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Abstract. We study the problem of distributed resource sharing in
peer-to-peer networks and focus on the problem of information filter-
ing. In our setting, subscriptions and publications are specified using an
expressive attribute-value representation that supports both the Boolean
and Vector Space models. We use an extension of the distributed hash ta-
ble Chord to organise the nodes and store user subscriptions, and utilise
efficient publication protocols that keep the network traffic and latency
low at filtering time. To verify our approach, we evaluate the proposed
protocols experimentally using thousands of nodes, millions of user sub-
scriptions, and two different real-life corpora. We also study three impor-
tant facets of the load-balancing problem in such a scenario and present
a novel algorithm that manages to distribute the load evenly among the
nodes. Our results show that the designed protocols are scalable and
efficient: they achieve expressive information filtering functionality with
low message traffic and latency.
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1 Introduction

Peer-to-peer (P2P) computing has been around for more than a decade, con-
tributing a vast amount of research results and deployed prototypes. In this
context applications that scale to millions of users and resources have been de-
veloped in domains like file-sharing (e.g., bitTorrent and Kazaa), voice and video
distribution (e.g., Skype and P2PTV), distributed search engines (e.g., FAROO,
YaCy, and the scientific search engine Sciencenet), and even project management
(e.g., Collanos workplace).

Apart from the traditional applications discussed above, the techniques, tools
and architectures introduced by the P2P paradigm have found new, interesting
and useful applications also in other domains. Lately, P2P concepts are also being
introduced in the –clearly different– cloud paradigm (e.g., in P2P-assisted cloud
provisioning [1–3], or in hybrid architectures [4] with a backbone of super-peers
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that provides access to cloud users and serves queries by executing distributed
protocols), in an effort to exploit the benefits of both technologies. Additionally,
P2P architectures and protocols have also been proposed in the context of dis-
tributed online social networking [5–7], aiming at solving content ownership and
scalability issues, while minimising deployment and maintenance costs.

In this article, we present P2P protocols to support content and/or service
lookup by utilising structured overlays, aiming at content-based filtering func-
tionality in distributed environments.

Targeted Functionality. In the P2P architecture that we envision, resources
are annotated using attribute-value pairs, where value is of type text and queried
using constructs from Information Retrieval (IR) models. There are two kinds
of basic functionality that we expect this architecture to offer: information re-
trieval and information filtering (IF). In an IR scenario a user poses an one-time
query and the system returns a list of pointers to matching resources. In an IF
scenario, also known as publish/subscribe (pub/sub), a user posts a subscription
(or profile or continuous query) to the system to receive notifications whenever
certain events of interest take place. In this article, we concentrate on the latter
kind of functionality (i.e., IF) and show how to provide it by extending the dis-
tributed hash table Chord [8]. We assume that publications and subscriptions
will be expressed using a well-understood attribute-value model, called AWPS
[9]. AWPS is based on named attributes with value free text interpreted under
the Boolean and vector space (VSM), or latent semantic indexing (LSI) models.

Our architecture and protocols target dynamic information dissemination ap-
plications, such as news alerts, digital libraries, weather monitoring, and stock
quotes, consisting of large, open, and dynamic user communities. Especially for
cases like news alerts and digital libraries –where the data of interest is mostly
textual and users express their needs using IR languages (for example, key-
words or pieces of text)– our architecture is well-suited as an implementation
technology. It can handle huge amounts of information in a highly distributed,
self-organising way, while offering benefits in terms of openness, scalability, and
efficiency. Following our approach users, or services that act on users’ behalf,
would specify continuous queries for information, thus subscribing to newly ap-
pearing documents that satisfy the query conditions. The system would then
notify the subscribed users automatically whenever a new matching document
is published. Publishers in such a setting could be news feeds, digital libraries,
or users, who post new items to blogs or other Internet communities.

Contributions. The contributions of this article are the following. We present
a set of novel protocols, collectively called DHTrie, that extend the Chord pro-
tocols with pub/sub functionality assuming that publications and subscriptions
are expressed in the model AWPS. In a distributed pub/sub environment, pub-
lications typically involve contacting a large set of nodes, where matching with
stored subscriptions takes place. To do this effectively, we have designed and im-
plemented four methods that target low network traffic and low latency. In com-
bination with these methods, we introduce a simple routing table that uses only
local information and manages to significantly reduce network traffic. To justify
our solution, we evaluate the DHTrie protocols experimentally in a distributed
digital library scenario with hundreds of thousands of nodes and millions of user
profiles. Our experiments show that the DHTrie protocols are scalable: the num-



ber of messages needed to publish a document and notify interested subscribers
remains almost constant as the network grows, while latency is kept low. As
probability distributions associated with words in publications and queries are
skewed, balancing the node load becomes an important issue. We study three
cases of load balancing for DHTrie, namely query, routing and filtering load
balancing, and present a new algorithm that tackles the load balancing issues.

Preliminary results of this research have appeared in [10]. The current article
revises [10] and presents the following extensions and additional contributions.
We consider the issue of latency in addition to that of network traffic and identify
the relevant tradeoff in our experimental evaluation. To tackle this tradeoff, we
introduce two novel methods (called hybrid and continuous splitting) for resource
publication. The new approaches, although very different in philosophy and de-
sign, manage to keep publication latency low while performing well in terms
of network traffic. The hybrid method is a family of novel tunable alternatives
that allow a per-node parameter setting aiming at adaptability. The continuous
splitting method is automatic and parameterless, which makes it easy to deploy;
it has proven to be efficient to many different settings and goals.

In addition to the above novel contributions, we also include more detailed
descriptions of the DHTrie protocols and their respective data structures (see
Section 3), and extend the experimental work (Section 4) with measurements of
the new methods and comparison with the ones presented in [10], comparison
under two different corpora, and experiments for publication latency and network
dynamics. Finally, we redesign and apply the algorithm presented in [10] to query
load balancing, and study its effects on message traffic (Section 4.9).

Organisation. The organisation of the article is as follows. Section 2 positions
our work with respect to related research, while Section 3 presents the DHTrie
protocols. The experimental evaluation of DHTrie and a study of load balancing
issues are presented in Section 4, followed by Section 5 that concludes the article.

2 Related Work and Background

In this section, we survey related work in the area of pub/sub and IF in P2P
networks. Naturally, this paper is also relevant with the broad area of distributed
query processing, with studies on different query models in distributed settings
(i.e., one-time, relational, and RDF query processing), and with the area of IR
in P2P networks as it shares many common goals and techniques with IF.

2.1 P2P Pub/Sub and Information Filtering

Work on pub/sub in distributed systems has contributed some fundamental ideas
that have also been utilised in the P2P domain. Researchers in this area have
developed various data models based on channels, topics, and attribute-value
pairs to represent publications and subscriptions. Pub/sub systems based on
attribute-value models are called content-based, as attribute-value data models
are flexible enough to express the content of publications. The query languages of
content-based pub/sub systems are based on Boolean combinations of arithmetic
and string operations. Work in this area has concentrated not only on distributed
pub/sub architectures, but also on filtering protocols.

SIENA [11] is probably the most elegant example of a system to be devel-
oped in this area. A very important contribution of SIENA is the adoption of a



P2P model of interaction among servers and the exploitation of traditional net-
work algorithms based on shortest paths and minimum-weight spanning trees
for routing messages. The core ideas of SIENA have been used in the early P2P
pub/sub system P2P-DIET [12].

With the advent of DHTs such as CAN, Chord, and Pastry a new wave
of pub/sub systems has appeared. Scribe [13] is a topic-based pub/sub system
based on Pastry. Hermes [14] is similar to Scribe since it uses the same underlying
DHT but it allows more expressive subscriptions by supporting the notion of an
event type with attributes. Related ideas appear later in [15, 16] and in PeerCQ
[17], a notable pub/sub system implemented on top of a DHT infrastructure
designed to cope with peer heterogeneity by extending consistent hashing [18].

The study in [19] is mainly concerned with scalability of current designs and
proposes two methods that allow to restrict the overall costs. Both these methods
can improve general purpose P2P protocols and can be applied on top of our
work as well. [20] study the problem of content-based pub/sub functionality on
top of Chord, allowing for range-based subscriptions, i.e., one can define a range
for a given attribute as opposed to a single value. Such ideas can readily be
adopted by our protocols as well. Meghdoot [21] is another pub/sub proposal in
the area of DHTs that uses ideas such as hashing of subscriptions and events to
facilitate matching. The difference of Meghdoot from our work is that it is built
on top of CAN, whose characteristics are heavily exploited in the system design
(e.g., it uses zone splitting/replication).

Research on processing subscriptions using string attributes in DHT-based
pub/sub systems is also related to our work. PastryStrings [22] utilises prefix-
based routing to facilitate processing of publications that are strings, and sub-
scriptions that are string predicates. Additionally, the DHTStrings system [23]
utilises a DHT-agnostic architecture to support prefix and suffix queries in string
attributes. More recent works on P2P pub/sub systems have focused on various
issues such as new routing protocols [24–26], combination of IR and IF [27], web
services [28], load balancing [29], security [30] and preference awareness [31].

Similarly to the pub/sub strand of research, approaches that use a DHT as
the routing infrastructure to build filtering functionality for IR-based models
and languages have also been introduced. Closer to our work are the systems
pFilter [32] and Ferry [33].The main qualitative difference of our work is that we
support a different and more expressive query model, requiring more complex
protocols. In addition, from a quantitative point of view our work provides a
more in depth analysis by stressing the system to millions of queries and tens
of thousands of nodes as opposed to only thousands of queries and thousands
of nodes in [32, 33]. Below we discuss these works in more detail, and compare
them against our approach.

pFilter [32] is the closest system to the ideas presented in this work. It uses a
hierarchical extension of CAN [34] to store user queries and relies on multi-cast
trees to notify subscribers. Compared to pFilter, our work uses a more expressive
data model and query language, while there is no need to maintain multi-cast
trees to notify subscribers. However, the multi-cast trees of pFilter take into
account physical network distance something that we do not consider at all in
this work, but rather we consider publication latency and load balancing issues.



Ferry [33] is another proposal to support IF functionality on top of DHTs.
The main difference of our work is the support of a more expressive and com-
plex data and query model. The main novelty of Ferry is that it exploits the
DHT links, e.g., the contents of the Chord finger table, to disseminate informa-
tion in the network. In our work, we exploit similar ideas by extensively taking
advantage of DHT links, trying to group messages based on the Chord finger
table, and piggy-backing information on maintenance messages. In addition, we
provide further routing flexibility with the addition of a routing table, called
FCache (see Section 3.5), that consists of a low cost and best effort cache of IP
addresses that allows us to bypass the DHT protocol whenever this is possible.
Essentially, this comes at zero network cost as it is a process piggy-backed on
the normal DHT messages.

2.2 Other Related Areas

Distributed query processing relies on distributed protocols that dictate where
data meets queries. Depending on the network design and properties, and on the
query model utilised, different query processing algorithms are needed. The first
systems to cope with distributed query processing were mainly based on strictly
structured designs and focused on relational query processing [35].

Mariposa [36], one of the most well-known distributed database systems and
probably the most ambitious attempt to scale to thousands of nodes, proposes
node interaction protocols based on economic models. Another well known dis-
tributed database system is LH* [37], where the authors introduce the notion of
the scalable distributed data structure (SDDS).

The early P2P designs in the area tried to remove all the restrictions of the
classic distributed systems. However, the more demanding nature of applica-
tions enforced structure in P2P networks, appearing in the form of DHTs and
hypercubes [38]. Essentially, these architectures provide functionality so as data
items or queries can be mapped to certain node(s) given a set of properties and
functions. In this way, structured networks provide a non-centralised but still
controllable design pattern.

These network designs can be seen as a hybrid between the early distributed
systems and the early P2P networks, trying to balance the various tradeoffs
and thus, offering extensive flexibility and adaptability to build any kind of ap-
plication over it. Thus, there has been a tremendous amount of research over
structured P2P networks, e.g., there is work on relational one-time and contin-
uous query processing [39–41, 17, 42, 43] and RDF query processing [44–47].

Information retrieval is the dual problem of information filtering, often re-
ferred to the other side of the same coin [48]. Although many of the underlying
issues are similar as both IR and IF share the common goal of information
delivery to information seekers, the design issues (e.g., timeliness of data, identi-
fication and representation of user needs), and also the techniques and protocols
to satisfy these information needs differ significantly.

In [40], one of the early works that considered how to process IR queries on
top of DHTs, the authors discuss issues involved in building IR functionality over
text databases on top of structured overlays. In a similar spirit, [49] discusses
the feasibility of Web search in a P2P environment and estimates the difficulty
of the problem. A straightforward approach to support Boolean searching in



P2P networks is presented in [50], where each node in the network is responsible
for a specific keyword through the DHT hash function and the focus is put on
multiple keyword queries.

Many works have studied how to support document querying based on VSM
on top of structured overlays. Meteorograph [51], one of the early works that deal
with similarity search over structured P2P networks, describes how to support
similarity and ranked search in a linear hash addressing space overlay. In another
approach, LibraRing [52] proposes a two-tier architecture for a digital library
environment aiming to unify IR and IF in a single framework. While most of
related papers utilise a DHT to route the queries to appropriate peers, in Minerva
[53] a global distributed directory for IR-style statistics and quality of service
information is built at indexing time, to be then exploited at query time.

Finally, cloud/grid computing and social networking have emerged over the
last couple of years as new paradigms and application areas for distributed data
management. Our research is also related to works in this domain, as researchers
exploit and extend ideas from the distributed/P2P domain to provide new data
management functionality as in [1, 5, 6, 54, 55].

3 The DHTrie Protocols

We implement pub/sub functionality by a set of protocols called DHTrie (from
the words DHT and trie). The DHTrie protocols use two levels of indexing to
store submitted queries.

The first level corresponds to the partitioning of the global query index to
different nodes using DHTs as the underlying infrastructure. Each node is re-
sponsible for a fraction of the submitted queries through a mapping of attribute
values to node identifiers. The DHT infrastructure is used to define the mapping
scheme and also manages the routing of messages between different nodes. We
use an extension of the Chord DHT [56] to implement our network. The set of
protocols that regulate node interactions are described in the next sections.

The second level of our indexing mechanism is managed locally by each node
and is used for indexing the user queries the node is responsible for. Each node
uses a trie-like data structure to perform query clustering and improve filtering
performance. The details of local indexing are presented in [57].

3.1 The Subscription Protocol

Let us assume that a node P wants to subscribe with a query q composed as a
conjunction of atomic queries:

A1 = s1 ∧ ... ∧ Am = sm ∧
Am+1 w wpm+1 ∧ ... ∧An w wpn ∧ (1)
An+1 ∼an+1

sn+1 ∧ ... ∧ Ak ∼ak sk
where Ai is an attribute, si is a text value, wpi is a conjunction of words and
proximity formulas4, and ai is a similarity threshold, i.e., a real number in the

4 A proximity formula is an expression of the form w1 ≺ξ1 · · · ≺ξk wk, where wi
is a word and ξi is a distance interval of the form {[l, u]: l, u ∈ N, l ≥ 0 and l ≤
u} ∪ {[l,∞): l ∈ N and l ≥ 0}. The proximity operator ≺ξ is used to capture the
concepts of order and distance between words in a text document using intervals
that impose lower and upper bounds on distances between words.



interval [0, 1]. For a query q of the above form, the atomic queries with equality
(=) and containment (w) operators will be called its Boolean part, while the
atomic queries with similarity (∼) operators will be called its vector space part.

To perform the subscription, P randomly selects a single word w contained in
any of the text values s1, . . . , sm or word patterns wpm+1, . . . , wpn and computes
H(w), where H() is a consistent hash function used to map identifiers in the iden-
tifier circle of Chord [56], to obtain the identifier of the node that will be respon-
sible for query q. Then P creates message FwdQuery(id(P ), ip(P ), qid(q), q),
where id(P ) is the identifier of node P computed by hashing a piece of informa-
tion that identifies P (e.g., its IP address and port, or a unique identifier given
to it the first time it joins the network), ip(P ) is the IP address of P , and qid(q)
is a unique query identifier assigned to q by P . This message is then forwarded in
O(logN) steps to the node with identifier H(w). Since only one node has to be
contacted, this forwarding is done using the Chord lookup() function to locate
successor(H(w)), i.e., the first node which is equal or follows H(w) clockwise
in the identifier space and is called the successor node of identifier H(w). Once
successor(H(w)) is located, it is directly contacted by P . In this way, queries
of this type are always indexed under their Boolean part to save message traf-
fic, since they need to be stored at a single node. Notice also that both id(P )
and ip(P ) need to be sent to the node that will store the query to facilitate
notification delivery.

When P wants to submit a query q of the form An+1 ∼a1 s1 ∧ ... ∧ An ∼an sn
(i.e., with a VSM part only), it sends q to all nodes in the list L = {H(wj) : wj ∈
D1 ∪ · · · ∪ Dn}, where D1, . . . , Dn are the sets of distinct words in text values
s1, . . . , sn. In contrast to queries with a Boolean part described above, queries
with only a VSM part need to be stored in all the nodes involved (computed as
above) in order to ensure correctness of the filtering process. Sending the same
message to more than one recipients is discussed in detail in the next section,
where the same problem is posed again by the publication forwarding process.

When a node P ′ receives a message FwdQuery containing q, it stores q using
the second level of our indexing mechanism. P ′ uses a hash table to index all the
atomic queries of q using as key the attributes A1, . . . , Ak. To index each atomic
query, three different data structures are also used: (i) a hash table for text values
s1, . . . , sm, (ii) a trie-like structure that exploits common words in word patterns
wpm+1, . . . , wpn, and (iii) an inverted index for the most “significant” words in
text values sn+1, . . . , sk. P ′ utilises these data structures at filtering time to find
quickly all queries q that match an incoming publication p. This is done using a
method that combines algorithms BestFitTrie [57] and SQI [58]. The details of
local storage and indexing using BestFitTrie are discussed thoroughly in [57].

3.2 The Publication Protocol

Publication of a resource involves sending the same message to a group of nodes
that is not known a priori. To tackle this problem, we have designed and im-
plemented four methods: (i) the iterative method, which is the standard way
to contact a number of different nodes over Chord, (ii) the recursive method,
which creates a single message with all the recipients contained in a sorted list
and works its way around the identifier space until all recipients have been con-
tacted, (iii) the hybrid method which uses machinery from the two previous



methods to provide a tunable alternative between the two extremes, and (iv)
the continuous splitting method, which exploits the finger tables of all message
recipients to split the message at every forwarding node, aiming at the optimi-
sation of network traffic and latency.

The publication protocol essentially involves sending the same message to
the group of nodes that are responsible for the distinct words contained in
the text values of the different attributes of p. In this way, when a node P
wants to publish a resource, it first constructs a publication of the form p =
{(A1, s1), (A2, s2), . . . , (An, sn)} (i.e., a set of attribute-value pairs (Ai, si), where
Ai is a named attribute, si is a text value, and all attributes are distinct) that
is the resource description. Let D1, . . . , Dn be the sets of distinct words in
s1, . . . , sn. Then, publication p has to be propagated to all nodes with iden-
tifiers in the list L = {H(wj) : wj ∈ D1 ∪ · · · ∪Dn}. The subscription protocol
guarantees that L is a superset of the set of identifiers responsible for queries that
match p. To propagate publication p in the DHT, P removes duplicates from
L and sorts it in ascending order clockwise starting from id(P ). In this way,
we obtain at most as many identifiers as the distinct words in D1 ∪ · · · ∪ Dn,
since a node may be responsible for more than one of the words contained in the
document.

3.3 Methods for Subscription and Publication

In this section, we describe four different methods to implement the subscription
and publication protocols and present their advantages and disadvantages.

The Iterative Method. Each node P , that uses the iterative method (It) to
contact the recipients in list L, constructs a FwdResource(id(P ), pid(p), p, id(P ′))
message for each identifier id(P ′) contained in L, where pid(p) is a unique meta-
data identifier assigned to publication p by node P . Then, it utilises the lookup()
procedure provided by Chord to locate node P ′ and sends it the FwdResource
message. This is repeated for all the identifiers in L in an iterative way. Using
this method, P needs O(h logN) messages, where h is the number of different
nodes to be contacted. Figure 1 illustrates graphically the publication of a re-
source to three recipients under Chord using the iterative method and shows a
message graph for a general case of resource publication under It.

The Recursive Method. Using the iterative method has an obvious disad-
vantage; the same node may participate in many lookup() requests for nodes
responsible for identifiers in list L causing increased network traffic. This is the
reason for designing the recursive method (Re). The idea behind method Re is
to pack messages together to reduce network traffic as follows.

Having obtained L, P creates a message FwdResource(id(P ), pid(p), p, L),
where pid(p) is a unique metadata identifier assigned to p by P , and sends it to
node with identifier equal to head(L) (the first element of L). This forwarding is
done by the following recursive way: message FwdResource is sent to a node
P ′, where id(P ′) is the greatest identifier contained in the finger table of P , for
which id(P ′) ≤ head(L) holds.

Upon reception of a message FwdResource by a node P ′, head(L) is
checked. If id(P ′) < head(L) then P ′ just forwards the message as described
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Fig. 1. Message routing and message graph for the It (left) and Re (right) methods

in the previous paragraph. If id(P ′) ≥ head(L) then P ′ makes a copy of the
message, since this means that P ′ is one of the intended recipients contained
in list L (in other words P ′ is responsible for key head(L)). Subsequently, the
publication part of this message is matched with the node’s local query database
using the algorithms described in detail in [57] and the appropriate subscribers
are notified. Additionally, P ′ modifies list L to L′ by deleting all elements of
L that are smaller than id(P ′) starting from head(L), since all these elements
have P ′ as their intended recipient. For the new list L′, id(P ′) < head(L′) holds.
Finally, P ′ forwards the message to node with identifier head(L′). Figure 1 illus-
trates graphically the publication of a resource to three recipients under Chord
using the recursive method and shows a message graph for a general case of
resource publication under Re.

The Hybrid Methods. The idea behind the recursive method is to pack
messages together to reduce network traffic. This however, comes at the cost
of high latency; if the recipients list is long then the last recipient has to wait
for a long time until it is notified about the publication, which in turn causes
delays in the notification of the interested subscribers. The iterative method on
the other hand, tries to optimise latency since no recipients lists are used and
the delay to deliver a message is logarithmic in the size of the network. This of
course comes at the price of high network traffic.

To tackle this tradeoff, we designed and implemented a family of hybrid
approaches that combine the benefits of the two previous methods. The idea
behind the hybrid methods is to design tunable alternatives that will provide fast
delivery of messages at low network cost. To achieve this, the message originator
splits the initial recipients list to smaller ones and each recipients list is sent
in an iterative way, while the message is forwarded in the network recursively.
The family of hybrid methods is designed to provide variations with different
objectives, while the difference between the three variants presented below lies
in the initial splitting of the recipients list. Finally, notice that the parameters
in the hybrid methods are not global, but may be set in a per-node fashion, thus
adapting to node specifics regarding publication size.



The fixHy method. The fixed hybrid (fixHy) method requires fixing
a value for the desired recipients list size σ. Parameter setting in the fixHy
method, although adhoc, allows the manual tuning of the system according to
document and vocabulary size, but requires expertise in setting this value. No-
tice that, if the average document length published in the system is changed, the
method may create too short or even useless recipients lists. The fixHy method
works as follows.

Having obtained L, node P uses it to create h = d|L|/σe recipients lists,
of size σ. In our experiments, we used σ = 10 and σ = 50 as baseline values
depending on the tested corpus, and showed the effect of the desired recipients
list size in the message traffic and latency observed in the network. Notice that
the fixHy method will degenerate to the recursive method for σ = |L| and to
the iterative method for σ = 1. Thus, using a high value for σ will make the
protocol behave similarly to the recursive method, while using a low value for σ
will make the protocol behave similarly to the iterative method.

The perHy method. The percentage hybrid (perHy) method requires the
tuning of parameter π, which controls the percentage of the initial recipients
list that will be used to create each new list. This method is less flexible than
fixHy in setting the size of the recipients list, but requires less expertise and
is adaptable to changes in the document size published in the network. Setting
the recipient list size as a percentage of the initial recipients list allows coping
with both large and small documents, whereas in the fixHy method this is not
possible. The perHy method works as follows.

Having obtained L, node P uses it to create h = d1/πe recipients lists of size
|L| ∗ π, where 0 < π ≤ 1. In our experiments, we used π = 4% and also showed
the effect of π in the message traffic and latency observed in the network. Notice
that the perHy method will degenerate to the recursive method for π = 1 and
to the iterative method for very small values of π.

The medHy method. The median hybrid (medHy) method is an auto-
matic method that requires no parameter tuning, since the recipients lists are
split according to the median of the differences between consecutive intended
recipients. This method identifies the large “gaps” in the intended recipients list
and splits it accordingly. Since no parameter setting is required, this is a method
best suited for general purpose applications with published documents of vary-
ing size; no expertise is needed, since the recipients list is split according to its
special characteristics. The medHy method works as follows.

Having obtained L = {l1, l2, . . . , l|L|}, node P traverses it starting at head(L) =
l1 and calculates all differences δi = li−li+1, 1 ≤ i ≤ |L|−1, between consecutive
intended recipients in L. Subsequently, P calculates the median δmed of these
differences and uses it to split L in the following way. P traverses L once more
starting at head(L), and when δk > δmed, 1 ≤ k ≤ |L| − 1, it creates a new list
L1 = {l1, . . . , lk}. Subsequently, L becomes L \ L1, while element lk+1 is now
head(L), and the process continues until L is empty. Notice that there is no way
to tune this method to behave similarly to either the iterative or the recursive
method, since the splitting of the initial intended recipients list is done automat-
ically according to the keys in L. The medHy method provides an automatic
way to utilise the hybrid protocol, without the need for performance tuning, or
any knowledge of the underlying document properties.
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Fig. 2. Message routing and message graph for the fixHy/perHy/medHy (left) and
Spl (right) methods

For each one of the lists L1, . . . , Lh created by any of the variations (fixHy,
perHy, medHy) of the hybrid method presented above, a message of the form
FwdResource(id(P ), pid(p), p, Li), with 1 ≤ i ≤ h, is constructed and is it-
eratively sent to head(Li). Since each message contains a list of recipients, the
recursive method is utilised to forward the message to the rest of the nodes in
list Li. When a node P ′ receives a FwdResource message, it removes all ele-
ments in L that have P ′ as their intended recipient and forwards the message in
a recursive way. Notice that only the message originator may split the message
into smaller lists, while the rest of the nodes receiving it are responsible just
for forwarding it. The usage of many recipients lists with smaller size together
with the iterative way of sending these lists justifies the hybrid nature of the
protocol. As we will show in Section 4, this method manages to achieve lower
latencies than the recursive method while keeping message traffic relatively low.
Figure 2 illustrates graphically the publication of a resource to three recipients
under Chord using any of the hybrid methods and shows a message graph for a
general case of resource publication under fixHy, perHy, or medHy.

The Continuous Splitting Method. All the variations of the hybrid method
split the initial recipients list only once at the message originator and then, all
the subsequent recipients of the messages are forced to perform the routing task
based on these lists. This makes the protocol simpler, but also adds inefficiencies,
since the recipients of the messages are not allowed to optimise the routing by
splitting the message further. The continuous splitting (Spl) method overcomes
this limitation by allowing each message recipient to split the message into sub-
lists, according to information in its finger table. In this way, the message is split
several times at each recipient before it is forwarded to other intended recipients,
causing an adaptive execution of the forwarding process.

The Spl method tries to exploit each node’s view of the network (in contrast
to the hybrid methods that exploit only the originators’ view), by splitting the
intended recipients lists according to finger table entries of all the nodes partici-
pating at the forwarding of the message. The drawbacks of this method include



the need to access the finger table of each node, which may result in poor split-
ting of the intended recipients list if the finger table entries are outdated, or the
message is too small. The Spl method works as follows.

Each finger table entry fP [i] in the finger table of P is used to create one
or more lists in the following way. Consider two consecutive entries in the finger
table of P , say fP [i] and fP [i + 1]. Starting from the identifier id(fP [i]) stored
at this entry, P scans L = {l1, l2, . . . , l|L|}, and collects all the recipients with
identifier greater than id(fP [i]) and smaller than id(fP [i + 1]) to create list
L1 = {l1, . . . , lk}, 1 ≤ k ≤ |L|−1. Subsequently, L becomes L\L1, while element
lk+1 is now head(L) and the process continues for all the intended recipients in
the list L, until L is empty. Typically, finger entries with higher index number
have longer lists associated with them (remember that entries in the finger table
of a node point to exponentially increasing distances away from the node), which
means that typically the distance between the identifiers of entries fP [i− 1] and
fP [i] is shorter than the distance between those of entries fP [i] and fP [i+ 1].

For each one of the lists L1, . . . , Lh created by the continuous splitting
method, a message FwdResource(id(P ), pid(p), p, Li), with 1 ≤ i ≤ h, is
constructed and is iteratively sent to head(Li). When a node P ′ receives a
FwdResource message, it removes all elements in L that have P ′ as their
intended recipient and repeats the procedure described above to split list Li fur-
ther according to its own finger table. As we will show in Section 4, this method
manages to achieve latency as low as that of the iterative method while keeping
message traffic low. Figure 2 illustrates graphically the publication of a resource
to three recipients under Chord using the continuous splitting method and shows
a message graph for a general case of resource publication under Spl.

The reader may have noticed that the publication (and also the subscription)
protocol in all the proposed methods indexes queries that consist of a single
equality of the form A = s using a single word contained in the text value s,
contrary to the standard way that would index the entire text value s in the DHT.
This is done to avoid sending extra network messages for each publication to
discover matching equalities. False positives that may occur are resolved locally
at each node, thus relieving the network of significant message overhead.

Independently of [10], where we originally presented the iterative and recur-
sive methods, the technical report [59] presented an approach that shares ideas
with these two methods by discussing how to implement multicast functionality
at different levels of a DHT architecture. However, [59] aimed at multicast from
a physical network viewpoint and focused on the comparison of these techniques
across the CAN and Chord DHTs.

3.4 The Notification Protocol

When a message FwdResource containing a publication p arrives at a node
P , the queries matching p are found by utilising its local index structures and
using the algorithms described in detail in [57] for queries with a Boolean part
only. The extension to AWPS queries involves the calculation of the cosine of
the angle of two vectors corresponding to text values from a publication and a
query, and follows straight-forward IR techniques.

Once all the matching queries have been retrieved from the database, P
creates notification messages of the form Notification(ip(P ), pid(p), qid(q)),



where P is the provider that published the matching resource, and sends them
to all the nodes that their queries were matched against p using their IP addresses
associated with the query they submitted. If a node P ′ is not online when P
tries to notify it about the published resource, the notification message is sent
to the successor(P ′). In this way P ′ will be notified the next time it logs on the
network. To utilise the network in a more efficient way, notifications can also be
batched and sent to the subscribers when traffic is expected to be low.

3.5 Frequency Cache

In this section, we introduce an additional routing table that is maintained in
each node. This table, called frequency cache (FCache), is used to reduce the
cost of publishing a resource. Using the protocols described earlier, each node is
responsible for handling queries that contain a specific word. When a resource
r with h distinct words is published by node P , P needs to contact at most
h other nodes which will match the incoming resource against their local query
databases. This procedure costs O(h logN) messages for each resource published
at P . Since some of the words will be used more often at published resources, it
is useful to store the IP addresses of the nodes that are responsible for queries
containing these words. This allows P to reach in a single hop the nodes that
are contacted more often (proxying).

Specifically, FCache is a hash table used to associate each word that appears
in a published document with a node’s IP address. It uses a word w as a key and
each FCache entry is a data structure that holds an IP address. Thus, whenever
P needs to contact another node P ′ that is responsible for queries containing w,
it searches its FCache. If FCache contains an entry for w, P can directly contact
P ′ using the IP stored in its FCache. If w is not contained in FCache, P uses the
standard DHT lookup protocol to locate P ′ and stores contact information in
FCache for further reference. Using FCache, the cost of processing a published
resource p is reduced to O(v+ (h− v) logN), where v is the number of words of
p contained in FCache. Notice that the construction and maintenance of FCache
comes at no extra message cost and node routing information is discovered only
when needed. In the experiments presented in the next section we discuss good
choices for FCache size (see Section 4.4).

The only extra cost involved with FCache is due to possible cache misses
because of network dynamicity. In an FCache miss, the node needs to utilise
the routing infrastructure at the cost of O(logN) messages to locate a node.
However, the new contact information is used to update the FCache entry for
future reference. Misses are most likely to occur for infrequent words, since nodes
responsible for storing queries with frequent words will be contacted repeatedly.

3.6 Network Dynamicity and Fault Tolerance

The issues introduced by the dynamic nature of P2P systems may be distin-
guished in two general categories: (i) topology changes as nodes move in and out
of the system and (ii) content changes as users shift their interests to new topics
while losing interest in others.

In a dynamic network, nodes may join, leave, or fail at any time (referred
to as node churn in the literature). The main challenge in dealing with these



situations in a DHT is preserving the ability to locate every key in the network.
The stabilisation protocol provided by Chord aggressively maintains the finger
tables of all nodes as the network evolves, by relying on successor pointers to un-
dertake correctness of lookups and finger table repairs. This stabilisation scheme
guarantees to offer reachability of existing nodes even at the face of concurrent
joins, leaves, or fails and allows lookups to be both fast and correct. Since all
nodes are uniquely identified in the network, and the Chord identifier calculated
is the same for each reconnection, a node is naturally mapped at the same lo-
cation on the Chord ring every time. This is exploited by the DHTrie protocols
to store notifications for a node at its successor and to deliver them upon node
reconnection. Naturally, successor nodes are also used for data handover when
a node departs normally from the network. To cope with data loss due to node
failures and accelerate lookups further, replication [60–62] and caching [63, 64]
algorithms may be utilised. Finally, note that changes in network topology will
also lead to FCache misses (remember that misses do not affect the correctness
of the protocols) and hence, increase message traffic, as shown in Section 4.8.

Naturally, the interests of the nodes evolve over time resulting in creating,
modifying, or deleting queries from the network, or even changing the topic and
rate of their publications. These changes will cause an increase in message traffic
as long as the network tries to cope with the content shift. Newly introduced
topics or topics that have suddenly gained increasing interest will introduce new
terms, which in turn will be infrequent at the beginning, but their frequency
of occurrence will increase with user publications. These changes in content are
expected to initially generate FCache misses (i.e., increase network traffic), but
as specific terms become popular FCache will be gradually updated.

4 Experimental Evaluation

To carry out the experimental evaluation of the protocols described in the previ-
ous section, we needed metadata for incoming resources, as well as user queries.
For the modelAWPS considered in this work there are various document sources
that one could consider: TREC corpora, metadata for papers on various pub-
lisher Web sites (e.g., ACM or IEEE), electronic newspaper articles, articles from
news alerts on the Web (http://www.cnn.com/EMAIL), and others. However, it is
rather difficult to find user queries except by obtaining proprietary data (e.g.,
from CNN’s news or Springer’s journal alert system). Additionally, notice that
using query logs of one-time queries as continuous queries does not create realis-
tic query databases. One-time queries are in general short and focused, as they
express one-time information needs, while continuous queries tend to be longer,
more complex and more general, in order to satisfy long-term information needs.

4.1 Experimental Setup

In this section, we describe the document and query sets used to evaluate our
methods, and present the performance criteria and setup of our evaluation.

Document Corpora. For our experiments, we used two sets of real-life docu-
ments and queries. The first set is composed of 10,426 documents downloaded
from CiteSeer (http://citeseer.ist.psu.edu), originally compiled in [65], and
used also in [57, 52, 10]. These documents are research papers in the area of



Description NN corpus DBP corpus

Collection size compressed (uncompressed) 99.6 MB (346.2 GB) 548.8 MB (2 GB)
Number of documents 10,426 3,144,265
Document vocabulary size in words 379,484 2,902,491
Maximum document size in words (KB) 104,500 (595.5 KB) 15,815 (150.3 KB)
Minimum document size in words (KB) 26 (0.2 KB) 1 (0.002 KB)
Average document size in words (KB) 5,415 (32.9 KB) 91 (0.5 KB)

Table 1. Some key characteristics of the two corpora used for the evaluation

Neural Networks; we will refer to them as the NN corpus. To assess the gen-
erality of our approach, we have also conducted experiments with a larger and
more varied corpus. The dbpedia (http://dbpedia.org) corpus –we will refer to
it as DBP corpus– consists of more than 3 million documents that are extended
abstracts from the Wikipedia website. The DBP corpus was chosen due to its
differences to the NN corpus (smaller average document size, larger diversity in
topics, wider vocabulary) and is used to demonstrate the performance of our
protocols under a different setting. Table 1 summarises some key characteristics
of the two corpora used in the evaluation.

All the experiments shown in this section were carried out using both docu-
ment corpora. However, due to space considerations we report graphs for both
corpora only when there exists a notable difference between the two experiments.

Query Sets. Since no database of continuous queries was available to us, we used
two different methodologies to create continuous queries under model AWPS.

The queries for the NN corpus are synthetically generated and consist of two
parts: (i) a Boolean part containing atomic Boolean queries of the form A w wp
and (ii) a VSM part containing atomic queries of the form A ∼k s, where s
is a text value. We set A to be title, authors, abstract, or body with
some probability. Subsequently, each atomic Boolean query of the form A w wp
is generated using words and technical terms extracted automatically from the
NN corpus using the C-value/NC-value approach of [66]. For more details of the
methodology the interested reader can refer to [57, 52, 10]. An example of a user
query created synthetically from the methodology briefly sketched above is:

(author w Darwen) ∧
(title w implementation ∧ (RBF ≺[0,3] networks)) ∧

abstract ∼0.6 “Most work on the evolutionary approach to the iterated . . .”

Since there is no publicly available database of continuous queries for the
DBP corpus, we used 20.2 million Wikipedia article titles and categories (mod-
ified appropriately to fit our query language) as user queries. Each title or cat-
egory represents one continuous query q that contains either a Boolean or a
VSM part. For the case of the DBP corpus, we avoided synthetic creation of
more complex queries (as done before for the case of the NN corpus) in order to
demonstrate the performance of our methods under a different query setting.

Setup. We have implemented and experimented with eight variations of the
DHTrie protocols: the iterative method It, the recursive method Re, the hybrid
method fixHy, and the continuous splitting method Spl, which do not employ
an FCache, and their counterparts that utilise an FCache (ItC, ReC, fixHyC,
and SplC respectively). The experiments with both corpora were conducted
using the same machinery to enable the comparison across the different settings.
All the methods and the DHTrie simulator were implemented in C/C++.



Parameter Description Baseline value

N # of nodes in the system 10K-100K
Q # of queries assigned to nodes 5M
Cs # of entries in FCache 30K
Ct # of publications used to train FCache 10K
W average # of words per published document 5415 (NN), 91 (DBP)
SF split factor (used for load balancing) 1, 10, 20, 30
T split threshold (used for load balancing) 10
σ size of recipients list (fixHy method) 50 (NN), 10 (DBP))
π percentage of recipients list (perHy method) 4%

Table 2. Parameters varied in experiments, their descriptions, and their baseline values

To carry out each experiment described in this section, we execute the fol-
lowing steps. Initially the network is set up by assigning keys to nodes. These
keys are calculated using the SHA-1 cryptographic hash function and randomly
created IP addresses and ports. After the network set up, we create 5M user
queries and distribute them among the nodes using the protocol described in
Section 3.1. According to the publication protocol, the number of posted queries
does not affect the cost for publishing a document in the network; it only affects
the matching time for the local filtering algorithms and the number of match-
ing notifications produced (i.e., the higher the number of posted queries is, the
higher the number of matching notifications produced). Table 2 summarises the
parameters and the baseline values used for the experiments.

Evaluation Metrics. We are mainly interested in the performance of the eight
different protocols in terms of network traffic and latency to publish a document
or subscribe a query. To measure network traffic, we publish the corpus docu-
ments at different nodes and record the network activity. In our network, we
can distinguish between two types of messages: messages sent through the DHT
infrastructure and messages sent to a node using directly its IP address (FCache
messages). In our experiments, we record and present the effects of both types of
messages. Latency is measured in number of hops as follows. For each message
(either publication or subscription) initiated by node P , we record the longest
chain of messages needed until the message reaches all the intended recipients.

4.2 Varying the Type of Queries

The first set of experiments investigates the cost of indexing a query in the
network. For this setup we used two types of queries: (i) queries including only
vector space atomic parts and (ii) queries with both Boolean and vector space
parts. Indexing the second type of queries is the same as indexing queries with
Boolean atomic parts only (see Section 3.1).

Each bar in Figure 3 shows the average message traffic recorded when index-
ing 500K queries of each type in a network of 50K nodes for both corpora. The
most important observation in these graphs is that, regardless of the protocol
and corpus applied on, vector space queries are more expensive to index than
Boolean or mixed type queries. This happens because vector space queries are
indexed at all nodes responsible for the distinct words in the query, contrary to
other query types that are indexed under only one node (see Section 3.1). Notice
the important role of FCache, the use of which manages the forwarding to the
intended recipients of more than 1/3 of the total network traffic, thus relieving
the DHT infrastructure of substantial messaging effort. It is clear that ReC and
fixHyC are the best performing protocols for vector space query indexing in
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terms of message traffic. The difference in the message traffic induced by the
queries of the two corpora is attributed to the different query lengths.

Figure 4 presents the publication latency achieved by all our protocols when
indexing 500K (vector space or mixed) queries in a network of 50K or 100K nodes
for both corpora. As we can see in this figure, latency in the indexing of Boolean
or mixed type queries is invariant since they are indexed under only one node. For
the vector space queries however, one important observation is the low latency
of the iterative and the continuous splitting methods, and the high latency of the
recursive ones. This is due to the routing infrastructure used and the specifics
of each method. The iterative methods use a single lookup message for each
one of the intended recipients of the query, thus parallelising the subscription
process. The continuous splitting methods split the recipient lists and adapt
the subscription process to the finger tables of the forwarding nodes. On the
other hand, the recursive method uses long recipients lists and contacts them
in a recursive way, thus increasing subscription latency. Additionally, protocol
fixHy seems to behave similarly to Re in terms of latency, which is explained
by the fact that in this experiment the two protocols have roughly the same size
of recipients lists. This happens because Re creates small recipients lists (due
to the size of the query) and thus, the size of the list is similar to the size we
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Fig. 5. Message traffic for various network sizes

use for protocol fixHy. FCache, similarly to message traffic, plays an important
role by reducing latency (up to 60%) for all the protocols.

4.3 Varying Network Size

Although query indexing performance is important, in an IF scenario resource
publication is the time critical component. This second set of experiments tar-
gets the performance of the protocols in terms of message traffic and publication
latency for different network sizes. In this experiment, we randomly selected 100
documents from the NN and the DBP corpus and used them as publications by
randomly assigning each one to a different publisher node for each of the 10 dif-
ferent runs used for averaging measurements. Having published the documents,
we recorded the total number of DHTrie messages generated by the network in
order to match these documents against the indexed user queries.

In Figure 5, the performance of the protocols in terms of DHTrie mes-
sages/document for both corpora is shown. The main observation is that the
number of messages generated by all protocols grows at a logarithmic scale
mainly due to the routing infrastructure used. A second observation emerging
from the graph is the effectiveness of the FCache independently of the message
routing protocol used and the corpus it is applied at. The use of FCache results
in the reduction of messages sent using the routing infrastructure by more than
6 times for NN corpus (resp. 7 times for the DBP corpus) in the recursive, the
hybrid and the continuous splitting method, and by 8 times for the NN corpus
(resp. 4 times for the DBP) in the iterative method. Notice that the improvement
in the performance of the protocols when using the FCache is slightly lower for
the DBP corpus (compared to the NN corpus) due to the significantly smaller
document size and the wider vocabulary (because of lower FCache utilisation
and thus higher DHT traffic). Finally, notice that the number of DHT messages
needed to index a document from the DBP corpus is significantly lower than
that of the NN corpus, due to the significantly smaller average document size.

In Figure 6, the performance of the different protocols in terms of publication
latency for both corpora is shown. Similarly to the previous set of experiments,
low latency is observed when using the iterative or the continuous splitting meth-
ods, whereas high latency is caused by the recursive ones. The use of the FCache
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reduces publication latency for both corpora by shortening the intended recip-
ients lists of ReC and fixHyC. Additionally, it is worth pointing out that the
smaller document size of the DBP corpus results in lower publication latency
compared to that of the NN corpus, due to the smaller recipients lists.

Finally, in our measurements (graph not shown due to space reasons) the
lowest processing cost per document for a network size of 100K nodes for the
NN corpus (resp. DBP corpus) is presented for method ReC with about 1,300
(resp. 42) messages in total, with about 65% of them being FCache messages, as
opposed to 40% for method SplC, and 55% for method ItC for both corpora.

4.4 Varying the FCache Size

The third set of experiments targeted the performance of the protocols under
different FCache sizes, and studied the effect of FCache in message traffic and
publication latency. Initially, we used (a part of) the document corpora as train-
ing sets for populating the FCache of the different nodes; a randomly chosen
node P publishes 10K documents and populates its FCache with the IP ad-
dresses of the nodes that are responsible for the most frequent words contained
in the published documents. Then, another 100 documents are published by P
and the size of the FCache is limited to different values. Subsequently, the to-
tal number of messages used to match these documents against the stored user
queries is recorded and averaged over 10 runs with different nodes. Figure 7
shows the messages traffic per document for the two corpora as the size of the
FCache grows.

As shown in Figure 7, the number of messages sent using the DHTrie routing
infrastructure reduces quickly for both corpora as the size of FCache increases,
and the decrease rate depends on FCache size due to the skewness in the corpus
vocabulary. This results in reaching an FCache size after which no significant
effect is observed in message traffic reduction (around 30K entries, the rightmost
point on the x-axis). Additionally, the reduction factor for all methods and
for both corpora is similar: 40-50% (resp. 10-15%) reduction in message costs
depending on the method for small (resp. large) FCache sizes. Notice also that
for protocols ReC, HyC, and SplC the performance of FCache remains almost
constant for different network sizes, whereas for protocol ItC 50% more DHTrie
messages/document are needed for an 100% increase in network size. Finally,
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notice that the number of DHT messages needed to index a document from
the DBP corpus is significantly lower than that of the NN corpus due to the
significant difference in average document size.

In Figure 8, we show the publication latency for the different protocols and
the way it is affected by the variation of the FCache size. As expected, the
reduction in the latency for all the protocols is lower as the FCache size increases
due to the skewness of the vocabulary entries used for populating the FCache.
Additionally, not all protocols are affected in the same way from FCache increase
in size. ItC and SplC remain relatively unaffected for both corpora by the
increase both in FCache size and in network size, something that is also verified
from the graphs of the previous section. This is due to the routing infrastructure
and the parallel way of publishing the incoming documents. Contrary, protocols
ReC and fixHyC seem to perform better when the size of the FCache increases,
since this causes reduction in the size of recipients lists. Moreover, the reduction
factor across corpora is similar: low for methods ItC and SplC, while it reaches
35-45% (resp. 5-15%) for small (resp. large) FCache sizes for methods ReC and
fixHyC. Finally, FCache is equally utilised by all methods (graph omitted due
to space reasons), as the number of FCache messages/document is similar for all
methods and reaches up to 900 (resp. 19) FCache messages/document for the
NN corpus (resp. DBP corpus) for 30K entries.
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Fig. 9. Performance for different levels of FCache training

4.5 Effect of FCache Training

In this set of experiments, we measure the effect of FCache training on message
cost and publication latency in the NN corpus (results for the DBP corpus are
similar and are omitted due to space reasons). To do so, we randomly selected
a node P and trained its FCache with a varying number of documents. In this
way, the node was able to collect statistics about frequent words used in docu-
ment publications and populate its FCache with pointers to frequently contacted
nodes. Subsequently, we published 100 documents to P and recorded the average
message cost and publication latency. The results shown in Figure 9 are averaged
over 100 runs for different nodes to eliminate network topology effects.

Figure 9(a) shows that the performance of all protocols improves as more
documents get published. Methods ReC and fixHyC are less sensitive in this
parameter, as the difference in the number of messages observed is about 100
messages for 50 times more documents (the leftmost and rightmost point in the
x-axis). Additionally, ReC and SplC show less sensitivity with respect to the
network size, contrary to ItC that needs about 50% more messages. Finally, all
methods show a similar behaviour for the two network sizes tested.

Figure 9(b) shows the effect of the number of publications in latency. We ob-
serve that method ReC is the most affected by the training level of the FCache,
as it is heavily dependent on the FCache information to reduce long recipients
lists. Method fixHyC is less affected as it produces shorter recipient lists than
ReC, while methods SplC and ItC remain unaffected due to the protocol de-
sign. Additionally, all methods present a slight increase in message traffic when
doubling the network size due to the logarithmic routing.

Finally, the number of FCache hits for the NN corpus (resp. DBP corpus)
and for all methods is between 830 and 875 (resp. 12 and 20) messages/document
for a network of 50K nodes. This shows that FCache hits are only affected by
the size and skewness of the published data, not by the protocol used.

4.6 Varying the Document Size

Document (i.e., publication) size is an important parameter in the performance
of our protocols. This set of experiments targeted the performance of the pro-
tocols under various document sizes. Due to space reasons we show only the
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Fig. 10. Performance for documents of different size

experiments on the NN corpus that has a larger variation in document size. The
findings for the DBP corpus are briefly summarised in the text and are in line
with the ones presented here. Figure 10 shows the message cost and latency for
publishing documents of varying size for all protocols. Each bar is an average
of the message cost and latency (appropriately truncated to show the best per-
forming methods) for 100 documents, published by 1,000 different nodes (in a
network of 50K nodes in total) to normalise network topology effects.

Figure 10(a) shows that for small documents, methods Re, fixHy, and Spl
achieve 50% less message traffic than It, while all FCache variations of the
protocols perform similarly. This happens because in smaller documents there
will be less infrequent words that may result in FCache misses. However, as
document size increases the importance of the message forwarding method is
more obvious (i.e., notice that ReC is able to process documents of 21K words
by using only 1,000 messages). Note also that although protocols ReC, fixHyC,
and SplC perform similarly in terms of message traffic, as discussed later in this
section, SplC handles latency better than its counterparts. Our findings for the
DBP corpus are similar, but, since the average document size is significantly
smaller, message traffic is about 10 times lower (see also Figure 5).

Figure 10(b) shows how document size affects latency for the different pro-
tocols. The most important observation is the inefficient performance of the Re
and ReC protocols (notice that measurements are reduced by a factor of 10 for
readability), which shows the dependence of both methods on document size
(that increases the size of recipients lists). Contrary, the rest of the protocols are
insensitive to document size, for different reasons each: It and ItC because of the
lack of recipient lists, fixHy and fixHyC because of document size-independent
recipient lists, and Spc and SplC because of the adaptivity of the forwarding
process. The measurements for the DBP corpus showed a similar behaviour for
all methods due to the small average document size and thus recipient list size.

We also examined the relative increase in message traffic and latency for
three groups of documents, D1, D2, and D3, where D2 is 3 times larger and
D3 is 14 times larger on average than D1. Initially, 100 random nodes were cho-
sen to publish documents from group D1, and the message traffic and latency
were recorded. Then, the other two document groups were published in the same
way, and the measurements were recorded and compared to those of group D1.
Figure 11 shows the factor of increase in message traffic and latency for each
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Fig. 11. Increase rate for different document sizes
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Fig. 12. Performance when varying σ (fixHy) and π (perHy)

protocol when publishing the two different groups of documents. Our findings
on the sensitivity of the methods to document size are aligned with those of Fig-
ure 10: in terms of message traffic ReC, fixHyC, and SplC show low sensitivity
to document size, while in terms of latency Re and ReC are highly sensitive.

4.7 Comparison of the Hybrid Methods

This set of experiments aims at comparing message overhead and publication
latency of the hybrid method variants by examining the correlations between
the parameters σ and π of methods fixHy and perHy, and the performance of
the parameterless method medHy. Figure 12 demonstrates the performance of
the fixHy and perHy methods for two different network sizes (50K and 100K
nodes). Each point is averaged over 10 runs, and 100 NN corpus documents,
randomly assigned to publisher nodes, were used as incoming publications. The
findings for the DBP corpus are similar and are omitted for space reasons.

Figure 12(a) shows the average number of DHT messages needed to pub-
lish a large document as the desired recipient list size increases for the hybrid
methods. To interpret the results of this graph the reader is reminded that the
hybrid protocols try to combine the iterative and recursive protocols: the shorter
the recipients list size is, the closer the protocol is to the iterative counterpart
(notice network traffic reduction as the recipient list size increases). Addition-
ally, FCache reduces network traffic and the effect of network size significantly,
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Fig. 13. Performance of the hybrid methods for various network sizes

while making the methods less sensitive to parameter changes. Finally, notice
that although the splitting of the recipients list is performed in a different way
by fixHy and perHy, parameters σ and π have a similar effect since they relate
through the average publication size (i.e., it is possible to adjust π so that in
the average case it will split the message in pieces of average size σ). Notice
however, that π is easier to set than σ as it does not require any knowledge on
the specifics of the published documents.

Publication latency is linear to the increase in the recipient list size (Fig-
ure 12(b)) for both methods, while FCache manages to keep latency low.

Finally in Figures 13(a) and (b), we demonstrate message traffic and latency
for all hybrid variations. Message traffic for all methods grows logarithmically
due to the routing infrastructure, while the introduction of FCache results in
a significant decrement in message traffic. As the medHy method is by de-
sign aimed towards optimising latency (due to the way of splitting recipients
lists), fixHyC and perHyC have also been set with latency in mind (σ = 50,
π = 0.04) for comparison reasons. Finally, notice that the fixHy and perHy
methods perform similarly in terms of message traffic, but differ in latency,
which demonstrates the importance of optimising this tradeoff and constituted
the main driver for the introduction of Spl and SplC methods.

4.8 Effect of Node Churn

In this section, we target the performance of the protocols in terms of message
traffic and publication latency under node churn by introducing a short life span
for a varying percentage of nodes in the network.

In Figure 14, our measurements show that when 5% of the nodes are off-line
during a lookup, the message cost increase is no more than 8% for the NN corpus
(12% for the DBP corpus), showing that FCache is able to cope up with misses.
On the other hand, when 30% of the nodes are off-line, the message cost increases
significantly for both corpora, since for each FCache miss several DHT messages
have to be issued. Remember though, that FCache misses affect only network
traffic and not the correctness of the protocols. Additionally, all methods, apart
from ReC (that packs messages together and increases the recipients list size),
present a good overall performance in terms of latency.

To deal with node failures for methods that do not rely on FCache (i.e.,
It, Re, fixHy, and Spl) we reside on DHT mechanisms, which can guarantee



 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

#
 o

f 
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t ItC ReC fixHyC SplC

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  5  10  15  20  25  30

la
te

n
cy

 (
h
o
p
s)

off-line peers (%)

(a) NN corpus

 50

 100

 150

 200

 250

#
 o

f 
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t ItC ReC fixHyC SplC

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30

la
te

n
cy

 (
h
o
p
s)

off-line peers (%)

(b) DBP corpus

Fig. 14. Message traffic and latency for 100K nodes under churn

correctness of lookups and finger table repairs. All measurements for node churn
in Chord [56] carry over to our setting; for more details the reader is referred to
[56] due to space reasons.

4.9 Skewed Data Distributions and Load Balancing

In typical IR scenarios the word distributions associated with documents and
queries are typically skewed. In a pub/sub setting, load balancing becomes a key
issue when trying to partition the query space among the different nodes of a
DHT. We can distinguish three types of node load: query load (i.e., the number
of queries stored at a node), routing load (i.e., the number of messages a node
forwards due to the protocols), and filtering load (i.e., the number of publications
a node has to filter against the stored queries).

Balancing the Filtering Load. In the DHT literature, work on load balanc-
ing has concentrated on two particular problems: (i) address-space load balancing
concerning how to partition the address-space of a DHT “evenly” among keys;
it is typically solved by relying on consistent hashing and constructions such
as virtual servers [8] or potential nodes [67] and (ii) item load balancing ad-
dressing how to balance load in the presence of data items with arbitrary load
distributions [67, 68] as in our case.

We have implemented and evaluated a simple algorithm based on the well-
known concept of load-shedding (LS), where an overloaded node attempts to off-
load work to less loaded nodes. Once a node P understands that it has become
overloaded, it chooses the most frequent word w it is responsible for and a
small integer k. Then P contacts the nodes responsible for words wj for all
j, 1 ≤ j ≤ k, where wj is the concatenation of strings w and j, and asks
them to be its replicas. Then P notifies the rest of the network about this
change in responsibilities by piggy-backing the necessary information in DHTrie
maintenance messages. Each node M that receives this message notes down
the word w. Later on, if M has a new publication containing w, it divides the
filtering responsibility for w among P and k other nodes by concatenating a
random number from 1 to k to the end of w and using DHTrie to find the node
responsible for the concatenated word. In this way, the filtering responsibility of
w for P is reduced by k + 1 times (node P and k new nodes). We call k + 1 the
split factor (SF ) in subsequent experiments.
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Fig. 15. Load distribution for the 10K most loaded nodes

Figure 15(a) shows the average number of filtering requests (top part) re-
ceived by each node in a time window T for a period of 100*T. SF was varied
between 10 and 30 nodes and T was set to 10 filtering requests. We also varied
T but did not observe significant differences in the load distribution.

Balancing the Routing Load. Balancing the filtering load causes an increase
in message traffic due to FCache misses and thus, the overall routing load of the
system is increased. Figure 15(a) shows the number of routing requests (bottom
part) received by the 10K most loaded nodes in the network. The number of
DHT messages/document increases after the load balancing algorithm is run
(80% for SF=10, 180% for SF=20, and 240% for SF=30), but the new load
imposed on the network is well distributed among the nodes and does not cause
overloading in any specific group of nodes.

Balancing the Query Load. Even query distribution among nodes is a hard
task to achieve since typically queries follow a skewed word distribution. To
distribute the queries to the nodes responsible, we utilised two different query
indexing methods. The first method, coined RWI (Random Word Index), follows
the subscription protocol of Section 3.1, where a node P indexes a query q
to the node responsible for a randomly selected word w contained in any of
the text values s1, . . . , sm or word patterns wpm+1, . . . , wpn of q. Contrary, the
second method, coined LFWI (Least Frequent Word Index), takes into account
the document frequency of the words contained in q and indexes q to the node
responsible for the least frequent word w contained in it.

Notice that the methods described above are orthogonal to the routing method
utilised by P to forward the query, since they are only used to select under which
word q will be indexed in the network. The intuition behind method LFWI is
to index the query under the node responsible for the least frequent word in it,
thus avoiding the overload of nodes responsible for popular terms. Figure 15(b)
shows the results for the 10K most loaded nodes and 1M queries indexed in a
network of 50K nodes and each graph is produced as an average over 10 runs.
Method LFWI+LS, i.e., the combination of the LFWI and LS methods (for
with SF=10), achieves the most uniform load distribution of all approaches.



4.10 Summing Up

In all experiments, the methods with the FCache (ItC, ReC, fixHyC, SplC)
outperformed (both in message traffic/latency) their counterparts without the
FCache (It, Re, fixHy, Spl) showing the usefulness of the proxying mechanism.

When message traffic is the optimisation metric (at the expense of latency),
method ReC is the best candidate, as it is less sensitive to network and publica-
tion size. Contrary, when latency is the optimisation metric (at the expense of
message traffic), method ItC presents the best alternative, as it is less affected
by network size, FCache size/training, and publication size. Hybrid methods
fixHyC and perHyC are tunable alternatives to the ItC and ReC methods,
adjustable to publication size, and offer a good tradeoff between message traffic
and latency, while method medHyC is the parameterless variation of the hybrid
family that slightly favors latency over message traffic. Finally, method SplC is
slightly more expensive than ReC in network traffic, but its latency is as low
as the best performing method ItC. Moreover, SplC is less sensitive than the
hybrid methods to changes in network size and FCache size/training.

Overall, perHyC and SplC are the two most versatile and well-performing
protocols that put emphasis both on optimising message traffic and latency.
Method perHyC may be adjusted in a per-node fashion, however parameter
setting may require background knowledge of publication characteristics. On
the other hand, SplC is an adaptable and versatile method that performs well
under many different scenarios (including node churn) and can be deployed off-
the-shelf, without any need for parameter setting.

5 Conclusions and Outlook

In this work, we have presented and evaluated a set of protocols that efficiently
extend Chord with pub/sub functionality and introduced proxying and load bal-
ancing mechanisms to cope with message traffic, latency, and skewness of data.
The results of the earlier version of this paper [10] have influenced most of our
work on P2P computing over the last years, inspiring us to develop IF function-
ality [27] in the Minerva system [53], study IF in an XML context [69], design
DHT-based digital libraries [52], and implement Web/Grid service registries [70]
for the EU projects OntoGrid and SemsorGrid4Env. The deployment of these
ideas on various domains demonstrates the generality of the problem and shows
that our protocols may be applied beyond the adopted scenario.

Lately, MapReduce [71] is widely used as the programming paradigm to
achieve distributed data analysis, load balancing, and fault tolerance by par-
allelising map and reduce operations in the cloud. We plan to port our work
to the MapReduce paradigm (e.g., following the philosophy of Memcached for
a generic distributed service) to allow the deployment of our protocols in a
well-known computing paradigm aiming for higher penetration in domains other
than P2P. Additionally, such an implementation will encourage the usage and
evaluation of the protocols in real-life scenarios and allow us to get usage data in-
volving performance measurements, real user profiles, and publishing behaviour
patterns.

Furthermore, the deployment of our protocols in large-scale distributed social
networks would allow novel data management functionality, like subscriptions



over content/tags with aggregation (e.g., notify me when a published document
matches my continuous query and k of my friends have tagged it as interesting).
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