the number of
distinct words in the document.

The main differences between Algorithms STAR and
RETRIE are as follows. Algorithm STAR (i) uses a query
indexing mechanism that builds tries based on statistical
information about query words, (ii) destroys poorly per-
forming tries and creates new ones based on query scores,
(iii) repositions newly inserted queries only, and (iv) empha-
sises trie shape rather than trie compactness. Following our
running example, Algorithm RETRIE would not reposition
any query in the forest of Fig. 1, although better alternatives
are available (see Fig. 2).

Algorithm TREE [5] organises queries in tries by re-
lying on common subsets of queries, without employing
frequency information or resorting to query reorganisation.
Contrary to both RETRIE and STAR algorithms, that seek
for the best position in the available tries to index a new
query, Algorithm TREE places the query deterministically by
sorting query words alphabetically in an effort to increase
the common subsets of words. This deterministic query
placement, misses many good indexing positions for the
queries, as it emphasises insertion time over query cluster-
ing. Time complexity for Algorithm TREE is O(tlogt) for
the query indexing phase and O(t') for the filtering phase,
where ¢ is the number of distinct query and document
words respectively.

3.6 Supporting richer query languages

Algorithm STAR is easily extendible to more sophisticated
data models and query languages by adding appropriate
data structures and modifying the filtering process accord-
ingly. In this section, we outline the necessary additions and
modifications to support attributes and proximity operators.

Attributes may be introduced by creating a hash table
(that will use the attribute name as key) and a forest of tries
(like the ones presented in Figs. 1 and 2) for each attribute
A in the data model. Similarly, we may use one table per
attribute to maintain statistics of words in each attribute.
Reorganisation will then be executed independently for
each attribute; when a document d is published, the filtering
procedure for Algorithm STAR is modified so that for each
attribute A in the document and for each keyword k in A,
the trie in the forest of A that has the word k as root is
traversed using the filtering algorithm of Section 3.3. Finally,
list id(n) in each trie node n gives implicitly all queries
that match d for attribute A; thus, a query ¢ will match a
document d if ¢ matches all attributes of d.

Different types of proximity formulas (e.g., the ** opera-
tor of Google or proximity formulas of arbitrary distance in-
tervals as in [35]) may also be easily supported by STAR. The
words that are operands in proximity formulas are stored
in the forest of tries (since proximity is a stricter form of
conjunctive queries), while the distance intervals are stored
in a separate data structure. Proximity formulas are initially
evaluated as conjunctive queries, and the satisfaction of
word order and distance is evaluated separately using an
algorithm like [24]. Other useful query components, like
equality, disjunction, and negation, are also straightforward
to support in the current indexing scheme. Finally, notice
that handling more complex semantics is possible through
semi/fully-automated query generation as in recommender
systems, or through query expansion/augmentation tech-
niques with the aid of taxonomies or dictionaries.

4 EXPERIMENTAL EVALUATION

In this section, we present a series of experiments that
compare the filtering performance of Algorithm STAR with
the trie-based Algorithms RETRIE [4] and TREE [5].

4.1 Experimental setup

In this section we discuss the data and query sets, the
underlying algorithmic and technical configuration, and the
metrics employed in our evaluation.

7

Data and query sets. For the evaluation we used two
different real-world datasets and both synthetic and real
query sets as described below.

The DBpedia corpus. The first dataset used in our experiments
is based on the DBpedia corpus, which consists of a wide and
thematically unfocused set of documents; it contains more
than 3.7M documents, has a total vocabulary of 3.14M
words, and its average document size is 53 words. Each doc-
ument is an extended Wikipedia abstract downloaded from
the DBpedia website (http://wiki.dbpedia.org/Downloads39).

Two continuous query sets for this corpus were synthet-
ically generated similarly to [4], [5] and will be referred to
as the general and the focused query collection.

The general query collection contains queries formed by
conjunctions of different terms; each term conjunct is se-
lected equiprobably among the multi-set of words form-
ing the DBpedia corpus vocabulary (762K) and the set
of Wikipedia document titles. Due to the nature of the
DBpedia corpus and the corresponding vocabulary size, the
constructed queries are expected to cover a wide variety of
topics and, thus, share few common words between them.
This restricts clustering opportunities and makes this setting
a stress test for the filtering performance of the algorithms,
as they are forced to identify and exploit the few common-
alities between the indexed queries. For this query set, we
select 50K documents’ extended abstracts from DBpedia and
use them as the incoming documents.

The focused query collection is constructed by selecting
50K thematically related extended abstracts from DBpedia
and using the 46 K distinct words appearing in those docu-
ments. As these queries become more focused and the vo-
cabulary of the query database is restricted, more clustering
opportunities appear. In this setting, the performance of the
different algorithms is expected to be similar, as all will
exploit the many clustering opportunities offered. Notice
that the 50K incoming documents utilised in this section are
the same ones used in the general query collection, since we
aim to study the behaviour of our algorithms when varying
the query set.

The ClueWeb09 corpus. The second dataset used in our ex-
periments is the ClueWeb09 collection (http://lemurproject.
org/clueweb09/) that contains 1B web pages from which
we randomly selected 50K as incoming documents.

The TREC Million Query Track dataset (http://trec.
nist.gov/data/million.query.html) is comprised of one-time
queries submitted to a search engine along with their rele-
vance assessments for the ClueWeb09 documents. This query
set was used, in our setup, as continuous queries for the
ClueWeb09 corpus. The original query collection included
60K entries that were cleaned from arithmetic and single-
term queries (as they do not fit a textual IF scenario),
resulting into a final collection size of 50K entries. Notice
that this query set is very limited in size compared to the
typical expected workload of an IF system and our baseline
values for synthetic query sets. However, the results for this
collection provide an overview of the performance of the
algorithms in a real-life setup.

Algorithm configuration. There is a number of system
parameters, which affect the performance of the presented
algorithms, that have to be determined and set. For our

STAR-HF

STAR-LF
TREE ———
RETRIE —>¢—
10 - STAR-LR —8F—
STAR-HR —@—

12 +

2 1
o
3
g
£ 8
Fl +
& 4 A
&0 /
g
2 4 _— 1
““ —
. L i
0 ’ i I
05 1.0 15 2.0 25 3.0

Number of queries (in millions)
Fig. 3. Filtering time for Qr, =5

evaluation, we use a clustering ratio of 0.8 for RETRIE
(selected after an exhaustive scan of all possible parame-
ter values), while query reorganisation for under-clustered
queries is invoked every Iy = 125K query insertions. Re-
garding STAR, the reorganisation of each variant is invoked
when Ig = 500K new queries are indexed for STAR-LF
and STAR-LR, and when Ig = 125K and I = 250K for
STAR-HF and STAR-HR respectively. To measure the per-
formance of the filtering process, we utilise the general
query collection in our experimental setup to compare the
performance of the two proposed approaches. Finally, for
the parallelisation of the filtering process we utilised a set
of 6 threads available in the processor. The baseline values
for each tunable parameter in the experimental evaluation
are: (i) average query length)y =5, (ii) average docu-
ment length Dy = 53, (iii)) number of incoming queries
Ig = 500K, (iv) number of incoming documents I'p = 50K,
(v) query database size DB = 3M, and (vi) threads used
in the filtering process T'h = 1. For more details about the
parameter setting we refer the interested reader to [4], [5].

Metrics employed. In our evaluation, we use the number
of nodes in the forest of tries to measure the quality of
clustering for each algorithm. Additionally, we use filtering
time to measure the filtering performance of each algorithm,
ie., the amount of time needed to locate all continuous
queries satisfied by an incoming document. We also present
the algorithms’ throughput to study their performance as the
query database size increases, i.e., the amount of filtered
data per second. Finally, we measure insertion and reorganisa-
tion time, to identify the time needed to index and reorganise
queries and give the memory requirements for each algorithm.

Technical configuration. All algorithms were implemented
in C++ and an off-the-shelf PC (Core i7 3.6 GH z, 8G B RAM,
Ubuntu Linux 14.04) was used. For the parallelisation of the
filtering process, the C++ library <thread> was used.
The time shown in the graphs is wall-clock time and the
results of each experiment are averaged over 10 runs to
eliminate fluctuations in time measurements.

4.2 Results for the general query collection

In this section, we present the evaluation for the general
query collection described earlier and highlight the most
significant findings for the proposed algorithms.

Comparing filtering time. Fig. 3 shows the average time in
milliseconds needed to filter a collection of Ip = 50K doc-
uments with D, = 53 words against a database of different

14

12 STAR-HF

STAR-LF

10 - TREE ——4—
RETRIE —>¢—
8 | STAR-LR —F—
STAR-HR —@—

Filtering time (msec/doc)

3 4 5

Average length of queries

Fig. 4. Filtering time for DB = 3M

TABLE 2
Filtering scalability in a big data setup for variants of Algorithm STAR

STAR-LR STAR-HR STAR-LF STAR-HF
#of - - - -
eri Time [Increase|| Time [Increase|| Time [Increase[| Time [Increase]
queries (msec/doc)| (times) (msec/doc)| (times) (msec/doc)| (times) (msec/doc)| (times)
1M 0.20 - 0.087 - 0.16 - 0.33 -
10M 0.28 0.4x 0.34 2.9x 0.81 4x 11.56 34x
100M 2.31 10x 3.66 41x 5.24 32x 39.72 | 119x

size when indexing queries with ()7 = 5 terms. Observe
that filtering time increases for all algorithms as the query
database size increases. Algorithms STAR-LR and STAR-
HR (that store rare words near the roots of tries) achieve
the lowest filtering times, suggesting better performance
than their counterparts STAR-HF and STAR-LF (that store
frequent words near the roots) and competitors RETRIE and
TREE. Additionally, Algorithms STAR-HF, STAR-LF, and
TREE are more sensitive to query database size changes than
the rest of their competitors since frequent words are stored
near trie roots which requires traversing more tries at filter-
ing time. Specifically, STAR-LR filters incoming documents
74.75% faster than RETRIE and 147% faster than TREE.
Moreover, STAR-HR outperforms RETRIE by 96.14% and
TREE by 178.15%. On the other hand, Algorithms STAR-
HF and STAR-LF are slower than Algorithms RETRIE and
TREE. More specifically, Algorithm STAR-HF needs 61.5%
more time to filter an incoming document than RETRIE
and 45.46% more time than TREE. Finally, STAR-LF shows
similar performance, executing the filtering process 57.22%
slower than RETRIE and 39.33% slower than TREE.

Fig. 4 shows the filtering time for queries of different
length. It is worth noting that all algorithms (except TREE
that remains unaffected) improve their filtering performance
when the query size is increased, as longer queries provide
better indexing alternatives and more opportunities for
pruning of tries at filtering time. In addition, STAR-HF and
STAR-LF present a high decrease in filtering time (which
is attributed to their poor filtering performance that has
more margin for improvement) than STAR-HR, STAR-LR,
and RETRIE when the query length is increased.

Table 2 reports the results for a stress test of the proposed
algorithms under a big data setup. To do so, we conducted
a filtering experiment in an Intel Xeon 2.7G H z server with
264G’ B RAM, using up to two orders of magnitude more
queries and the whole DBpedia document collection as the
stream of documents to be filtered. The resulting experiment
ended up filtering a stream of 3.7M documents (totalling
an uncompressed size of 5.5G B) against a query database

25 | DB=2M mmmmm

i
STAR-LF
STAR-HE
RETRIE
TREE
STAR-HR
STAR-LR

20 - ~

STAR-HR
STAR-LR

STAR-LF
STAR-HF
RETRIE
TREE

15

STAR-HR
STAR-LR

StAR-HF

Number of nodes (in millions)
STAR-L

Terms 5

Terms 3

Average length of queries

Fig. 5. Trie nodes created when varying Qr, and DB

of 100M queries (totalling a size of 7GB) for all variations
of our algorithms. In the “Time” column of each algorithm
we report the average filtering time per document for each
query database, while in the “Increase” column we report
the increase (in number of times) for the 10/ and 100M
queries against the base case of 1M queries. Our findings
show that our solution is scalable: for a 10 (resp. 100)
times increase in the query database size, the corresponding
increase in filtering time of our best solution is no more than
0.4 (resp. 10) times.

Comparing trie compactness. Fig. 5 shows the number of
created nodes by each algorithm for databases containing 1,
2 and 3M queries of different lengths. Observe that STAR-
LR, STAR-HR and TREE create relatively larger forests,
while STAR-HF and STAR-LF create relatively smaller ones.
Also, increasing the number of query length, from 3 to
5 terms on average, results in an increase in the forest
size. Interestingly, the difference in trie nodes between the
algorithms remains unchanged. This can be explained as fol-
lows. STAR-LR and STAR-HR create relatively large forests
as they index rare words towards the roots of tries and
frequent words towards the leaves. In this way, the lower
levels of tries tend to repeat words with high frequency
of occurrence, thus, creating many tries with higher fanout
and lower node reusability. Contrary, Algorithms STAR-HF
and STAR-LF create relatively small forests as they push
the most frequent words towards the roots of the tries.
This, creates more compact tries as many repeated words
are indexed in the same trie node, thus, resulting in high
node utilisation. Algorithm TREE creates large forests as it
utilises a naive query placement technique and implements
no reorganisation. Finally, Algorithm RETRIE creates an
average-sized forest, as it focuses on query clustering rather
than word statistics to index queries.

The results in Fig. 5 suggest that STAR-HF creates 4.94%
(948K) less nodes than RETRIE and 12.88% (2.474M) less
nodes than TREE. Similarly, STAR-LF creates 5.46% less
nodes than RETRIE and 13.44% less nodes than TREE. On
the other hand, STAR-HR creates 7.5% more nodes than
RETRIE and 0.5% more nodes than TREE. Additionally,
STAR-LR creates a larger forest by 8.86% nodes compared
to RETRIE and by 1.96% nodes compared to TREE.

Fig. 6 shows the increase in forest size after the in-
sertion and reorganisation of 500K queries with Qr = 5.
As expected, results are similar to those of Fig. 5, as all
algorithms demonstrate the behaviour discussed above and

4.0

39 ST.

3.8 RETRIE ----3¢---r

35 g

3.4

S N R

3.2

Number of newly created nodes (in millions)

3.1

Number of queries (in millions)

Fig. 6. Newly created trie nodes when inserting queries with Q;, = 5

rank with regard to node increase. Additionally, Algorithms
STAR-HF, STAR-LF and RETRIE are less sensitive to query
insertion, demonstrating a continuously decreasing number
of newly created nodes compared to STAR-LR and STAR-
HR. This is due to the exploitation of frequent words
between queries and the construction of more compact tries
compared to Algorithms STAR-LR and STAR-HR, where
query clustering is affected by infrequent words.

Efficiency vs. compactness. Comparing the results of node
creation and filtering time, we can infer that the nature of the
forest and the way it is constructed has a more significant
effect on filtering performance than trie compactness, since
it is shown (Figs. 3, 4, 5 and 6) that the algorithms creating
the less compact forests result in the lowest filtering times.
This can be explained as follows. Algorithms RETRIE, STAR-
HF, and STAR-LF tend to locate and group queries under
common words and create compact forests with frequent
words near the trie roots. At filtering time, incoming docu-
ments match many trie roots, thus, needing to traverse more
tries to examine all possible query matches. Additionally, for
each trie, the filtering process cannot prune many subtries,
as the infrequent words are stored near the trie leaves. This
results in the traversal of the whole trie structure all the way
to the leaves of every subtrie to determine whether a query
is relevant to the incoming document or not. Contrary, Algo-
rithms STAR-LR and STAR-HR locate and store rare words
in nodes closer to trie roots, thus, organising queries in
subtries under their common (rare) words. This organisation
of queries, prevents the filtering process to visit many tries,
and prunes subtries much earlier, due to the low probability
of a rare word being present in an incoming document.
Notice also that the utilisation of query score allows us
to enforce at indexing time a query order based on query
importance. In this way, queries consisting of many words
ordered from rare to frequent (i.e., Algorithm STAR-HR) are
inserted first during the reorganisation phase allowing the
creation of more tries. Those tries are then used as the guides
that push frequent words further down the trie structure.
This approach causes STAR-HR to be 10.9% more efficient
in terms of filtering time when compared to STAR-LR.

Comparing filtering throughput. Fig. 7 shows the through-
put in KB/sec needed to filter /p = 50K incoming docu-
ments against a query database of different size indexing
queries with 5 terms. Notice that throughput decreases for
all algorithms rather rapidly as the query database size in-
creases. Algorithms STAR-HR and STAR-LR achieve higher

STAR-HR --
STAR-LR -
RETRIE ----3G----
TREE

*, % STAR-LF
‘STAR-HF

400 E:l“ N Enhanced view o

Throughput (KB/sec)

0.5 1.0 1.5 2.0 25 3.0

Number of queries (in millions)

Fig. 7. Filtering throughput for Q1 = 5x

180

STAR-HR -- -~ &
160 |. STAR-LR ofd
RETRIE ----3¢--- o
140 | TREE ——— . s
= STAR-LF B
2 TAR- T
L oo | SIARHE e
s 100
=
ES
2 80
=
=
60
40
20 .
3 4 <

Average length of queries

Fig. 8. Filtering throughput for DB = 3M

throughput than the other variants of STAR (i.e.,, STAR-
HF and STAR-LF) and their competitors TREE and RETRIE.
Observe the enhanced view area in Fig. 7 for a clearer
presentation of throughput results for [2M,3M] queries.
Fig. 8 shows the filtering throughput for queries of different
lengths. As expected all algorithms (except TREE) exhibit
an increase in filtering throughput as longer queries pro-
vide better indexing opportunities. Algorithms STAR-HR
and STAR-LR present higher increase in terms of filtering
throughput, which is attributed to the nature of tries they
create, namely the pruning of tries at filtering time due to
the existence of rare words near trie roots.

Notice that the throughput of all algorithms decreases
with the increase in the database size, since each incoming
document has to be matched against more queries indexed
in the data structures of the algorithms. Moreover, the
throughput of all algorithms (apart from STAR-HR and
STAR-LR) remains relatively unaffected by the increase
in the average query length, since these algorithms focus
on forest compactness and thus their filtering throughput
is not affected by the number of query words. Contrary,
Algorithms STAR-HR and STAR-LR (that place rare words
at the top of the tries) benefit from longer queries, since they
may exploit more pruning opportunities.

Comparing insertion time. In this section, we discuss the
time needed to insert a query and reorganise databases of
different sizes. Fig. 9 shows the time in seconds required to
insert I = 500K queries with 1, = 5 terms in databases of
varying size. We observe that the insertion time of all algo-
rithms increases with the query database size. Algorithms
STAR-HF and STAR-LF need more time to insert new
queries in the existing database since they need to examine

10

1200

STAR-LF

STAR-HF
RETRIE ----3¢----
TREE ——

1000 -

STAR-LR o

800 - STAR-HR ----

Insertion time (secs)
@
j=
=]

0.5 1.0 1.5 2.0 25 3.0

Number of queries (in millions)
Fig. 9. Insertion time for queries with Q =5

1600

RETRIE e
1400 - STAR-LF
STAR-HF
STAR-LR e
STAR-HR ----

1200 +

1000 o 4

800

Reorganisation time (secs)

- s w? —— ?“ s ?
1.5 2.0 25 3.0

Number of queries (in millions)

Fig. 10. Reorganisation time for queries with Q@ =5

more tries as possible indexing locations. This happens due
to the nature of the tries, which index frequent words near
the trie roots, thus, create more indexing opportunities.
Algorithm RETRIE requires less time to insert new queries
in the database than STAR-HF and STAR-LF, as it has less
indexing opportunities. Next, Algorithm TREE requires less
time to insert queries in the database as it places queries
deterministically in the tries. Finally, Algorithms STAR-LR
and STAR-HR tend to explore less candidate tries as rare
words in trie roots exclude many clustering possibilities.

Comparing reorganisation time. In this section, we mea-
sure the time needed to reorganise I = 500K for varying
database sizes. Fig. 10 presents the time needed to reorgan-
ise a query database for each of the presented algorithms
(except TREE that does not consider any query index re-
organisation). Algorithms RETRIE, STAR-LF and STAR-HF
need more time to reorganise /g = 500K queries compared
to the rest of the examined algorithms, and the time needed
increases as the query database increases. This can be ex-
plained as follows. As the database indexes new queries
the clustering opportunities for queries increase. Algorithm
RETRIE that aims at reorganising poorly clustered queries
has to scan the whole query database to locate them and
subsequently identify better indexing positions. Similarly,
Algorithms STAR-LF and STAR-HF are affected by frequent
words in the higher levels of the forest resulting in an ex-
tensive search on the query database at reorganisation time.
Notice that, as the database grows in size, the re-indexing
options increase, thus, resulting in increased reorganisation
time. Contrary, Algorithms STAR-LR and STAR-HR are
slightly affected by the increase in database size, due to the
use of infrequent words near trie roots.

1800

Indexing memory -
1600 [Auxillary memory]

on

1400 +

B,
—
N}
s}
3

RETRIE
TREE

TAR-LR

800

E
E
STAR-H!

Memory usage (MB)

600

400 +

200

Terms 5

Terms 3
Average length of queries

Fig. 11. Memory measurements for DB = 3M

To test the efficacy of full query database reorganisation
we have considered such a scenario for Algorithms RETRIE
and STAR-LR (our fastest performing solution); in our
setup both algorithms executed a complete reorganisation
for a query database of 30 queries with @ =5 terms.
The total reorganisation times obtained were 68 minutes
(a three orders of magnitude or 2626 times increase from
the partial reorganisation solution) for Algorithm RETRIE
and 24 minutes (a four orders of magnitude or 11673 times
increase from the partial reorganisation solution) for Algo-
rithm STAR-LR. The respective gain in filtering time was a
96% decrease for Algorithm RETRIE and a 95% decrease
for Algorithm STAR-LR in filtering time. These results
suggest that choosing a complete database reorganisation
is an expensive choice with a small gain for a real world
scenario where efficiency is of high importance, and will
not be considered further.

Comparing memory usage. We have also executed experi-
ments to specify memory requirements for each of the pre-
sented algorithms. Fig. 11 exhibits a good overview of the
results for DB = 3M queries and varying @)y, terms. For a
database of DB = 3M and @);, = 5, Algorithm RETRIE has
the lowest memory requirements needing 981 MB for stor-
ing the query database and all indexing components, while
Algorithms STAR-LF and STAR-HF need approximately 1
GB of memory to store this information. Algorithms STAR-
LR and STAR-HR need more than 1.1 GB of main memory
due to the non-compact forests they create, and Algorithm
TREE needs around 1.5 GB memory to store the query
database. The excessive memory requirements of Algorithm
TREE (compared to STAR and RETRIE) are explained as
follows. Algorithm TREE creates a new node for every term
that can not be indexed into an existing trie. In contrary,
STAR makes use of the uexp structure (as described in
Section 3.1), which allows the delay of the node creation,
thus, sorting the word in a list of strings and resulting to less
indexing memory requirements. Notice also, that STAR’s
variants and RETRIE have extra memory requirements in
order to keep the appropriate data in auxiliary structures
for their reorganisation phase; Algorithm RETRIE requires
150 MB and STAR’s variants 50 MB extra (shown in Fig. 11).

4.3 Results for the focused query collection

In this set of experiments, we present the most interesting
results concerning the focused query collection (described
earlier in this section). Fig. 12 shows the number of nodes
created by each algorithm for databases containing 1, 2 and

11

DB =1M BeoRg By B5
14 | DB=2M pm .| 8333 %
DB =3M /— B 4428
& & & E =
m o M K » ¥
glz’ 1e&53=2=
= %%ﬁzr_vrzr_\.tj
510’ o 128565 & &
8 oo B 1
% RO
L 8 reEemaeew
1 D & & 8 B
S &2 bH b hH B E
S 6
it
8
K
S 4
Z
2
0

Terms 5

Terms 3

Average length of queries
Fig. 12. Trie nodes created for the focused query collection

6.0

STAR-LR oo
5.5 STAR-LF B
STAR-HR -- -~
STAR-HF
<z 5.0 |
-é RETRIE ----3¢----
3 EE;;"‘:"‘" i TREE —tp—
o4 4.5
z 23
£ i T -
g 40 B .
= =1
2 35
LI A
£ 30
2.5
2.0
3 4 s

Average length of queries
Fig. 13. Filtering time for the focused query collection for DB = 3M

3M queries of different lengths. Observe that all algorithms
behave similarly in terms of nodes created; the differences
in the sizes of the resulting forest among the examined al-
gorithms did not exceed 1%. This was expected as the small
vocabulary of the focused collection created many clustering
opportunities for all algorithms. In such a setting it is not
important where to index a given query, as most queries
will eventually be well-clustered. Naturally, the differences
in filtering time (shown in Fig. 13) are not significant (notice
the small scale of the y-axis) with Algorithms TREE and
RETRIE performing slightly better than the STAR variants.

The most interesting conclusions concerning the per-
formance of the algorithms are extracted from the cross-
comparison results of the examined query collections in
Figs. 4 and 13 . By comparing the filtering performance of
the examined algorithms, we observe that TREE, RETRIE,
STAR-HF, and STAR-LF are very sensitive to vocabulary
variations as the increase in filtering time is 122%, 46%,
229%, and 196% respectively when increasing the vocabu-
lary size, for the same query database size and query length.
On the other hand, Algorithms STAR-LR and STAR-HR
present a decrease in filtering time, since word statistics
for bigger vocabularies contain more information to be
exploited. Finally, comparing the absolute filtering times for
the two collections, we conclude that Algorithms STAR-LR
and STAR-HR deliver a steady filtering efficiency indepen-
dently of the vocabulary size used.

4.4 Result for the varying document length collections

A key characteristic of the documents selected for the pre-
vious evaluations is their average length, which is 53 words
for the DBpedia corpus. As we also want to examine the be-
haviour of the algorithms when filtering larger documents,

160

STAR-HF

140 - STAR-LF
TREE ———
RETRIE --=-3¢---
STAR-LR o
STAR-HR -- -~

120 |

100

Filtering time (msecs/doc)
@®
j=]

600 800

Average length of document

Fig. 14. Filtering time for DB = 3M queries and Q1 = 5

1.6

STAR-HF
14 | STAR-LF
RETRIE ----3¢--=-

TREE ———
STAR-HR -- -~
STAR-LR -

12 +

1.0

0.8

0.6

Filtering time (msec/doc)

0.4

0.2

10 20 30 40 50

Number of queries (in thousands)
Fig. 15. Filtering time for the Million Query Track dataset

we select 100 documents with average length of 200, 400,
600, 800, and 1,000 words and present the most interest-
ing results regarding the observed filtering times by the
examined algorithms. Notice that, documents with a high
number of words are expected to increase the probability
of matching with the stored queries, resulting to a deeper
search at our trie-based data structures. The query database
used in this setup is the general query collection.

Fig. 14 shows the time in milliseconds needed to fil-
ter documents with varying average length, when storing
DB = 3M queries with average length of (J; =5 words.
As expected, the filtering time increases with the increase in
incoming documents length. All algorithms though, present
the same behaviour discussed earlier in this section, except
RETRIE that exhibits higher sensitivity to document size
variation; as the average length of the incoming documents
increases Algorithm RETRIE gradually needs more filtering
time compared to TREE. This happens because Algorithms
RETRIE, STAR-HEF, and STAR-LF tend to group queries
under common words and create forests with the majority of
common words near the roots. Thus, due to larger document
length, Algorithms RETRIE, STAR-HF, and STAR-LF are
forced to visit the lower levels of the trie, i.e., near the
leaves where the fan out is greater due to poor clustering.
The presented results suggest that STAR-LR and STAR-HR
perform 70% better in filtering time compared to RETRIE
and TREE. These differences in filtering times hold for all
sizes of document collections, allowing us to conclude that
STAR-HR and STAR-LR present a steady filtering efficiency
that remains relatively unaffected from the document size.
4.5 Results for the Million Query Track dataset

In this section, we present the most interesting results con-
cerning the Million Query Track dataset (described earlier in

12

STAR-LR &
STAR-HF

016 |- SrAR-LF i
. STAR-HR -- -~ o
g 014
] .
B} e
£ 012 -
< -
50
g
g
£

0.5 1.0 1.5 2.0 25 3.0

Number of queries (in millions)

Fig. 16. Filtering time of DOCPAR, with Q;, =5

this section). Fig. 15 presents the average time in millisec-
onds needed to filter a collection of Ip = 50K incoming
documents against a query database of increasing size. In
this scenario, all algorithms exhibit a similar behaviour as
in the general query collection presented earlier. Although,
Algorithms STAR-HR and STAR-LR maintain their low
filtering time in this query collection, Algorithm RETRIE
preforms slightly worse, while Algorithm STAR-LR is faster
compared to STAR-HR. More specifically, STAR-HR filters
incoming documents 16.7% faster than RETRIE and 4.1%
faster than TREE. Moreover, STAR-LR outperforms RETRIE
by 21.6% and TREE by 8.5%. Finally, we observe that Algo-
rithms STAR-HR and STAR-LR maintain their high filtering
efficiency under real-life data and query sets (that are very
different from the previous experimental setup).

The close performance of the STAR variants in the Million
Query Track dataset is due to the small vocabulary of the
queries and is in line with our previous findings (for the
focused query collection) on how query vocabulary affects
filtering time (see Fig. 13 and the explanation for this in
Section 4.3). Moreover, the fact that RETRIE performs worse
than TREE is attributed to the document length of the
ClueWeb09 corpus, which is much larger (1506 words) than
the average document length in the DBpedia corpus. This
RETRIE sensitivity to document size verifies our previous
findings for the DBpedia corpus which are presented and
discussed in Fig. 14 and Section 4.4 respectively.

4.6 Results for the parallelisation of filtering

In this section, we present the results concerning the two
parallel filtering implementations of the four variations of
Algorithm STAR, as described in Section 3.4.

Figs. 16 and 18 present the results for the DOCPAR
approach. In this approach, each document that arrives at
the system is assigned to an unoccupied thread. In our
assessments we utilised 6 threads, thus allowing 6 docu-
ments to be filtered concurrently by the same processor.
Fig. 16 shows the average time in milliseconds needed to
filter the general query collection of Ip = 50K documents
with Dy, = 53 words against database of different size when
indexing queries with ();, = 5 terms. Fig. 18 presents the
filtering time for queries of different length; the variations
of Algorithm STAR are significantly faster compared to their
non-parallel counterparts (Figs. 3 and 4).

Figs. 17 and 18 present the results for the ROOTPAR
approach. In this approach, each thread is responsible for
a set of roots present in the FOREST. Thus, each root

0.70

STAR-HF
STAR-LR e |
0.60 - GrAR-LF i
= STAR-HR -- -~
g 050
P p-|
£ 040
g =
£ 030 i
8)
£ 020 e
=)
0.10 e
110 ¢ s
| ga— -
0.00 == ; I
0.5 1.0 15 2.0 2.5 3.0

Number of queries (in millions)

Fig. 17. Filtering time of ROOTPAR, with Q, =5

DOCPAR approach ROOTPAR approach

0.18 0.70

STAR-HR
STAR-LF
0.17 =STAR-HF

STAR-LR

0.15

0.14

Filtering time (msec/doc)

0.13

0.12

Terms 3 Terms 4 Terms 5
Average length of queries

Terms 3 Terms 4 Terms 5
Average length of queries

Fig. 18. Filtering time of DOCPAR and ROOTPAR, with DB = 3M

traversal is executed from a different thread during the
filtering of a document. In our assessments we utilised
6 threads, allowing us to split the total number of roots
into 6 even parts and assign each part to a single thread.
Fig. 17 shows the average time in milliseconds needed to
filter the general query collection of Ip = 50K documents
with Dy, = 53 words against database of different size when
indexing queries with)1, = 5 terms. In Fig. 18 we give the
filtering time for queries of different length; the variations
of Algorithm STAR are significantly faster compared to their
non-parallel counterparts (Figs. 3 and 4).

Comparing the two approaches, we can see that the
DOCPAR is more efficient. Overall, in the DOCPAR approach
all threads are continuously occupied by the stream of in-
coming documents that have to be filtered, as each incoming
document is directed to the first available thread. Contrary,
in the ROOTPAR approach, due to the splitting of the trie
roots to different threads the filtering tasks are unevenly
distributed between the assigned threads as a result of
the word distribution and word order in the incoming
document. This leads to fully utilising only a fraction of the
available threads for each incoming document while the rest
of the threads may stay inactive for long periods of time.
4.7 Effectiveness comparison

Fig. 19 presents a proof-of-concept effectiveness evaluation
and cross-comparison for the Boolean and VSM models. Our
intention here is not to perform a full-scale study for the
effectiveness of the two models, but rather to highlight that
important publications are delivered to the users despite the
crude nature of Boolean semantics.

To do so, we relied on the relevance judgements be-
tween queries and documents available at the TREC web-
site, on official TREC tools (e.g., trec_eval), and publicly

13

TVSM 0 = 500 - -~
Boolean 6 = 500 ---&--
0.60 lean 0 = 500 |
055 Boolean # = 50 4
0.50 VSM 6 =5 d
045 Boolean 0 = 5 - £ - |
g 040 TEEG
3 TR W
Z 035 ST TS .
€ o3l — e
~ .. N " : . oy
0.25 | e)
0.20 b . ¢
0.15 N
0.10 bW
0.05 ——
0.00 ~El- - El= - f- - £ -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Fig. 19. Comparing the effectiveness of Boolean and VSM models

available Lemur/Lucene libraries for parsing and prepro-
cessing ClueWeb09 WARC files. To derive the plots of Fig. 19
we analysed the notifications produced under each model,
and set the cut-off threshold 6 = 5, § = 50 and 6 = 500 to
consider the top-5, top-50 and top-500 most relevant notifi-
cations respectively. We used the typical (log normalisation)
tf.idf weighting scheme and vector normalisation for VSM
for both documents and queries (usually referred to as ltc.ltc
[1]). For the Boolean model we utilised term frequencies (i.e.,
word counts) as a score function to make the notification
lists of the two models comparable. Fig. 19 presents the 11-
point interpolated precision/recall graph, micro-averaged
for the 686 TREC queries that had relevance judgements
against 34013 different ClueWeb09 documents.

Notice that the effectiveness between the two models is
very similar when recall is low and comparable for high
recall values, whereas an increase in 6 results in better
effectiveness. The reported Mean Average Precision values
for 6§ = 5 was 0.082, for 8 = 50 was 0.2763, and for § = 500
was 0.2972 for the Boolean model, and 0.0785, 0.2821, and
0.3055 for VSM respectively. Similarly, the reported NDCG
values for § = 5, 8 = 50, and 8 = 500 were 0.1427, 0.4332,
and 0.4695 (Boolean model) and 0.1380, 0.4508, and 0.4976
respectively (VSM). For more details on the effectiveness of
the Boolean model and on how it compares against other
alternatives the interested reader is referred to [36].

4.8 Summary of results

Our extensive experimentation demonstrated the filtering
efficiency of Algorithm STAR-HR when compared to the
rest of the variants presented, as well as to other state-of-
the-art algorithms. Algorithm STAR-HR achieves over 90%
improvement in filtering time compared to state-of-the-art
Algorithms RETRIE and TREE, while presenting low sensi-
tivity to query database size, query length, and document
size. Although Algorithm STAR-HR is designed for query
databases that are unfocused and cover thematically a wide
variety of topics, it performs well in terms of filtering time
both for focused query databases with restricted vocabu-
laries and real-life query logs. In addition, our experiments
showed that Algorithm STAR-HR outperforms its competi-
tors in terms of filtering time for various document sizes.
Insertion and re-organisation times for STAR-HR are also
efficient as it proves faster than its competitors due to the
placement of rare words near trie roots. Finally, memory
requirements for Algorithm STAR-HR are as much as 53%
lower compared to all other examined algorithms, due to

the delay in node creation; this strategy results in utilising
each newly created node by as many queries as possible.
Overall, Algorithm STAR-HR is a versatile query re-
organisation solution that outperforms competitors in de-
manding query clustering tasks, while presenting a steadily
efficient performance in many versatile scenarios.
Limitations of the proposed family of algorithms include
(i) reduced efficiency on limited query vocabularies and/or
very short continuous queries, (ii) increased memory usage
for indexing queries with disjunctions as the different dis-
juncts need to be split and indexed at different tries, and (iii)
corpus-dependent parameter/algorithm setup.

5 OuTLOOK

Interesting directions for future research involve (i) the
adaptation of automata/graph-based techniques as in [10],
[30] to Boolean IF and their comparison against trie-
based approaches, (ii) the extension of RDF-based data and
SPARQL-based query models with text capabilities, and (iii)
the construction of IF ontology systems that will be able to
filter ontology data in a streaming fashion.

REFERENCES

[1] C.Manning, P. Raghavan, and H. Schiitze, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[2] P. Fischer and D. Kossmann, “Batched Processing for Information
Filters,” ICDE, 2005.

[3] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas, “Filtering Al-
gorithms for Information Retrieval Models with Named Attributes
and Proximity Operators,” ACM SIGIR, 2004.

[4] ——, “Information filtering and query indexing for an information
retrieval model,” ACM TOIS, 2009.

[5] T. Yan and H. Garcia-Molina, “Index structures for selective dis-
semination of information under the boolean model,” ACM TODS,
1994.

[6] J. Yochum, “A High-Speed Text Scanning Algorithm Utilising
Least Frequent Trigraphs,” IEEE SNDC, 1985.

[7]1 T. Bell and A. Moffat, “The Design of a High Performance Infor-
mation Filtering System,” ACM SIGIR, 1996.

[8] T. Yan and H. Garcia-Molina, “Index Structures for Information
Filtering under the Vector Space Model,” ICDE, 1994.

[9]]. Callan, “Document Filtering With Inference Networks,” ACM
SIGIR, 1996.

[10] W.Rao, L. Chen, S. Chen, and S. Tarkoma, “Evaluating continuous
top-k queries over document streams,” World Wide Web, 2014.

[11] M. Franklin and S. Zdonik, ““Data in Your Face”: Push Technology
in Perspective,” SIGMOD Record, 1998.

[12] M. Altinel, D. Aksoy, T. Baby, M. Franklin, W. Shapiro, and
S. Zdonik, “DBIS-toolkit: Adaptable Middleware for Large-scale
Data Delivery,” in ACM SIGMOD, 1999.

[13] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha, “Filtering algorithms and implementation for very fast
publish/subscribe systems,” ACM SIGMOD, 2001.

[14] B. Nguyen, S. Abiteboul, G.Cobena, and M. Preda, “Monitoring
XML Data on the Web,” ACM SIGMOD, 2001.

[15] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient
Filtering in Publish Subscribe Systems Using Binary Decision
Diagrams,” in ICSE, 2001.

[16] M. Sadoghi and H. Jacobsen, “Be-tree: an index structure to effi-
ciently match boolean expressions over high-dimensional discrete
space,” ACM SIGMOD, 2011.

, “Analysis and optimization for boolean expression index-
ing,” ACM TODS, 2013.

[18] M. Altinel and M. Franklin, “Efficient Filtering of XML Documents
for Selective Dissemination of Information,” VLDB, 2000.

[19] Y. Diao, M. Altinel, M. Franklin, H. Zhang, and P. Fischer, “Path
Sharing and Predicate Evaluation for High-performance XML
Filtering,” ACM TODS, 2003.

[20] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient
Filtering of XML Documents with XPath Expressions,” ICDE, 2002.

[21] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu, “Processing
XML Streams with Deterministic Automata,” ICDT, 2003.

[17]

14

[22] D.Knuth, The Art of Computer Programming. Addison-Wesley, 1973.

[23] T. Yan and H. Garcia-Molina, “The SIFT Information Dissemina-
tion System,” ACM TODS, 1999.

[24] M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris,
“Data models and languages for agent-based textual information
dissemination,” in CIA, 2002.

[25] M. Morita and Y. Shinoda, “Information Filtering Based on User
Behaviour Analysis and Best Match Text Retrieval,” ACM SIGIR,
1994.

[26] Y.-L Chang, J.-H. Shen, and T.-I. Chen, “A Data Mining-Based
Method for the Incremental Update of Supporting Personalized
Information Filtering,” J. of Inf. Sci. Eng., 2008.

[27] D. Hull,]J. Pedersen, and H. Schiitze, “Method Combination For
Document Filtering," ACM SIGIR, 1996.

[28] Y. Li, X. Zhou, P. Bruza, Y. Xu, and R. Lau, “A two-stage text
mining model for information filtering,” CIKM, 2008.

[29] P. Foltz and S. Dumais, “Personalized Information Delivery: An
Analysis of Information Filtering Methods,” CACM, 1992.

[30] N. Nanas, M. Vavalis, and A. D. Roeck, “A network-based model
for high-dimensional information filtering,” ACM SIGIR, 2010.

[31] J. Callan, “Learning While Filtering Focuments,” ACM SIGIR,
1998.

[32] Y. Zhang and]. Callan, “Maximum likelihood estimation for
filtering thresholds,” ACM SIGIR, 2001.

[33] T. Hofmann, “Collaborative filtering via gaussian probabilistic
latent semantic analysis,” ACM SIGIR, 2003.

[34] R.Y.K. Lau, P. D. Bruza, and D. Song, “Towards a belief-revision-
based adaptive and context-sensitive information retrieval sys-
tem,” ACM TOIS, 2008.

[35] M. Koubarakis, S. Skiadopoulos, and C. Tryfonopoulos, “Logic
and Computational Complexity for Boolean Information Re-
trieval,” IEEE TKDE, 2006.

[36] G. Salton, E. A. Fox, and H. Wu, “Extended boolean information
retrieval,” CACM, 1983.

Lefteris Zervakis is currently pursuing a Ph.D.
degree in Computer Science at the Dept. of
Informatics and Telecommunications, University
of the Peloponnese, working on the areas of
data/information management, RDF data, and
graph databases.

Christos Tryfonopoulos is an Assistant Profes-
sor at the Dept. of Informatics and Telecommu-
nications, University of the Peloponnese. He has
published more than 50 research papers in the
areas of data/information management, large-
scale distributed systems, and digital libraries.

Spiros Skiadopoulos is an Associate Professor
at the Dept. of Informatics and Telecommuni-
cations, University of the Peloponnese. He has
published more than 50 research papers in the
areas of databases, data warehouses, knowl-
edge representation, and artificial intelligence.

Manolis Koubarakis is a Professor at the Dept.
of Informatics and Telecommunications, National
and Kapodistrian University of Athens. He has
published more than 130 research papers in the
areas of semantic web and linked data, large-
scale distributed systems, data and knowledge-
based systems, and constraint programming.

