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Abstract. This work investigates the ability of open Large Language
Models (LLMs) to predict citation intent through in-context learning
and fine-tuning. Unlike traditional approaches relying on domain-specific
pre-trained models like SCciBERT, we demonstrate that general-purpose
LLMs can be adapted to this task with minimal task-specific data. We
evaluate twelve model variations across five prominent open LLM fam-
ilies using zero-, one-, few-, and many-shot prompting. Our experimen-
tal study identifies the top-performing model and prompting parame-
ters through extensive in-context learning experiments. We then demon-
strate the significant impact of task-specific adaptation by fine-tuning
this model, achieving a relative Fl-score improvement of 8% on the
SciCite dataset and 4.3% on the ACL-ARC dataset compared to the
instruction-tuned baseline. These findings provide valuable insights for
model selection and prompt engineering. Additionally, we make our end-
to-end evaluation framework and models openly available for future use.

1 Introduction

Citations are references of research articles to external sources of information
included to support claims, provide context, criticize, or acknowledge prior work.
Although their primary function is to inform and redirect the reader, citations
are also frequently used for other purposes, such as serving as proxies of scientific
impact in various types of analysis [I8]. In such cases, understanding the exact
intent of a citation is crucial, as not all types of citations should be considered.
For instance, while measuring the impact of an article, citations that criticize
the work should generally not be considered as contributing to its impact.
Predicting citation intent based on its context (i.e., the sentences in the
manuscript that accompany the citation) and other related information, has
become an important classification problem to support the aforementioned use
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cases. Existing approaches have traditionally relied on linguistic features [17],
machine learning methods [32], and, recently, on domain-specific pre-trained lan-
guage models (PLMs), such as SciBERT [3], that require large scientific datasets
such as [21] and task-specific architecturesﬁ In contrast, this work is the first to
explore the potential of open, general-purpose Large Language Models (LLMs)
— which, despite potentially encountering scientific text during their broad pre-
training, are not specifically optimized for the scientific domain like SciBERT
— to accurately identify citation intent, evaluating their effectiveness through
in-context learning and fine-tuning on minimal task-specific data.

Large Language Models are advanced natural language processing systems
trained on extensive text corpora to perform a wide range of language tasks. Un-
like traditional pre-trained language models, LLMs are general-purpose models
capable of adapting to new tasks with minimal additional training. Their ability
to process and generate coherent text across diverse contexts makes them partic-
ularly suitable for tasks like citation intent classification, where understanding
nuanced language patterns is essential.

In-context learning is a paradigm that allows LLMs to learn tasks given only
a few examples in the form of demonstration [4J8]. In-context learning is partic-
ularly suited to citation intent classification, as it allows the models to leverage
their contextual understanding of language to make accurate predictions.

In our study, we conduct an extensive experimental analysis of 12 general-
purpose Instruction-tuned LLMs from 5 model families, on two widely used
datasets for this task. In this context, we analyze the impact of multiple param-
eters on model performance and identify the optimal configurations and best-
performing models for our problem. These experiments address the following
research questions:

— RQ1: How well can pre-trained LLMs perform on citation intent classification
without task-specific training?

— RQ2: What are the differences in performance between open LLMs of varying
parameter counts?

— RQ@3: How do different prompting-related parameters affect model perfor-
mance?

Furthermore, we take the analysis a step further by selecting the top-performing
cases from the aforementioned experiments for Supervised Fine-Tuning (SFT) on
our datasets, allowing us to evaluate their optimal performance. This essentially
addresses an additional research question:

— RQ/4: How much does supervised fine-tuning with task-specific training affect
the performance of the instruction-tuned models?

3 In this paper, when referring to traditional PLMs in this context, we primarily
mean models based on the encoder-only Transformer architecture, such as BERT
and its derivatives (e.g., SciBERT), which were commonly fine-tuned for specific
classification tasks. This distinguishes them from the general-purpose Large Lan-
guage Models (LLMs) evaluated in this work, which typically utilize decoder-only
or encoder-decoder Transformer architectures and are often leveraged for their gen-
erative and in-context learning capabilities.
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Our experiments aim to contribute to the broader research community by
guiding prompt engineering and model selection strategies for similar tasks. To
further assist researchers, we openlyﬂ provide our complete testing suite and
evaluation results, allowing seamless integration of Hugging Face models and
easy configuration adjustments. We also publish the weights and checkpoints of
the fine-tuned modelsE| presented in Section

2 Methodology

In this section, we elaborate on the evaluation methodology followed in our ex-
perimental study. We first provide an overview of the used models (Section,
datasets (Section , and configuration parameters (Section . Finally, in
Section [2.4] we present the technical specifications of the system we used for the
experimentation.

2.1 Models

For our experiments, we selected the Instruction-tuned versions of five promi-
nent open-weight model families: LLaMA [I1], Mistral [15], Phi [I], Gemma [10],
and Quen [226]. A key challenge was performing the experiments on commod-
ity hardware, both due to computational limitations and to demonstrate that
citation intent classification can be executed efficiently with limited resources.
This influenced the selection of models, which range in size from small (1B pa-
rameters) to medium-sized (27B parameters).

Since in-context learning inherently increases the number of tokens to each
prompt (particularly in the many-shot scenario), we opted for a lower cutoff of
8,192 tokens in the context length. This ensures that all selected models could
process the longest prompts in our experiments without truncation.

To reduce the memory footprint and computational requirements of our eval-
uation, we utilize the 8-bit (Q8) quantized versions of the models. This approach
significantly reduces memory usage without compromising performance. Quan-
tization involves converting model parameters from higher numerical precisions
(e.g. 16-bit floating-point) to formats of lower numerical precision (e.g. 8-bit in-
tegers). This process enables more efficient computation and reduced memory
usage while largely preserving model performance and expressive power [16].

The model variations used for our evaluation were the following:

— Llama 3 & 3.1 (8B), Llama 3.2 (1B, 3B)
— Mistral Nemo (12B)

Phi 3 Medium (14B), Phi 3.5 Mini (3.8B)
— Gemma 2 (2B, 9B, 27B)

Qwen 2 (7B), Qwen 2.5 (14B)

4 |https: //github.com/athenarc/CitationIntentOpenLLM
® https://huggingface.co/collections/sknow-lab/citationintentllm-67b72f1d5ca6113f960dba04
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2.2 Datasets

For our experiments, we used two datasets:

— SciCite 5] consists of 11,021 citation strings annotated with three classes:
Background Information, Method, and Results Comparison.

— ACL-ARC [I7] contains 1,941 citation strings split into six categories:
Background, Motivation, Uses, Extends, Compares or Contrasts, and
Future.

These two datasets are widely used in citation intent classification research.
The SciCite dataset is larger and more diverse, with broad coverage across mul-
tiple scientific fields, namely, Computer Science, Medicine, Neuroscience, and
Biochemistry, while the ACL-ARC dataset offers a more granular classification
scheme, focused on Computational Linguistics. Accross our evaluation, we used
the original splits of the datasets, which include training, validation, and test
sets (76% - 8% - 17% for SciCite, and 87% - 7% - 6% for ACL-ARC).

2.3 Configuration Parameters

In this section, we describe the configuration parameters of the examined mod-
els, including in-context learning methods, system prompts, query templates,
example methods, and temperature settings.

In-context Learning Methods (ILM). To evaluate model performance, we
applied four prompting methodﬁﬁ by following the In-Context Learning paradigm
[4): Zero-shot (no examples), One-shot (a single example per class), Few-shot (5
examples per class), and Many-shot (10 examples per class).

These prompting methods were selected to evaluate whether model perfor-
mance improves as the number of examples increases, and to identify any satura-
tion point where additional examples yield diminishing or negative returns. This
aligns with prior literature on in-context learning methods, where these specific
configurations have been extensively studied [8]. Incorporating examples directly
into the prompts allows models to better understand the task and the expected
output format, which is especially important for citation intent classification,
where the citation context is key to determining the correct label.

System Prompts (SP). System prompts (SP) are foundational to our exper-
imental design, establishing the context and expected behavior for the models
in the citation intent classification task. They provide task-specific instructions,
class definitions, and output guidelines. We developed and evaluated three dis-
tinct system prompt variations, shown in Figure [T

— SP1: This initial prompt offered a straightforward, intuitive instruction for
the classification task.

5 Throughout the paper, we use “In-context Learning Methods” and “Prompting Meth-
ods” interchangibly.
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System Prompt 1 [SP1] System Prompt 2 [SP2] System Prompt 3 [SP3]

You are an expert researcher tasked with classifying the EACONIEXILY # CONTEXT #

intent of a citation in a scientific publication. You are an expert researcher tasked with classifying the

. AR I N You are an expert researcher tasked with classifying the
intent of a citation in a scientific publication.

The { {num_class}} ible cl are the ing intent of a citation in a scientific publication.

(eeesas) HHRBERES CYFEEEEED

™ denmtm"s. o.f “.‘e cassesare: :o?:sv?lflfziv:ifen a sentence containing a citation, you must io?lsviﬁleev:i\fen a sentence containing a citation. You must
e output the appropriate class as an answer. classify the intent of the citation by assigning it t(; one

For each given you must only the citation P of { {num_class}} predefined classes.

with the @@CITATION@@ tag. You must assign only one
class to each citation. Only return the class name, with no
elaboration.

# CLASS DEFINITIONS # HARHAHHH

The {{num_class}} p are the ing
{{classes}}.

# CLASS DEFINITIONS #
The {{num_class}} il are the ing
{{classes}}.

The definitions of the classes are:

e i) The definitions of the classes are:

HEBBBBHH {{class_definitions}}

# RESPONSE RULES # HERHBHBRHR

# RESPONSE RULES #

- Analyze only the citation marked with the @@CITATION@@
tag.

- Assign exactly one class to each citation.

- Respond only with the exact name of one of the following
classes: { {classess}}.

- Do not provide any explanation or elaboration.

You must strictly adhere to the following rules for your
response:

- For each you must yse only the citation with
the @@CITATION@@ tag.

- You must assign only one class to each citation.

- Only respond with the class name, with no explanation or
elaboration.

- Only answer with one or two words.

- Always be very brief.

Fig. 1. Our System Prompts.

— SP2: This prompt introduced more structure, drawing inspiration from the
CO-STAR framework [3I]. We adapted relevant CO-STAR components by
definint the task Contezt, the Objective of the model, and detailed Response
Rules. Given that our task requires a single, specific class label output, the
stylistic components of CO-STAR (Style, Tone, and Audience) were not in-
corporated.

— SP3: Building upon SP2, this prompt further refined wording of the Objec-
tive and Response Rules. It also explicitly reiterated the expected labels in
the Response Rules section, aiming to improve task clarity and consistency
in the model’s outputs.

Query Templates (QT). Query templates (QT) define the specific format
used to present citation sentences to the model, whether as part of an in-context
learning example or as the actual query requiring classification. We evaluated
two template structures:

— Simple Query: Initially, we used a basic format where the citation sentence
was followed by “Class:”. For examples, the correct class was appended; for
queries, this was left for the model to predict.

— Multiple-choice Query: We observed that some models struggled to ad-
here to the strict class-label-only output expected with the Simple Query,
resulting in inconsistent performance. To mitigate this, we introduced a more
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structured template. Here, after the citation sentence, the model is explicitly
prompted to choose the most appropriate citation intent from a presented
list of all possible class labels.
Although the Multiple-choice template increases the token count per instance, it
yielded significant performance improvements (detailed in Section by pro-
viding clearer guidance to the models.

Example Presentation Formats (EPF). In our experiments, we explored
two formats for presenting in-context examples to the models: Inline and Con-
versational.

— Inline: Example citation sentences and their corresponding classes (struc-
tured according to the defined query templates) are embedded directly and
sequentially within the main prompt, immediately preceding the actual query
sentence that the model needs to classify.

— Conversational: Examples are structured to simulate a dialogue. Each ex-
ample consists of a “user” turn providing a citation sentence and an “as-
sistant” turn providing the correct class. This series of example turns is
provided before the final “user” query, which presents the new citation sen-
tence for the model to classify. This format is also commonly referred to as
a conversational or turn-taking format.

Temperature (T). Temperature is a hyperparameter that controls the ran-
domness or creativity of a language model’s outputs by adjusting the probabil-
ity distribution of possible next tokens [16]. Lower temperatures (i.e., close to
0) correspond to greedy decoding, where the model deterministically selects the
most probable token at each step, while higher temperatures (closer to 1) intro-
duce greater variability by allowing the model to sample from a broader range
of options.

For classification tasks, we aim for the model to output the most probable
class label. Therefore, we use a temperature of 0 as the baseline, ensuring fully
deterministic predictions. To explore how controlled randomness affects classi-
fication performance, we also evaluate higher temperatures, such as 0.2, 0.5,
and 1.0. A temperature of 0.2 introduces a small degree of randomness but still
heavily favors the most probable answer, while 0.5 strikes a balance between
randomness and determinism. At 1.0, randomness is maximized, allowing us to
assess whether excessive stochasticity degrades performance.

2.4 Technical Specifications

We conducted our experiments on an M1 Max Mac Studio with 64GB of memory,
chosen to demonstrate the feasibility of running inference for Citation Intent
Classification on commodity hardware.

For model hosting, we used LM Studi(ﬂ which offers an intuitive interface
for testing and interacting with models hosted on HuggingFace or locally. It

7 lhttps:/ /Imstudio.ai/
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Table 1. Highest Performance by Model.

SciCite ACL-ARC
Rank | Model F1-Score Rank | Model F1-Score
1 Qwen 2.5 — 14B 78.33 1 Qwen 2.5 — 14B 63.68
2 Gemma 2 — 27B 77.86 2 Gemma 2 — 27B 58.95
3 Mistral Nemo — 12B 77.39 3 Gemma 2 — 9B 57.19
4 Gemma 2 — 9B 75.12 4 Qwen 2 - 7B 51.26
5 Phi 3 Medium — 14B 74.67 5 LLaMA 3.1 - 8B 48.45
6 LLaMA 3 - 8B 74.39 6 Mistral Nemo — 12B 48.11
7 Qwen 2 — 7B 72.89 7 Phi 3.5 Mini — 3.8B 43.74
8 LLaMA 3.1 — 8B 72.46 8 Phi 3 Medium - 14B 43.46
9 Gemma 2 - 2B 68.79 9 Gemma 2 - 2B 40.96
10 Phi 3.5 Mini — 3.8B 68.25 10 LLaMA 3.2 - 3B 40.07
11 LLaMA 3.2 - 3B 67.99 11 LLaMA 3 - 8B 38.06
12 LLaMA 3.2 - 1B 45.44 12 LLaMA 3.2 - 1B 24.60

also supports a local server mode compatible with the OpenAI API, allowing
interaction through an API accessible in multiple programming languages. A
command-line interface (CLI) tooﬂ is also available for managing the server
without using the UL

3 Experimental Results and Analysis

This section presents the results of our experiments, focusing on model perfor-
mance across various configurations and parameter settings. An initial overview
of the peak Fl-score achieved by each of the twelve models on both the SciCite
and ACL-ARC datasets is summarized in Table [[l The subsections that fol-
low provide a detailed analysis of top-performing model configurations, evaluate
overall model rankings, and explore the influence of specific parameters.

3.1 Model Performance over Configurations

Our first evaluation focuses on identifying the top-performing models across
the configurations described in Section 2] We employed two complementary ap-
proaches: (i) the Best-Performer Evaluation identifies the single best model, and
(ii) the Ranked Evaluation considers the relative performance of all models across
configurations.

Best-Performer Evaluation. To identify the most effective models across
configurations, we initially conducted a Best-Performer Evaluation. In particular,
for each configuration, we examined a metrics table containing precision, recall,
F1l-score, and accuracy for all models. The model with the highest Fl—scor(ﬂ in
each configuration was selected as the best-performing model — in case of a tie,
we used Accuracy as the deciding factor.

8 lhttps://github.com/lmstudio-ai/lms
9 All Fl-scores reported in this paper are macro-averaged Fl-scores (macro-F1).
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Table 2. Model Ranking based on Best-Performing Count.

Zero- | One- | Few- | Many-

Dataset Rank | Model Overall Shot Shot | Shot Shot
1 Qwen 2.5 — 14B 125 24 42 28 31
SciCite 2 Mistral Nemo — 12B 25 0 0 14 11
4 Gemma 2 — 27B 10 0 0 4 6
4 Gemma 2 — 9B 8 0 6 2 0
1 Qwen 2.5 — 14B 129 19 22 40 28
ACL-ARC 2 Gemma 2 — 27B 28 0 21 7 0
3 Gemma 2 — 9B 11 5 5 1 0

Table 3. RRF-based Model Ranking.

SciCite ACL-ARC
Rank | Model RankScore Rank | Model RankScore
1 Qwen 2.5 — 14B 144.163 1 Qwen 2.5 — 14B 146.496
2 Mistral Nemo — 12B 68.479 2 Gemma 2 — 27B 62.973
3 Gemma 2 — 27B 63.369 3 Gemma 2 — 9B 55.318
4 Gemma 2 — 9B 59.760 4 Qwen 2 — 7B 41.496
5 Qwen 2 — 7B 38.617 5 LLaMA 3.1 - 8B 40.844
6 LLaMA 3.1 — 8B 27.624 6 Phi 3.5 Mini — 3.8B 30.470
7 LLaMA 3 - 8B 26.159 7 Mistral Nemo — 12B 30.285
8 Phi 3.5 Mini — 3.8B 22.088 8 LLaMA 3.2 - 3B 23.984
9 Phi 3 Medium — 14B 19.370 9 Phi 3 Medium - 14B 21.269
10 Gemma 2 - 2B 19.253 10 LLaMA 3.2 - 1B 16.796
11 LLaMA 3.2 - 3B 18.286 11 Gemma 2 - 2B 16.534
12 LLaMA 3.2 - 1B 14.136 12 LLaMA 3 - 8B 16.359

The aggregated results of our evaluation are presented in Table[2] It is evident
that Qwen 2.5 14B was the most dominant model on both datasets, significantly
outperforming others across all prompting methods.

Ranked Evaluation. While the Best-Performer Evaluation provided insights
into the most dominant models across configurations, it lacked the ability to
capture nuances among high-performing models. For instance, a model that con-
sistently ranked second in multiple configurations would not be reflected in that
approach. To address this limitation, we adopted a ranking methodology inspired
by Reciprocal Rank Fusion (RRF) [6]. This approach allowed us to evaluate all
12 models considering their relative performance across different configurations.

For each experimental configuration ¢ € C, models M = {mq,ma,...,mi2}
were ranked based on their Fl-scores — in case of a tie, Accuracy was used to
determine the rank. Each model was then assigned a score based on its rank,
where the score S(my, ¢) for the k-th ranked model in configuration ¢ was defined
as S(my,c) = % This score is inversely proportional to the rank, meaning that
higher-ranked models (lower-k) receive higher scores, while lower-ranked models
(higher-k) receive lower scores. To calculate the overall ranking score for each
model m, we aggregated its scores across all configurations ¢ € C:

RankingScore(m) = Z S(my, ) (1)
ceC

Table |3] presents the results of this ranked evaluation. The ranked evaluation
aligns with the Best-Performer Evaluation in identifying Qwen 2.5 14B as the
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Table 4. Parameter Performance Analysis of Top 5% Configurations.

Parameter Setting SciCite ACL-ARC
Count | Percent Count | Percent
Few-shot 47 46.53% 55 61.11%
. Many-shot 38 35.64% 21 23.33%
In-context Learning Method One-shot 14 13.86% 14 15.55%
Zero-shot 4 3.96% - -
0.0 31 30.69% 23 25.55%
Temperature 0.2 30 29.70% 22 24.44%
0.5 20 19.80% 22 24.44%
1.0 20 19.80% 23 25.55%
SP3 45 44.55% 38 42.22%
System Prompt SP2 28 27.72% 24 26.66%
SP1 28 27.72% 28 31.11%
Query Template Multiple-Choice 80 79.21% 58 64.44%
Simple 21 20.79% 32 35.55%
Example Presentation Conversational 53 54.64% 59 65.55%
Inline 44 45.36% 31 34.44%

most dominant model. This view also allows us to gain insights into the relative
performance of other the models, highlighting distinctions among high perform-
ers, as well as the performance of lower-ranked models.

3.2 Parameter Performance Analysis

In this section, we examine how different parameter configurations drive model
performance. Identifying the most impactful parameters was challenging due
to the extensive search space (168 configurations per dataset, totaling 3,841
experiments for all models). To address this, we conducted a Quantile-Based
Analysis focusing on the top 5% of configurations based on F1-scores. Examining
parameter distributions within this high-performing subset (Table reveals
trends for optimal configurations across both datasets.

For the In-context Learning Method, Few-shot prompting was most prevalent
in top SciCite configurations (46.53%), with Many-shot also prominent (35.64%).
This Few-shot preference was stronger on ACL-ARC (61.11%), where Many-shot
(23.33%) and One-shot (15.55%) were less frequent, and Zero-shot was absent
from the top 5%. These results suggest moderate example counts (Few-shot) are
broadly effective, though Many-shot also performs well on SciCite.

The optimal Temperature settings showed divergence between the datasets.
SciCite favored lower values, with T=0.0 (30.69%) and T=0.2 (29.70%) being
most frequent, indicating a preference for deterministic outputs, while higher
temperatures (T=0.5, T=1.0, both 19.80%) were less common. In contrast, ACL-
ARC displayed a more balanced distribution, where T=0.0 and T=1.0 (both
25.55%) were slightly ahead of T=0.2 and T=0.5 (both 24.44%), suggesting
that varied levels of randomness can yield top results.

A shared preference for System Prompt SP3 emerged across both datasets,
found in 44.55% of top SciCite and 42.22% of top ACL-ARC configurations.
Secondary preferences, however, varied. SciCite showed equal representation for
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Table 5. Chi-Square Test of Independence results for parameter settings and F1-
Scores. (Significance levels: ***p < 0.001, **p < 0.01, *p < 0.05)

SciCite ACL-ARC

X p-value x2 p-value

Parameter

In-context Learning Method | 29.857 | 1.48e-06 *** || 49.025 | 1.29e-10 ***

Temperature 4.617 0.202 0.047 0.9973
System Prompt 6.024 | 0.0491 * 3.647 | 0.1615
Query Template 35.063 | 3.19e-09 *** 7.305 0.0068 **
Example Presentation 0.699 | 0.4031 8.604 | 0.0033 **

SP1 and SP2 (both 27.72%), whereas ACL-ARC favored SP1 (31.11%) over SP2
(26.66%). This indicates an advantage for the structured SP3, though simpler
prompts also achieved high performance.

The Query Template parameter revealed a decisive trend, as the Multiple-
Choice template was overwhelmingly favored on both SciCite (79.21%) and ACL-
ARC (64.44%) when compared to the Simple template (SciCite: 20.79%; ACL-
ARC: 35.55%). This highlights the significant effectiveness of explicit multiple-
choice options.

Finally, considering the Fxample Presentation Format, the Conversational
style was more frequent in top configurations for SciCite (54.64%) and espe-
cially ACL-ARC (65.55%), over the Inline format (SciCite: 45.36%; ACL-ARC:
34.44%). This suggests structuring examples conversationally generally yields
better results.

These findings offer valuable insights into the parameter settings that con-
sistently enhance performance across the two datasets.

Chi-Square Statistical Test (x2). To complement our parameter perfor-
mance analysis, we also conducted a Chi-Square Test of Independence [12] to
evaluate the relationship between parameter settings and Fl-scores. This ap-
proach allowed us to determine whether specific parameter settings were signif-
icantly associated with performance outcomes and validate the results of our
primary analysis. The results of the test (summarized in Table [5]) largely rein-
forces the findings from our quantile-based analysis regarding the influence of
different parameter settings.

The In-context Learning Method showed a highly significant association with
F1-scores for both SciCite (p < 0.001) and ACL-ARC (p < 0.001). This statisti-
cally underscores the importance of the number of examples provided, aligning
with our earlier observation that Few-shot and Many-shot configurations were
prevalent among the top performers.

Similarly, the Query Template was found to be highly significant for SciCite
(p < 0.001) and also significant for ACL-ARC (p < 0.01). This supports the
strong dominance of the Multiple-Choice template in the top 5% configurations,
highlighting its critical role in guiding model output effectively.

Other parameters presented more nuanced relationships. The System Prompt
was statistically significant for SciCite (p < 0.05), corroborating the advantage
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seen for SP3 in its quantile analysis. However, for ACL-ARC, while SP3 was also
frequent in top configurations, the choice of system prompt did not emerge as a
statistically significant factor overall.

Conversely, the Example Presentation Format was not statistically signifi-
cant for SciCite, which aligns with the relatively balanced distribution (Con-
versational at 54.64%, Inline at 45.36%) observed in its top configurations. For
ACL-ARC, however, this parameter was significant (p < 0.01), providing statis-
tical backing for the clearer preference (65.55%) for the Conversational method
seen in its quantile analysis.

Finally, the Temperature parameter did not show a statistically significant
relationship with F1l-scores on either dataset. This finding is consistent with the
quantile analysis where, for SciCite, multiple temperature settings were present
in top configurations (though lower ones were more frequent), and for ACL-ARC,
the distribution was particularly balanced, suggesting that temperature, within
the tested ranges, was not as decisive a factor as other parameters.

4 Fine-tuning

In this section, we investigate the impact of fine-tuning in the performance of
the instruction-tuned Qwen 2.5 14B model on citation intent classification.

4.1 Training Configuration

For this experiment, we used the SciCite and ACL-ARC datasets, which were
converted into the Alpaca format [30]. This format includes a system prompt,
an instruction, the citing sentence, and the true label. The use of Supervised
Fine-Tuning (SFT) was motivated by its ability to adapt pre-trained models
to specific tasks using minimal labeled data, making it an effective approach
for citation intent classification. To perform the fine-tuning, we used the original
training set of each dataset (8,243 examples for SciCite and 1,688 for ACL-ARC).
For testing, we used the original test sets as seen in the previous experiments.
To fine-tune the Qwen 2.5 14B Instruct model, we used LLaMA-Factory [33]
on an AWS gb6e.12xlarge EC2 instance equipped with 4 NVIDIA L40S GPUs,
providing a combined GPU memory of 192GB. The training process was con-
ducted using fpl6 mixed precision to optimize memory usage and speed. To
prevent memory issues during fine-tuning, we employed DeepSpeed ZeRO Stage
3 Offload [27], which enabled efficient memory management by offloading op-
timizer states and gradients to the CPU. The training parameters included a
learning rate of 5e-5, a batch size of 16, and 10 epochs. The model was opti-
mized using AdamW, with a cutoff length of 512 tokens for input sequences.
To optimize the fine-tuning process, we employed Low-Rank Adaptation
(LoRA), a widely used parameter-efficient fine-tuning (PEFT) method [14UT3].
LoRA enables efficient adaptation of large language models by freezing the pre-
trained model weights and introducing trainable low-rank matrices into the
Transformer layers, significantly reducing the number of trainable parameters
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Table 6. Training Parameters for Fine-Tuning Qwen 2.5 14B.

Parameter Value Explanation

Learning Rate 5e-5 Controls step size for updating model weights during training.
Epochs 10 Number of complete passes through the entire training dataset.
Batch Size 16 Number of training examples processed in one iteration.

Cutoff Length 512 Maximum sequence length (in tokens) for model inputs.
Optimizer AdamW | Algorithm used to adjust model weights to minimize loss.
Compute Type fpl6 Numerical precision used for computations.

Warmup Steps 500 Number of initial steps where learning rate gradually increases.
DeepSpeed Offload | Enabled | Moves optimizer states/grads to RAM to save GPU memory.
DeepSpeed Stage 3 Level of DeepSpeed ZeRO optimization.

LoRA Rank 8 Dimension of the trainable low-rank matrices added by LoRA.
LoRA Alpha 16 Scaling factor for the LoRA updates relative to the rank.
LoRA Dropout 0.1 Dropout probability applied to LoRA layers for regularization.

while maintaining performance. For this experiment, we configured LoRA with
a rank of 8, alpha of 16, and a dropout of 0.1, which allowed us to fine-tune the
model effectively without exceeding memory constraints. The outlined training
parameters are also summarized in Table [6]

4.2 Results

After fine-tuning, we evaluated the new models using the same prompting meth-
ods as in Section (i.e., zero-shot, one-shot, few-shot, and many-shot) to draw
comparisons with the instruction-tuned Qwen 2.5 14B baseline. While our initial
extensive experiments with in-context learning focused on 8-bit quantized mod-
els (Q8), for this fine-tuning evaluation, we also assessed the 16-bit floating-point
(FP16) versions, to examine the impact of numerical precision on performance.

The overall results, presented in Table [7] clearly show that supervised fine-
tuning significantly improved performance on both the SciCite and ACL-ARC
datasets. On SciCite, the fine-tuned FP16 model achieved a peak Fl-score of
86.84. Compared to the instruction-tuned FP16 baseline (Fl-score of 80.41),
this represents an 8.0% relative improvement. On ACL-ARC, the fine-tuned
Q8 model obtained the highest Fl-score of 68.48. This constitutes a relative
improvement of nearly 4.3% over the instruction-tuned FP16 baseline (F1-score
of 65.64). Overall, the highest Fl-score achieved after fine-tuning was 86.84 on
SciCite and 68.48 on ACL-ARC.

Examining the impact of numerical precision, the fine-tuned FP16 and Q8
models showed minor performance differences. FP16 models generally outper-
formed Q8 on SciCite, while the fine-tuned Q8 model slightly outperformed its
FP16 counterpart on ACL-ARC. This suggests that while FP16 precision can of-
fer a slight advantage, Q8 remains highly competitive and may offer robustness,
particularly for tasks with more granular classification schemes like ACL-ARC’s
6-class setup.

Table [§ highlights the impact of fine-tuning across the different prompting
methods. On SciCite, fine-tuning led to consistent F1-score improvements across
all prompting scenarios. These gains were particularly substantial in zero-shot
and one-shot settings; for instance, the fine-tuned Q8 model improved upon the
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Table 7. F1-Score Performance of Qwen 2.5 — 14B Instruct and Fine-tuned variants.

Model SciCite | ACL-ARC
Qwen 2.5 — 14B Instruct Q8 78.33 63.68
Qwen 2.5 — 14B Instruct FP16 80.41 65.64
Qwen 2.5 — 14B Fine-tuned Q8 86.47 68.48
Qwen 2.5 — 14B Fine-tuned FP16 86.84 67.73

Table 8. F1-Score Performance of Qwen 2.5 — 14B Instruct and Fine-tuned variants,
divided by prompting method.

Dataset Model Zero-Shot | One-Shot | Few-Shot | Many-Shot
Instruct Q8 75.74 76.32 78.33 78.23
SciCite In-struct FP16 75.38 77.22 80.41 78.94
Fine-tuned Q8 84.84 85.46 86.47 85.62
Fine-tuned FP16 84.49 85.38 86.84 85.79
Instruct Q8 52.29 60.02 62.86 63.68
Instruct FP16 52.47 61.73 65.64 64.39
ACL-ARC | g tuned Q8 59.92 68.48 67.58 67.19
Fine-tuned FP16 60.29 67.73 66.94 67.62

instruction-tuned FP16 baseline by over 12.5% in zero-shot (84.84 vs 75.38) and
by nearly 10.7% in one-shot (85.46 vs 77.22). In few-shot and many-shot for
SciCite, performance with the fine-tuned FP16 model approached saturation,
achieving the highest F1l-scores of 86.84 and 85.79, respectively.

Similar trends were observed on the ACL-ARC dataset. The fine-tuned mod-
els generally outperformed their instruction-tuned counterparts across prompt-
ing methods, with the fine-tuned Q8 model achieving the highest F1-scores in
one-shot (68.48) and few-shot (67.58) setups. In contrast, the fine-tuned FP16
model yielded stronger results in zero-shot (60.29) and many-shot (67.62).

These results demonstrate that supervised fine-tuning not only boosts overall
performance but also particularly enhances generalization in low-context (zero-
shot and one-shot) scenarios, while still effectively leveraging the additional con-
text provided in few-shot and many-shot settings.

4.3 Discussion

The primary goal of this work was to investigate the capability of large language
models to perform citation intent classification, rather than to compete directly
with state-of-the-art methods. Nonetheless, it is worth noting that the fine-tuned
model achieved performance on SciCite within less than a 3% margin of the best-
reported results in the literature, surpassing most of the existing approaches (see
Table@— Section. This demonstrates that LLMs can approach the performance
of specialized models, even without task-specific architectures or optimization.
We consider a key advantage of LLMs to be their ease of use and deployment.
Tools such as LM Studio and Ollama™l allow models like those outlined in this
paper to be deployed locally with zero technical expertise, making them accessi-
ble to users without a computer science background. In addition to their acces-
sibility, LLMs offer significant adaptability. Unlike traditional methods, which

10 https://ollama.com/
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often require complex pretraining or domain-specific tuning, LLMs can be fine-
tuned for a wide range of scientometric tasks, such as citation recommendation,
paper summarization, or trend analysis, without the need for bespoke archi-
tectures. Furthermore, LLMs can scale effectively to new scientific domains or
datasets, requiring only small amounts of task-specific data to adapt to under-
explored scientific fields; our fine-tuned models required only the several thou-
sand citing sentences provided by our task-specific datasets for adaptation. This
contrasts sharply with models like SciBERT, whose effectiveness stems from de-
liberate pre-training exclusively on a large corpus of scientific papers (millions of
articles), optimizing it for scientific language understanding. While the general-
purpose LLMs used in our study were likely exposed to scientific text within their
vast, diverse pre-training data drawn from the web, this exposure is incidental
rather than targeted. They were not specifically pre-trained or architected with
the primary goal of processing scientific literature, unlike SciBERT. Our results
demonstrate that even without such specialized scientific pre-training, general-
purpose LLMs can achieve competitive performance through efficient fine-tuning
on minimal task-specific data.

The promising results observed in this study suggest that the performance of
LLMs in citation intent classification can be further improved with techniques
such as chain-of-thought prompting and reasoning-focused models. These meth-
ods could enhance the models’ ability to better distinguish subtle differences in
intents, refining their predictions and improving overall classification accuracy.

5 Related Work

The theoretical beginnings of citation analysis can be traced back to foundational
works such as [9] identification of reasons for citation [23] studies on citation
function. Early annotation schemes, such as those by [29], were later adapted by
[32] for supervised machine learning approaches to citation classification.

[I7] introduced the ACL-ARC dataset, which contains nearly 2,000 citations
from papers in the NLP field, annotated with a classification scheme of six
classes. [25] extended this classification scheme by refining the comparison class
to capture similarities, differences, and disagreement. Around the same time, [5]
proposed a multitask model incorporating structural information from scientific
papers. They also introduced the SciCite dataset, which is significantly larger
and spans multiple scientific domains, with three intent classes.

[3] introduced SciBERT, a BERT-based [7] encoder language model pre-
trained specifically on scientific text, which has since become the backbone of
many citation intent classification methods. SciBERT has been widely adopted
due to its ability to generalize across scientific domains. For example, [22] intro-
duced ImpactCite, an XLNet-based method for citation impact analysis, which
was later used by [24] to achieve state-of-the-art results on the SciCite dataset.
Paolini et al. demonstrated the effectiveness of ensemble classifiers combining
fine-tuned SciBERT and XLNet models.
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Table 9. Reported F1-Scores of notable works from the literature, sorted chronologi-
cally.

Method SciCite | ACL-ARC
Feature-rich Random Forest [17] - 53.00
Structural Scaffolds [5] 84.00 67.90
SCiBERT [3] 85.22 -
ImpactCite [22] 88.93 -
CitePrompt [20] 86.33 68.39
EnsIntWs [24] 89.46 -
EnsIntWoS [24] 88.48 -
MTL Finetuning (Search) [28] 85.25 64.56
MTL Finetuning (TRL) [28] 85.35 75.57

Recent research has continued to explore PLM-based methods for citation
intent classification. [20] used a prompt-based learning approach on SciBERT to
identify citation intent, while [28] achieved state-of-the-art performance on the
ACL-ARC dataset by proposing a multi-task learning framework that jointly
fine-tunes SciBERT on a dataset of primary interest together with multiple aux-
iliary datasets to take advantage of additional supervision signals. [19] explored
various prompting and tuning strategies on SciBERT, including fixed and dy-
namic context prompts, and found that parameter updating with prompts im-
proved performance. They also briefly experiment on LLMs by evaluating the
zero-shot performance of GPT-3.5, which performed well on their recently intro-
duced ACT?2 dataset but poorly on the ACL-ARC dataset. However, GPT-3.5
was not evaluated on SciCite. In contrast, our work is the first to focus entirely on
evaluating and fine-tuning numerous open-weight, general-purpose LLMs with-
out using models pre-trained explicitly and exclusively for the scientific domain.

Table [0] summarizes the Fl-scores of notable works, highlighting the pro-
gression of methods and datasets. SciBERT-based methods dominate, while our
work is the first to examine LLMs on this task without any reliance on SciBERT.

6 Conclusions

This study investigated open Large Language Models (LLMs) for citation intent
classification, demonstrating their viability with in-context learning, particu-
larly when guided by optimized prompting strategies. We found that supervised
fine-tuning with minimal data significantly boosts performance; notably, our
fine-tuned Qwen 2.5 14B model achieved relative F1l-score improvements of ap-
proximately 8% on SciCite and 4.3% on ACL-ARC over strong instruction-tuned
baselines, reaching performance levels competitive with specialized systems. The
detailed insights from our prompting parameter experiments, combined with our
openly available evaluation framework and models, aim to facilitate further re-
search and application of LLMs in scientometrics.
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