
Selective Dissemination of Information in P2P Systems:
Data Models, Query Languages, Algorithms and

Computational Complexity

Christos Tryfonopoulos and Manolis Koubarakis

Intelligent Systems Laboratory
Dept. of Electronic and Computer Engineering

Technical University of Crete
73100 Chania, Crete, Greece

{trifon,manolis}@intelligence.tuc.gr
http://www.intelligence.tuc.gr

Technical Report TR-ISL-02-2003

1

Abstract

Much information of interest to humans is today available on the Web. People
can easily gain access to information but at the same time, they have to cope
with the problem of information overload. Consequently they rely on specialised
tools and systems designed for searching, querying and retrieving information
from the Web. It is however extremely difficult to stay informed without sifting
through enormous amounts of incoming information, and without utilising tools
and techniques that would capture the dynamic nature of the Web. The selective
dissemination of information is a mechanism that can help users cope with this
problem. In a selective information dissemination scenario, users post profiles or
long-standing queries, which describe their information needs to some dedicated
middleware. This middleware receives incoming information, decides whether it
matches stored user profiles and delivers it to the interested subscribers.

In this work we deal with the problem of textual information dissemination in
the context of distributed peer-to-peer systems. We put our main focus on data
models and query languages especially designed for information dissemination,
when information is in the form of text. We incrementally develop three such
models and query languages moving from very simple ones to ones with more ex-
pressive power. We also identify problems that frequently arise in such a scenario
and study their computational complexity. Finally we design, implement and
experimentally evaluate two algorithms for the problem of filtering as it arises in
textual information dissemination.

2

Chapter 1

Introduction

1.1 Introduction

Much information of interest to humans is today available on the Web. People
can easily gain access to information but at the same time, they have to cope
with the problem of information overload. Consequently they rely on specialised
tools and systems designed for searching, querying and retrieving information
from the Web. It is however extremely difficult to stay informed without sifting
through enormous amounts of incoming information, and without utilising tools
and techniques that would capture the dynamic nature of the Web. The selective
dissemination of information is a mechanism that can help users cope with this
problem. In a selective information dissemination scenario, users post profiles or
long-standing queries, which describe their information needs to some dedicated
middleware. This middleware receives incoming information, decides whether it
matches stored user profiles and delivers it to the interested subscribers.

1.1.1 Overview

Selective dissemination of information to interested users is a problem that has
recently received the attention of various research communities including re-
searchers from agent systems [46, 80, 39, 126, 128], databases [51, 6, 103, 42],
digital libraries [44], distributed computing [20, 19] and others.

We envision an information dissemination scenario in the context of a dis-
tributed peer-to-peer (P2P) agent architecture like the one shown in Figure 1.1.
Users utilize their end-agents to post profiles or documents (expressed in some
appropriate language) to some middle-agents1. End-agents play a dual role: they
can be information producers and information consumers at the same time. The
P2P network of middle-agents is the “glue” that makes sure that published doc-

1In this report we will use the terms query and profile interchangeably. In an information
dissemination setting, a profile is simply a long-standing query.

3

end-
agent

 middle
agent

middle
agent

middle
agent middle

agent

document

document

profile

document

document

end-
agent

end-
agent

end-
agent

end-
agent

profile

document

Figure 1.1: A distributed P2P agent architecture for information dissemination

uments arrive at interested subscribers. To achieve this, middle-agents forward
posted profiles to other middle-agents using an appropriate P2P protocol. In this
way, matching of a profile with a document can take place at a middle-agent that
is as close as possible to the origin of the incoming document. Profile forwarding
can be done in a sophisticated way to minimize network traffic e.g., no profiles
that are less general than the one that has already been processed are actually
forwarded. Moreover sophisticated techniques like summarization of profiles [132]
can be utilized to further reduce the amount of data that is passed through the
network.

In their capacity as information producers, end-agents can also post adver-
tisements that describe in a “concise” way the documents that will be produced
by them. These advertisements can also be forwarded in the P2P network of
middle-agents to block the forwarding of irrelevant profiles towards a source. Ad-
vertisement forwarding can also be done in a sophisticated way using ideas similar
to the ones for profile forwarding.

Most of the concepts of the architecture sketched above are explicit (or some-
times implicit) in the KQML literature and subsequent research on agent mid-
dleware based on KQML [46, 80, 39, 126, 128]. Unfortunately the emphasis in
most of these systems is on a single central middle-agent, making the issues that
would arise in a distributed setting difficult to appreciate. In our opinion, the
best presentation of these concepts available in the literature can be found in [20]
where the distributed event dissemination system SIENA is presented. Although
SIENA does not use terminology from the area of agent systems the connection is
obvious. In [74, 41, 72] it is shown how the main principles from SIENA can guide
the development of a distributed agent architecture appropriate for information

4

dissemination.
This report concentrates on the problem of information dissemination assum-

ing that we are only dealing with textual information. We are motivated by a
desire to develop useful agent systems in a principled and formal way, and make
the following technical contributions.

• We define formally the models WP ,AWP and AWPS, and their cor-
responding languages for textual information dissemination in distributed
agent systems. Data model WP is based on free text and its query lan-
guage is based on the boolean model with proximity operators. The concepts
of WP extend the traditional concept of proximity in IR [10, 27, 28] in a
significant way and utilize it in a content language targeted at information
dissemination applications. Data model AWP is based on attributes or
fields with finite-length strings as values. Its query language is an exten-
sion of the query language of data model WP . Our work on AWP com-
plements recent proposals for querying textual information in distributed
event-based systems [20, 19] by using linguistically motivated concepts such
as word and not arbitrary strings. This makes AWP potentially very use-
ful in some applications (e.g., alert systems for digital libraries or other
commercial systems such as news dissemination, where similar models are
supported already for retrieval). Finally, the model AWPS extends AWP
by introducing a “similarity” operator in the style of modern IR, based
on the vector space model [10]. The novelty of our work in this area is
the move to query languages much more expressive than the one used in
the information dissemination system SIFT [145] where documents and
queries are represented by free text. The similarity concept of AWPS is
an extension of the similarity concept pioneered by the system WHIRL [34]
and recently also used in the XML query language ELIXIR [30]. We note
that both WHIRL and ELIXIR target information retrieval and integra-
tion applications, and pay no attention to information dissemination and
the concepts/functionality needed in such applications.

• We study the computational complexity of four problems that are funda-
mental in information dissemination systems following the architecture of
Figure 1.1. These problems are:

1. Satisfiability. Deciding whether a given query φ can be satisfied by
any document at all. This functionality is necessary at each middle
agent.

2. Satisfaction or matching. Deciding whether an incoming document
satisfies (or matches) a query φ.

3. Filtering. Given a database of profiles db and an incoming document
d, find all profiles q ∈ db that match d. This functionality is very

5

crucial at each middle agent and it is based on the availability of algo-
rithms for the satisfaction problem. We expect deployed information
dissemination systems to handle hundreds of thousands or millions of
profiles.

4. Entailment or subsumption. Deciding whether a profile is more or less
“general” than another. This functionality is crucial if we want to
minimize profile forwarding as sketched above.

• We concentrate on the filtering problem and propose two efficient main
memory algorithms that can handle conjunctions of atomic queries in the
model AWP , and evaluate them experimentally. Our filtering algorithms
are based on the algorithms developed in [144] and recently reimplemented
and evaluated in [74, 41, 71]. Additionally, our experimental evaluation fol-
lows the proposal of [74] where the evaluation of information dissemination
algorithms using a real document corpus and a set of realistic user profiles
was originally presented.

This work was supported in part by project DIET (IST-1999-10088) funded
by the IST Programme of the European Commission, under the FET Proactive
Initiative on ”Universal Information Ecosystems”.

1.1.2 Organisation of the Report

This report is organised as follows. In Chapter 2 we survey recent research in
agent middleware, which is the general area of research this report falls in. In
Chapter 3 we define the data models and query languages specially designed for
agent-based textual information dissemination. In Chapter 4 we formulate and
study the computational complexity of four fundamental problems in information
dissemination: the problems of satisfiability, satisfaction, filtering and entailment.
In Chapter 5 we present and evaluate experimentally two efficient algorithms for
the filtering problem in a textual information dissemination scenario. Finally in
Chapter 6 we present our conclusions and propose directions for future research.

6

Chapter 2

Related Work

The exponential growth in the number of available information sources and ser-
vices on the web, and in the number of users and specialized software attempting
to take advantage of them, has spurred research on the design and implementa-
tion of middleware for open information environments. This chapter is a survey
of recent research on middleware developed in the area of multi-agent systems
with an emphasis on information management applications. We trace the origins
of agent middleware in the concepts of mediator and facilitator, and review re-
lated work up to today. We also discuss some popular Internet systems (search
engines, publish/subscribe systems and peer-to-peer systems) and show how they
can be casted as multi-agent systems with a central role for agent middleware.

2.1 Introduction

The exponential growth in the number of available information sources and ser-
vices on the web, and in the number of users and specialized software attempting
to take advantage of them, has spurred research on the design and implementa-
tion of middleware for open information environments. The role of this middle-
ware is twofold: to assist information requesters to find appropriate information
providers and to provide additional value-adding services to both parties. Value-
adding services can range from purely informational ones (such as translating,
integrating, summarizing or abstracting information coming from many sources)
to economic ones (such as serving as a trusted third-party for e-commerce trans-
actions). This survey targets mainly information management applications thus
economic issues will only briefly be mentioned.

Without help from specialized middleware, users are left with no other choice
but to utilize any of the existing search engines (e.g., Google1), web directories

1http://www.google.com

7

(e.g., Yahoo2) or vertical portals3. Users are then faced with the task of manually
browsing or querying various information sources, collecting relevant information
and synthesizing it into a useful form.

To alleviate this problem various kinds of agents have recently been proposed
in the context of open multi-agent systems: mediators [129], facilitators [54],
matchmakers [78] and so on. This chapter is a comparative survey of research into
these kinds of agent middleware. Related research on similar kinds of middleware
has been carried out in several other areas of computer science:

• Databases and information systems, where the emphasis has been on mid-
dleware that integrates information collected from heterogeneous distributed
sources [129, 138, 53], or middleware that collects published information and
disseminates it to users with matching profiles [6, 145].

• Distributed systems and networks, where the role of middleware has been
prominent in client-server architectures [134], resource discovery systems
[14, 88], toolkits for building information gathering systems [15], web prox-
ies [131] and wide-area event dissemination systems [21].

• Software engineering, where the role of middleware has been to assist in
the discovery of software components, software interoperation, and devel-
opment of large-scale systems through integration and reuse of existing
components [58, 11].

In our tour of research on agent middleware, we sometimes find it appropriate
to discuss and evaluate selected contributions coming from the above areas.

Before we start our presentation, let us carefully introduce the terminology
to be used in the rest of this chapter. As we discuss in Section 2.2, previous
surveys on agent middleware often use the same name to describe concepts that
sometimes differ substantially. To avoid such confusion, the rest of this survey
uses the generic terms end-agents and middle-agents, originally introduced in
[39, 142], to describe the two different classes of agents that we will study. End-
agents are agents that need or offer services. Middle-agents are agents that exist
with the sole purpose of enabling interactions among end-agents [39, 142]. It is of
course possible to have no middle-agents at all; we will also discuss this possibility
in detail.

The needs or preferences of an end-agent become known in the form of re-
quests that are expressed in some language and are communicated to other agents
using an appropriate communication protocol. The services offered by end-agents
are usually referred to as the capabilities of these agents. Capabilities are also
expressed in some language and are communicated to other agents using an ap-
propriate communication protocol.

2http://www.yahoo.com
3http://verticalnet.com

8

Previous research on agent middleware can be evaluated properly if one keeps
in mind the following dimensions4:

• Communication i.e., what are the communication primitives and protocols
used by end-agents and middle-agents? What are the languages used to
express capabilities and requests? How can agents share their knowledge
about a domain of expertise?

• Matching i.e., what are the algorithms used to match requests with capa-
bilities? What is the computational complexity of these algorithms?

• Degree of involvement by middle-agents i.e., do middle-agents simply en-
able requesters to get in touch with providers, or do they intermediate
transactions as well?

• Architecture i.e., is it assumed that there is a central middle-agent, many
cooperating middle-agents, or no middle-agents at all? What are the ad-
vantages and disadvantages for each different alternative?

The questions that characterize each of the above dimensions will dominate
much of the discussion in this survey5. But because agent researchers would like
to see their agents being deployed on the Internet and used in the context of real
applications, there are some more practical issues that deserve to be addressed
in detail6:

• Scalability: agent systems deployed on the Internet must be able to scale to
huge numbers of advertisements of capabilities and requests of service. Can
existing agent technology face up to this challenge? What are the relevant
technical problems that have been solved and what remains to be done?

• Robustness and fault-tolerance: the performance of agent systems deployed
on the Internet must degrade gracefully in case that one or more components
fail.

• Adaptivity: agent systems deployed on the Internet must be able to adapt
gracefully to varying workloads and varying numbers of requesters and
providers.

4Some of these dimensions were first presented by Chi Wong and Sycara in [142]. Katia
Sycara and her colleagues have recently done a lot to clarify the issues involved in designing
and implementing agent middleware. In this respect the present survey owes a lot to papers
such as [39, 127, 142].

5The interested reader can also consult [142] for a different detailed list of questions used to
create a taxonomy of existing middle-agents.

6Admittedly, there are other issues as well: security, trustworthiness etc. We will not spend
any time on these issues in this survey since we only concentrate on agent middleware for
information management applications.

9

• Privacy: agent systems must enable their owners to give out only as much
information about themselves as it is necessary for carrying out their trans-
actions.

• Web-friendliness: if agents are to be deployed on the Internet, it might
be much easier if, right from the start, they are designed taking current
Internet technology into account (relevant technologies here include these
developed around W3C languages7 XML, RDF etc.).

The rest of this chapter is organized as follows. Section 2.2 presents some
of the early work that has paved the way for todays research on middle-agents.
Section 2.3 is a general introduction to agent communication based on the lan-
guages KQML and FIPA-ACL while section 2.4 concentrates on the important
role of middleware in the development of KQML and FIPA-ACL. Section 2.5
discusses existing implemented middle-agent systems, and illustrates the advan-
tages and disadvantages of the choices made by their implementers. Section 2.6
concentrates on architecture alternatives for agent middleware. Section 2.7 ana-
lyzes the concept of privacy and how it relates to various kinds of middle-agents.
Section 2.8 concentrates on performance issues. Finally, Section 2.9 presents our
conclusions and speculates on avenues for future research.

2.2 Mediators and Facilitators

To the best of our knowledge, the earliest well-known work to discuss issues re-
lated to agent middleware is [37]. In that paper the so-called connection problem
of how to find other agents that have the capabilities you need is discussed in the
context of distributed problem solving.

Another early influential paper is [129] where the concept of mediation is
presented. A mediator is a software module that exploits encoded knowledge
about some heterogeneous sets of data sources to synthesize information for a
higher layer of applications. According to [139], the tasks to be achieved by a
mediator module are the following:

• Locating, accessing and retrieving relevant data from multiple-heterogeneous
sources.

• Abstracting and transforming the retrieved data to a common model and
level so they can be integrated.

• Integrating the transformed data according to matching keys.

• Reducing the integrated data by abstraction so that the information density
of the data transmitted to decision-making applications increases.

7Web pages of the World Wide Web Consortium: http://www.w3c.org

10

Users at workstations

Data and simulation resources

Value-added services

Application
Layer

Mediation
Layer

Foundation
Layer

Figure 2.1: Transforming data into information using mediators

Thus the processing by a mediator creates an information chain where value
is generated by transforming data into information (see Figure 2.1 which is taken
from [140]).

The concept of mediator as introduced by Wiederhold [129] is very general
and informal. More recent work on mediators has followed the original spirit of
[129] but has concentrated mostly on data integration. Examples of projects in
this area include the Information Manifold [87], SIMS [8], ARIADNE [68], TSIM-
MIS [53], Infomaster [56], MOMIS [13] and others. All these projects consider
multiple heterogeneous data sources (e.g., web pages written in HTML, relational
databases, object-oriented databases, legacy systems etc.) and integrate them us-
ing some common data model. Queries combining information from many sources
are then handled in the integrated representation.

The development of agent middleware has also been of paramount importance
from early on in multi-agent systems research [54, 46]. Starting with the paper of
Genesereth and Ketchpel on software agents [54], we see the introduction of fed-
erated agent systems and facilitators. The vision behind the concept of software
agent in [54] is enabling arbitrary software or hardware systems to interoperate
by sharing knowledge represented in the declarative knowledge representation
language KIF8 (an acronym for Knowledge Interchange Format technically an
extension of first-order logic). Figure 2.2 (taken from [54, 55]) shows an example
of a federated agent system with three communities of agents. In this architec-

8http://logic.stanford.edu/kif/kif.html

11

Agent Agent

Facilitator

Agent Agent

Facilitator

Agent Agent

Facilitator

Agent

Figure 2.2: A federated agent system.

ture, individual agents can communicate directly only with their local facilitators
and facilitators communicate with one another. In this architecture there can
be many agent communities with their facilitators, residing on one or many ma-
chines, and the connections between the facilitators can be arbitrary.

Organizing agents in a federation (such as in Figure 2.2) is, of course, only one
of the many possible architectural alternatives for a multi-agent system. Various
other alternatives are discussed in Sections 2.5 and 2.6.

The concept of facilitator, as envisioned in [54], is a very general one. Ac-
cording to [121], facilitators can provide many services including:

• White pages i.e., finding information about agents given their symbolic
name. For example, What is the internet address of agent A?

• Yellow pages i.e., finding the identity of agents with certain capabilities. For
example, What agents are capable of answering queries about the weather
in Greece?

• Direct communication i.e., sending a message to another agent.

• Other services such as problem decomposition (for problem solving agents),
translation services etc.

Although the functionality envisioned for a facilitator in [54, 121] is rather
complicated and can lead to inflexibility (e.g., all communication has to go

12

through the facilitator), facilitators have been implemented and used successfully
in general agent architectures e.g., OAA [92]. Other researchers have chosen to
breakdown the functionality of a facilitator, and this has given rise to closely
related but simpler concepts such as communication facilitators [47] and various
types of matchmakers [78] (all these concepts are surveyed below).

It is important to point out here that the terms mediator, facilitator, match-
maker and broker can easily confuse a newcomer to this area since different
authors often use the same concept to express different functionality. This is
particularly obvious when authors compare their favourite concept to a concept
used by another researcher. For example, [54, p. 52] claims that the concept of
a facilitator derives from and generalizes the concept of a mediator, [139, p. 36]
clearly implies that the concept of a mediator subsumes the concept of a facili-
tator, while [140, p. 52] which adopts a more conciliatory approach, stresses the
different visions behind each concept, and illustrates their comparative advan-
tages.

We hope the present survey chapter will help to clarify the issues involved in
designing agent middleware and will serve as a good starting point for newcomers
to this area. But before we get into the main part of our survey, let us briefly
discuss a basic issue: how do end-agents and middle-agents communicate?

2.3 An Introduction to Agent Communication

The ability to communicate has always been considered fundamental for the
development of human and other animal societies. Naturally, early research on
intelligent agents has taken up the topic of agent communication very seriously.
In fact, some researchers like Michael Genesereth have gone so far as to identify
agency with the ability to communicate using an agent communication language
[54].

An agent communication language (ACL) is a means of exchanging infor-
mation and knowledge among agents [83]. ACLs are clearly distinguished from
traditional ways of information exchange among interoperating applications such
as remote procedure calls, remote method invocations or object request bro-
kers. Contrary to traditional approaches, ACLs emphasise that communication
requires the exchange of declarative sentences with carefully defined semantics,
not just simple syntactic objects. In the rest of this section we briefly present
the two most popular ACLs to-date: the Knowledge Query and Manipulation
Language (KQML) [46] and the ACL defined by the Foundation for Intelligent
Physical Agents (FIPA9).

9FIPA web pages: http://www.fipa.org

13

2.3.1 KQML

KQML was first introduced as one of the results of the Knowledge Sharing Effort
(KSE 10) , which has influenced current efforts in inter-agent communication
approaches.

The KSE was initiated as a research effort circa 1990 with encouragement and
relatively modest funding from U.S. government agencies (DARPA especially).
The KSE was highly active for roughly five years thereafter, and enjoyed the
participation of dozens of researchers from both academia and industry; the re-
searchers represented various branches of the AI community. Its goal was to
develop techniques, methodologies and software tools for knowledge sharing and
knowledge reuse between knowledge-based (software) systems, at design, imple-
mentation, or execution time. Agents, especially intelligent agents, are an impor-
tant kind of such knowledge-based systems (other kinds include expert systems
or databases, for example). The central concept of the KSE was that knowledge
sharing requires communication, which in turn, requires a common language; the
KSE focused on defining that common language

In the KSE model, agents (or, more generally, knowledge-based systems) are
viewed as (virtual) knowledge bases that exchange propositions using a language
that expresses various propositional attitudes. Propositional attitudes are three-
part relationships between

• an agent,

• a content-bearing proposition (for example, it is raining), and

• a finite set of propositional attitudes an agent might have with respect
to the proposition (for example, believing, asserting, fearing, wondering,
hoping, and so on).

For example, < a, fear, rainingnow > is a propositional attitude.
The KSE model includes three layers of representation: (1) specifying proposi-

tional attitudes; (2) specifying propositions (i.e., knowledge) - this is often called
the (propositional) content layer; and (3) specifying the ontology [60](i.e., vo-
cabulary) of those propositions. The KSE accordingly includes a component
(with associated language) for each of these: Knowledge Query and Manipula-
tion Language (KQML) for propositional attitudes, Knowledge Interchange For-
mat (KIF 11) for propositions, and Ontolingua.

Within the KSE approach, the three representational layers are viewed as
mainly independent of another. In particular, the language for propositional
content (i.e., the content language) can be chosen independently from the lan-
guage for propositional attitudes. In other words, in the KSE approach, the

10http://www.cs.umbc.edu/kse/
11http://logic.stanford.edu/kif/ and http://www.cs.umbc.edu/kif/

14

(ask-one

:sender joe

:content (PRICE IBM ?price)

:receiver stock-server

:reply-with ibm-stock

:language LPROLOG

:ontology NYSE-TICKS)

(tell

:sender stock-server

:content (PRICE IBM 14)

:receiver joe

:in-reply-to ibm-stock

:language LPROLOG

:ontology NYSE-TICKS)

Figure 2.3: Two examples of KQML.

role of an ACL, namely KQML’s in the case of the KSE (or FIPA ACL’s, much
later) is only to capture propositional attitudes, regardless of how propositions
are expressed, even though propositions are what agents are ”talking” about 12.

KQML is a high-level communication language based on a collection of perfor-
matives that are used to express a propositional attitude (involving two agents,
e.g., agents Joe and Stock-Server) about a content-bearing proposition (e.g., the
price of IBMs stock is $14). As an example, Figure 2.3 shows a request of agent
Joe about IBM’s stock price as it would be expressed in KQML, and the reply of
the agent Stock-Server [47].

The designers of KQML have adopted a Lisp-like syntax, which seems to
have served them well throughout the development of the language [83]. KQML
expressions like the ones in Figure 2.3 are messages that can be understood in
terms of three layers: the content layer, the communication layer and the message
layer. The content layer expresses a proposition which is included in the slot
:content of a KQML expression. KQML makes no commitment with respect to
the language these propositions are written and various content languages have
been used in applications (see Section 2.4 below). In the examples of Figure
2.3 the content language is KIF. The communication layer captures a set of
communication parameters such as the identity of the sender and receiver and a
unique identifier associated with the communication (slots :sender, :receiver and
:reply-with in Figure 2.3).

Finally, the message layer identifies a performative such as ask-one or tell. The

12In a similar spirit, the approach of the technical committee that worked on FIPA ACL is
that the content language should be viewed as orthogonal to the rest of the ACL message type.

15

message itself does not identify the network protocol with which the message is
delivered (e.g., TCP/IP, IIOP or other); in fact, any of implemented (by the
involved agents) transport protocols may be used and it is typically expected
that the available protocols have been made known prior to the communication
between the agents. Performatives express an attitude regarding the proposition
in the slot :content of the message. The term performative or speech act has its
origins in the philosophy of language [9, 113] where it is used for verbs can be
uttered so that they perform some action. Performatives in KQML correspond
to message types in traditional communication protocols research, but of course
performatives have a much richer semantic theory associated with them.

Since KQML makes no commitment regarding the content language used in
messages, the message layer includes some more concepts to allow the successful
analysis and delivery of messages in KQML implementations. For example, slot
:language declares the content language used in the :content field, while :ontology
declares the ontology that needs to be consulted if the receiving agent wishes to
understand the content of the message 13.

Depending on the application, many content languages have been used in
multi-agent systems utilizing KQML. These include free-text [78], KIF, versions of
Prolog and other logic programming languages [59] and languages for structured
objects such as MAX [78]. Recently, there has been a move towards encoding
KQML or FIPA-ACL messages in XML so that the development/maintenance
of ACL parsers is simplified and integration with other systems developed for
the WWW becomes easier. We expect this trend to continue in the near future
particularly due to the recent efforts to develop languages, tools and techniques
to make more content on the Web machine understandable (this is the recent
Semantic Web effort in the U.S. and Europe [45, 125]) 14.

Semantics

When they were originally introduced, KQML performatives were not given a
clear semantics but a substantial amount of work has been done since then to
alleviate this problem [33, 82]. Cohen and Levesque were the first to point out
these semantic problems with KQML and introduced a theory of speech acts
(based on a theory of rational action) which can be used to provide a formal
semantics for KQML performatives. Work on the semantics of KQML along
similar lines has also been done by Labrou and Finin [81, 82]. In both of these
approaches, KQML performatives are understood as speech acts that alter the
mental state of the agents participating in a conversation. Mental states of agents
are modelled in terms of primitives such as beliefs, desires, goals, etc. along the

13The KSE effort actually contributed a lot of new ideas and prototype systems dealing with
ontologies e.g., Ontolingua.

14Naturally the semantic web efforts have also accelerated current research and development
on ontologies (see OIL [135] and DAML [63]).

16

lines of BDI theory [109]. Related work in this area has also been done by Sadek
[111] and Singh [119, 118]. Recently, Singh [120] and Pitt and Mamdani [106, 107]
have criticized this emphasis on intentional approaches as being too strong for
heterogeneous agent applications. The original KQML specification suggested an
implicit sequencing of messages in agent interactions. First in [84] and later in
[82, 36] the idea of conversations for communicating agents that use an ACL,
was introduced and further explored. Conversations mark a shift from individual
messages to sequences (exchanges) that agents engage in order to perform certain
tasks. The emphasis shifts from the agent’s internals to the agent’s behavioral
patterns. Other researchers used the concepts of agent conversations as a basis
for an ACL semantics. [106] suggest that a protocol-based approach that moves
the emphasis from mental states of agents to what an agent does in response to
receiving a message might be more appropriate in many applications. In [105]
this approach is used to define multi-party agent conversations that can be used
to define any of the middle-agent protocols to be discussed in Section 2.4 (also
different protocols such as auctions).

KQML has been adopted as a communication language in many multi-agent
systems targeted to specific applications (see Section 2.4 below). There are also
various APIs that enable one to implement applications with agent communica-
tion capabilities (e.g., JAFMAS [29] and Jackal [36] are two of the most recent
ones).

2.3.2 FIPA-ACL

The Foundation for Intelligent Physical Agents is an international consortium of
universities and companies formed in 1996. FIPA is devoted to the standardiza-
tion and promotion of languages, tools and architectures for the development of
intelligent agents. FIPA operates by concentrating on annual specification deliv-
erables. The most recent specification is FIPA 2000, whereas older specifications
also exist (FIPA 97 and FIPA 98), but are now considered obsolete. All these
specifications are publicly available15.

FIPA-ACL is the agent communication language created by FIPA building on
the international experience gained with KQML. FIPA-ACL adopts the Lisp-like
syntax of KQML and the principle of separating the performative or communica-
tive act from the proposition this communicative act applies. Figure 2.4 shows
the example of Figure 2.3 in FIPA-ACL.

As the reader can see there are only superficial differences with KQML in the
above example (e.g., the communicative acts inform and query-ref correspond to
KQMLs tell and ask-one). The early specifications of FIPA-ACL were criticized
for its lack of facilitation primitives such as broker, recommend and recruit that
were extensively used by system developers used to KQML [83]. The general

15FIPA web pages: http://www.fipa.org

17

(query-ref

:sender (agent-identifier :name joe)

:receiver (set (agent-identifier :name stock-server))

:content (price IBM ?price)

:language FIPA-SL

:ontology NYSE-TICKS

:reply-with ibm-stock)

(inform

:sender (agent-identifier :name stock-server)

:receiver (set (agent-identifier :name joe))

:content ‘‘price(IBM,14)’’

:language Prolog

:ontology NYSE-TICKS

:in-reply-to ibm-stock)

Figure 2.4: Two examples of FIPA ACL

primitive proxy has been added to the latest FIPA-ACL specification to account
for various KQML performatives (see Section 2.4).

The semantics of FIPA-ACL are defined in terms of SL, a quantified multi-
modal logic with modal operators for beliefs, desires, uncertain beliefs and inten-
tions [111]. The use of a formal language such as SL allows an elegant distinction
between primitive communicative acts (inform, request, confirm, disconfirm) and
non-primitive ones (i.e., those that can be defined in terms of primitive acts) as
traditionally found in theories of action.

FIPA-ACL is currently gaining ground as the communication language of
choice in multi-agent systems for various applications [99], gradually replacing
KQML as the ACL of choice. Since KQML and FIPA ACL share the same
foundational concepts the transition has been relatively smooth ([83] offers a
detailed comparison between KQML and FIPA ACL).

2.4 Middle-agents, KQML and FIPA-ACL

One of the design criteria for agent communication languages has been to in-
troduce appropriate communication primitives that would enable the creation of
various interesting agent architectures based on middle-agents [47]. KQML con-
tains a set of such performatives: recommend-one, recommend-all, recruit-one,
recruit-all, broker-one, broker-all, subscribe and advertise [48, 47].

Obviously, the simplest kind of a multi-agent system is one where there is a

18

fixed number of agents (e.g., A and B) and each agent knows the internet address
and capabilities of the other (Figure 2.5a). In this case, if agent A wants to know
whether agent B believes that a proposition p is true, then using a simple point-
to-point protocol, it can send a query about p to B. Upon receipt of the query,
agent B will look-up its knowledge base and return with an appropriate reply.

The need for a middle-agent is apparent when the situation becomes more
dynamic i.e., when agent A does not know what other agents are available or
where they are located or what capabilities they might have. The introduction of
a middle-agent M gives rise to some more interesting protocols for communication
and information routing [78, 47]:

• The recommending protocol: In this case (see Figure 2.5b) agent A can
request from a middle-agent M to recommend an agent that can process
a performative e.g., ask-if(p). In KQML this can be done using the per-
formative recommend-one (the meaning of recommend-all is analogous). If
another agent B has already advertised to M that B is capable of processing
performative ask-if(p) then M will reply to A informing him of Bs location
in the network. Agent A is then free to communicate directly with B.

• The recruiting protocol: In this case (see Figure 2.5c) agent A can request
a middle-agent M to recruit an agent that can process a performative e.g.,
ask-if(p). In KQML this can be done using the performative recruit-one
(the meaning of recruit-all is analogous). The difference from the previous
case is that, if another agent B has already advertised to M that it is capable
of processing performative ask-if(p), then M will forward the query ask-if(p)
to B and B will send a response back directly to A.

• The brokering protocol: In this case agent A can request a middle-agent M
to find another agent which can process a given performative, to collect the
reply and to forward the reply to A. This scenario is shown in Figure 2.5d
and the performative broker-one is used.

• The publish/subscribe protocol 16: In this case agent A can subscribe to
receive updates each time there is a change in the answer to a performative
e.g., ask-if(p). Thus in this scenario, agent M will inform A about the
truth value of p immediately upon receiving the performative subscribe
and, subsequently, every time the truth value of p changes.

Contrary to KQML, the communication language FIPA-ACL contains only
one message type, proxy, which has been introduced to support various kinds of

16[78] call this case content-based routing. We avoid this terminology here because content-
based routing is better thought of as addressing and routing technique which can be used
profitably in applications such as event dissemination services [21] or intra-agent communication
[122].

19

4: ask-if (p)

2: recommend

(ask-if (p))

5: tell (p)

1: advertise

(ask-if (p))

3: reply (B)

A B

M

(b)

4: tell (p)
A B

2: recruit (ask-if (p))
1: advertise

(ask-if (p))

3: ask-if (p)

M
(c)

3: ask-if (p)

4: tell (p)

2: broker-one

(ask-if (p))

1: advertise

(ask-if (p))

5: tell (p)

A B

M

(d)

2: tell (p)

1: subscribe (ask-if (p))

3: tell (p)

A B

M
(a)

Figure 2.5: Various Protocols Involving Middle-agents

middle-agents17. The proxy message type is quite general and can be used to
implement recommending, recruiting, brokering and publish/subscribe protocols
as they have been presented above18.

The middle-agents presented in the above paragraphs enable other agents to
find appropriate information producers or consumers. The question that arises
then is how producer and consumer agents find middle-agents in the first place.
In implementations where a single (global or local) middle-agent exists, this is
usually achieved by having the name and address of the agent fixed and known to
other agents [47]. In a distributed setting (such as the ones discussed in Section
2.5) the name and address of middle-agents can be found using out-of-band means
or by using some sort of hierarchical scheme like DNS.

2.5 Middle-Agents at Work

Let us now turn our attention to representative examples of middle-agents that
have been implemented and used in the context of various agent-based systems.
Our discussion will focus on the interaction protocols used by these middle-agents
and the languages for representing capabilities and requests. In some cases we

17Foundation for Intelligent Physical Agents. FIPA Communicative Act Library Specifica-
tion, 20/10/2000. Available from http://www.fipa.org/repository/cas.html

18Foundation for Intelligent Physical Agents. FIPA Interaction Protocols (IPs) specifications.
Available from http://www.fipa.org/ips.html

20

(advertise

:sender p

:receiver mm

:lang kqml

:content (ask-one

:lang kif

:content(subcomponent-of ?x ?y)))

(subscribe

:sender c

:receiver mm

:lang kqml

:content (ask-about

:lang max

:content

[(trouble-report ?x)

(match ?x

[(subject ".*gimbal.*")])]))

Figure 2.6: Examples of KQML messages in SHADE

will also hint at some details of their matching algorithms. Towards the end of
this section, we demonstrate the power of the middle-agent concept, by showing
how the functionality of current popular Internet technologies can be understood
as multi-agent systems with a central role for middle-agents (e.g., search engines,
publish/subscribe systems and peer-to-peer systems). The relation between these
technologies and multi-agent systems is central to Section 2.6 as well, where we
concentrate on architectural issues.

2.5.1 The SHADE and COINS Middle-Agents

SHADE was one of the first projects to utilize a middle-agent based on the
ideas on agent middleware developed by the KQML community [77]. The main
purpose of the SHADE middle-agent was to assist designers and engineers in
the processes of concurrent design and collaborative engineering. Versions of the
SHADE middle-agent have also been used in other applications such as a satellite
imagery clearinghouse [79].

The SHADE middle-agent uses KQML as its communication language and
supports all the protocols presented in Section 2.4. There are two content lan-
guages that can be used. The first one is a subset of KIF, and the second one
is a logic-based language for structured objects and string patterns called MAX.
Figure 2.6 gives two examples of KQML messages utilizing KIF and MAX.

21

Matching advertisements to requests in the SHADE middle-agent is based
solely on the content of the advertisements and requests i.e., it does not involve
any background knowledge or ontology. No detailed algorithms for matching
are given in [78] so one can draw no conclusions regarding the efficiency of the
matching process.

COINS is an acronym for COmmon INterest Seeker, another middle-agent
implemented by the developers of the SHADE middle-agent [78]. The special
feature of COINS is that it uses a content language based on free-text (or equiva-
lently a weighted vector of keywords). This is rather reasonable given the special
nature of its target application, which is matching users with similar interests.
The matching algorithms in COINS are based on well-known text similarity met-
rics (e.g., tf-idf) as pioneered by the SMART system [112].

2.5.2 Middle-Agents in RETSINA

RETSINA is a multi-agent system infrastructure developed at CMU by Katia
Sycara and her colleagues [38, 126, 127]. RETSINA supports the construction
and deployment of four basic agent types:

• interface agents that interact with users, receive input, and display results

• task agents that help users plan and carry out problem-solving activities

• information agents that provide access to heterogeneous information sources,
and

• middle agents that help match agents that request services with agents that
provide services.

The ACL used by RETSINA agents is KQML but the communication module
has been designed in a modular fashion so that it can easily support other ACLs
such as FIPA [116]. Middle agents in RETSINA can therefore use any of the
interaction protocols discussed in Section 2.4.

One of the important contributions of work on middle-agents in RETSINA
is the introduction of a new content language, called LARKS (Language for
Advertisement and Request for Knowledge Sharing). LARKS is a very expressive
language designed to facilitate the description of services provided by agents and
being available on the Web.

A LARKS service specification is a frame with the following slot structure:

• Context, which describes the context where the service is applicable. The
exact syntax for specifying contexts is not given in [126, 127] but one can
assume from the discussion that it is a list of English words possibly repre-
senting concepts from a known ontology.

22

• Input, where the inputs to the service are declared (as variables)

• Output, where the outputs to the service are declared (as variables)

• Types, which declares the types of variables

• InConstraints, where constraints on the input variables are declared. These
constraints can be expressed in some constraint language (e.g., Horn clauses
augmented with arithmetic constraints in the spirit of constraint logic pro-
gramming is used in [126, 127]).

• OutConstraints, where constraints on the ouput variables are declared.

• ConcDescriptions, where the meaning of the words used in other fields
(e.g., in Context) is specified by relying on a given local domain ontology.
Local ontologies can be formally defined using any terminological knowledge
representation language and ITL is chosen in [126, 127].

An example of a service specification in LARKS is shown in Table 2.1. This
service finds information on computers as it would be done e.g., by a search en-
gine. Notice that both advertisements of capabilities and requests for services are
expressed by a service specification in LARKS and are wrapped in an appropriate
KQML message.

The inventors of LARKS have discussed a variety of ways two service spec-
ifications can match (exact match, plug-in match, relaxed match) and discuss
matching algorithms applicable in each case [126, 127]. Although the discussion
in [126, 127] is very interesting, the authors adopt a rather informal presentation
of various issues so the reader is only left with the general impression that strict
notions of matching are computationally expensive (NP-hard at least) while sim-
pler ones are computational. What seems to be missing here is a careful definition
of the syntax and semantics of a service definition, and then a detailed analysis
of the computational complexity of matching for different classes of constraints
and concept descriptions. It would also be interesting to point out what kinds of
matching are appropriate in various configurations of middle-agents such as the
ones discussed in Section 2.6 below.

The RETSINA middle-agents have been used in various applications including
the management of a stock portfolio (the system WARREN described in [101]).
One such middle-agent called A-Match is available on the Web 19 and can be
exploited by users wishing to advertise agents or querying available agents for
services. For a comparison of RETSINA with OAA another open infrastructure
for developing multi-agent systems, the reader is invited to see [57].

The recent information integration framework XIB is based on the lessons
learned in RETSINA but utilises languages and tools based on XML [90].

19www.cs.cmu.edu/ softagents/a-match/index.html.

23

Context Computer * Computer
Types InfoList = ListOf(model : Model*ComputerModel),

brand: Brand*Brand
price: Price*Money, color: Color*Colors);

Input brands: SetOf Brand*Brand;
areas: SetOf State;
processor: SetOf CPU*CPU;
priceLow*LowPrice: Integer;
priceHigh*HighPrice: Integer;

Output Info: InfoList;
InConstraints
OutConstraints sorted(Info)
ConcDescriptions Computer = (and Product (exists has-processor CPU)

(all has-memory Memory) (all is-model ComputerModel));
LowPrice = (and Price (ge 1800)(exists in-currency asset (USD)));
HighPrice = (and Price (le 50000)(exists in-currency asset (USD)));
ComputerModel =
Asset(HP-Vectra, PowerPC-G3, Thinkpad770, Satellite315);
CPU = asset(Pentium, K6, PentiumII, G3, Merced)
[Product, Colors, Brand, Money]

Table 2.1: An example of a service specification in LARKS

2.5.3 Middle-Agents in Information Integration Systems

There are a few interesting middle-agents implemented as parts of research projects
in information integration as discussed in Section 2.2 above. The one most closely
related to the middle-agents presented above is the middle-agent of InfoSleuth,
a project on the integration of heterogeneous information using a semantic ap-
proach based on ontologies [12, 22]. The InfoSleuth middle-agent receives and
stores advertisements from other InfoSleuth agents regarding their capabilities.
Based on these advertisements, it responds to queries from users as to what agents
are able to satisfy their specific requests (i.e., it implements the recommending
protocol discussed in Section 2.4). The InfoSleuth middle-agent uses KQML as its
communication language. Details of the language for advertisements and requests
can be found in [22].

Infomaster is another information integration system which uses a middle-
agent [56] to access information over heterogeneous sources including Z39.50,
SQL databases etc. The middle-agent in Infomaster receives a request from other
Infomaster agents, consults its knowledge base about the capabilities of sources,
and finally synthesizes and returns an answer to the requestor (i.e., it implements
some version of the brokering protocol described in Section 2.4). There are various
other research projects in information integration that rely on a middle-agent like

24

the one in Infomaster (e.g., see the mediators in Information Manifold [87], SIMS
[6], ARIADNE [68], TSIMMIS [53] and MOMIS [13]).

2.5.4 Search Engines as Middle-Agents

In addition to the research prototypes discussed above, there are many current
popular technologies that can be interpreted as multi-agent systems with a central
role for middle-agents. The first example that comes to mind is the case of search
engines (e.g., Google or AltaVista) interpreted as middle-agents 20. For a search
engine to work, crawlers collect information from web pages around the globe
and index it by keywords using some sophisticated full-text indexing (e.g., see
[17]). This can be thought of as passive advertising of information capabilities
on the part of the owners of web sites. Active advertising is also possible by
submitting web pages to search engines. Users submit keyword-based queries to
search engines and get back ranked lists of URLs pointing to web pages containing
these keywords 21.

2.5.5 Middle-Agents and Publish/Subscribe Systems

It is also interesting to compare the concept of a middle-agent as it was de-
veloped in multi-agent systems to the middleware that has been developed for
publish/subscribe (or pub/sub) systems. The pub/sub paradigm became popu-
lar in the last decade and has resulted in the implementation of many commer-
cial systems and research prototypes [66, 124, 21, 43]. In a pub/sub system we
have information providers, information consumers and middleware. Informa-
tion providers publish events to the system and information consumers subscribe
to particular categories of events within the system. Finally, the middleware is
responsible for routing published events to appropriate subscribers.

Pub/sub systems can be distinguished into the following categories depending
on their subscription language [21]:

• Channel-based, where consumers subscribe to all notifications sent across
an explicitly-designated channel (e.g., Java Message Service [124]).

• Subject-based, where consumers subscribe to all notifications that the pub-
lisher has identified as being relevant to a particular subject (e.g., ToolTalk
[66]).

20The exact details of this interpretation does not matter; the interested reader can see the
details of the COINS matchmaker discussed in Section 2.5.1 where the content language consists
of free text or a weighted keyword vector [78].

21The exact indexing and ranking technology used in various search engines is usually con-
fidential and only systems such as Google that originated in an academic environment have
published details of their implementations [17, 31].

25

string exchange=NYSE string symbol=DIS float change > 0

string exchange=NYSE string symbol=DIS float prior=105.25 float

change=-4 float earn=2.04

Figure 2.7: A subscription and a notification in SIENA

• Content-based, where consumers subscribe to all notifications whose con-
tent matches consumer-specified predicates (e.g., SIENA [21], Gryphon [4],
Le Subscribe [43]).

From the discussion of Section 2.4, it must be clear to the reader that content-
based pub/sub systems are immediately realisable by agents implementing the
publish/subscribe protocol. As an example, let us consider the pub/sub system
SIENA [21] and see how it can be realised using ideas from multi-agent systems.

SIENA is an event notification service for use in wide-area networks such as
the Internet [21]. It is implemented as a network of servers that offer access
points to clients. Clients use the access points to advertise high-level descriptions
of events that they generate and to publish notifications of such events. Clients
can also use access points to subscribe for receiving notifications of interesting
events. The power of SIENA lies in its expressive language for notifications,
advertisements and subscriptions, and in its sophisticated algorithms for routing
notifications of events to interested clients [21].

The language for notifications, advertisements and subscriptions in SIENA is
based on a data model that supports an untyped set of typed attributes. Each
attribute has a name, a type and certain associated operators (including equality).
An example of a subscription and a matching notification in SIENA is given in
Figure 2.7.

In a middle-agent like the one implemented in SHADE [78] a subscription and
a notification like the one in Figure 2.7 can be realized using the publish/subscribe
protocol of Section 2.4 as follows. An information consumer will send a sub-
scription message to the middle-agent using the KQML performative subscribe,
content language KIF, and content

(ask-if (and (stock-price-change-event NYSE DIS ?prior ?change ?earn) (>
?change 0)))).

For the matching notification of Figure 2.7 to become available, an infor-
mation producer should send a message to the middle-agent using the KQML
performative tell, content language KIF and content

(stock-price-change-event NYSE DIS 105.25 4 2.04).

26

Notice that we assume no local ontology and matching will be carried out
solely by logical inference.

In a similar way, selective information dissemination systems such as SIFT
[145] or XFilter [6] can also be casted as multi-agent systems.

2.5.6 Middle-Agents and Peer-to-Peer Systems

Peer-to-peer systems have recently received huge popularity especially due to the
legal battles involving Napster22. It is interesting to view Napster as a multi-
agent system involving end-agents (Napster clients) sharing resources with the
help of middle-agents (Napster servers) [49]. Napster resources (i.e., MP3s) can
be described by a simple ontology and communication can be done in KQML or
FIPA-ACL. To be able to share MP3s with other agents, an end-agent registers
with a middle-agent. Then, the end-agent advertises its resources to the middle-
agent, and in response, the middle-agent subscribes to the end-agents resources
so that it will be notified of any possible changes. When an end-agent wants to
find an MP3, it asks the middle agent to recommend all end-agents that have ad-
vertised it. Later on, if it chooses to contact one of these end-agents to obtain the
resource, it also advertises it with the middle-agent. It is an interesting challenge
to build a version of Napster that is based totally on multi-agent technology and
demonstrate the benefits of this approach. Other popular peer-to-peer systems
such as Gnutella23 and Freenet24 can be viewed as multi-agent systems in a sim-
ilar way. Because the architectural choices in these systems are important, we
leave their discussion for the next section.

2.5.7 Middle-Agents and Web Services

In the last two years, we have experienced enormous momentum towards making
available back-end functionality as “web services.” Web services is a broad term
used to describe self-contained, self-describing, modular applications that can be
published, located, and invoked across the Web and can perform functions than
can range from simple requests to complicated business processes. Web services
represent a component of the next iteration of the web, often referred to as the
Semantic Web; Tim Berners-Lee describes it as “an extension of the current web
in which information is given well-defined meaning, better enabling computers
and people to work in cooperation.”

The shift towards web services has resulted to significant efforts and stan-

22Napster web site: http://www.napster.com
23Gnutella web site: http://www.gnutella.wego.com
24Freenet web site: http://freenet.sourceforge.net

27

dards such WSDL, 25 UDDI 26 and SOAP, 27. Although existing UDDI servers
are currently no more than directories for publishing web services with a very
simple search interface for service discovery, the ultimate goal is to automate
the discovery and use (through SOAP and WSDL) of broadly available web ser-
vices. Eventually, UDDI servers will function as brokers that match producers
and consumers of services, perhaps offering a more fine-grained and semantically
powerful discovery capabilities (current UDDI servers only provide the simplest of
text-based search). Furthermore, there is a potential for another class of brokers,
either enhanced UDDI servers, or applications (agents) that can access UDDI
servers, which can offer enhanced services through the composition and/or ag-
gregation of individual services published through UDDI servers.

The stack of technologies for creating service brokers for the purposes of (1)
matching providers of services with consumers of services, and (2) creating new
value-adding services through aggregation of simpler services includes existing
industrial efforts (UDDI, WSDL and SOAP) that provide match of the necessary
“plumbing” for connecting to and accessing such services but automated discovery
and invocation of web services will also require a “deeper” semantics of web
services input, output and requirements (policies). Semantic web technologies can
hopefully provide some of the latter,i.e., a Web Ontology Language like DAML
or DAML+OIL 28, for semantically enhanced service descriptions and languages
for describing properties and capabilities of services, such as DAML-S 29.

2.6 Architectural Alternatives for Agent Mid-

dleware

The previous section presented a number of implemented multi-agent systems
that utilise various kinds of middle-agents, and also some popular Internet tech-
nologies (e.g., pub/sub systems) that can be casted as multi-agent systems with a

25Web Services Description Language (http://www.w3.org/TR/wsdl) is an XML format for
describing network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and messages are de-
scribed abstractly, and then bound to a concrete network protocol and message format to
define an endpoint.

26Universal Description, Discovery, and Integration (http://www.uddi.org/) is a specification
for describing (rather simply) services and discovering services. UDDI servers are used as
directories of services, where providers can publish their services and “consumers” can search
for them.

27Simple Object Access Protocol (http://www.w3.org/TR/SOAP/) is a lightweight, XML-
based protocol for exchange of information that consists of: an envelope that defines a frame-
work for describing what is in a message and how to process it, encoding rules for expressing
instances of application-defined datatypes, and a convention for representing remote procedure
calls and responses.

28http://www.daml.org
29http://www.daml.org/services/

28

central role for middleware. It is worthwhile to consider the architectural alterna-
tives in the design of these systems and the choices made by their implementers.
Of particular interest to us is the degree of distribution of the functionality of
middle-agents in these systems. After all, previous research in distributed sys-
tems shows that distributed solutions to information management problems are
known to offer greater flexibility, performance and robustness.

We can distinguish three general categories of systems utilising some sort of
middle-agents:

• Centralised, where a single middle-agent is employed.

• Distributed, where multiple co-operating middle-agents are employed.

• Revolutionary, where middle-agents do not exist and all functions typically
carried out by middleware are now handled locally by each agent.

2.6.1 The Centralised Approach

In centralised systems a single middle-agent is employed. Typical examples of
this approach are:

• Search engines such as Google when interpreted as middle-agents.

• Multi-agent systems such as SHADE, COINS [78] and WARREN [101]
where a single middle-agent is used.

• Information dissemination systems like the centralised version of SIFT [145]
or XFilter [6].

• Any centralised information integration system e.g., InfoSleuth [12].

2.6.2 The Distributed Approach

In the distributed approach tasks traditionally assigned to a single middle-agent
are now handled by multiple co-operating middle-agents. This approach is men-
tioned in various papers but it is not clear to us if any implemented system of
this kind exists (we only know of IDIoMS [123]). What is also surprising is that
there is only one published work dealing with theoretical aspects of this problem
[65]. It is not clear whether the ideas sketched in [65] have been implemented in
a real system.

29

The IDIoMS System

IDIoMS (Intelligent Distributed Information Management System) is an agent-
based system for discovering, managing and presenting information found in a
widely distributed network such as the Internet. IDIoMS has been developed
jointly by Fujitsu Laboratories and BT Laboratories [123]. The middleware com-
ponent of IDIoMS is called OAM (Open Agent Middleware) and is described
in [94, 130]. In OAM information provider agents advertise the capabilities
of information providers to middle-agents using KQML. Capabilities of service
providers are expressed in propositional logic. For example, in [94, 130] infor-
mation providers are database agents and an advertisement can be a disjunction
of propositions corresponding to relation names (e.g., [Image]). Every middle-
agent that receives an advertisement, stores it in its local database, and also
forwards the advertisements to neighbouring middle-agents. [130] explains that
a neighbourhood is defined by a graph, which gives the connections of agents
(connections are set-up by an administrator of the whole system). When an
information request arrives at a middle-agent, it is immediately matched with
stored advertisements. Requests are also expressed as formulas in propositional
logic e.g., [Image]where BayArea and Motors are relation names [130]. If there
is a successful match, the middle-agent sends the request to the correct service
agent; service agents, in turn, return appropriate information directly to the re-
quester. If there is not a successful match, the middle-agent forwards the request
to another middleware agent. Successful match here means that the proposi-
tional logic formula corresponding to a request does not contradict the formula
representing an advertisement [130] (this is a rather relaxed form of matching).
The same procedure is recursively repeated until an appropriate service provider
is found and its address sent back to the requester. The requester then contacts
the provider (or providers) directly.

OAM (and IDIoMS) is an interesting system. Its distributed approach allows
its authors to claim that it is scalable, robust and extensible. However, the OAM
papers [94, 130, 123] leave several interesting questions open. First of all, it is
not explained clearly why matching based on consistency is the best choice under
all circumstances (to understand this one has to know the exact semantics of
advertisements but the semantics are not given clearly in [130]). Also, it seems
that there are many ways to optimise the routing of requests and advertisements
in OAM (see e.g., the techniques of SIENA [21]) and none of that is studied in
[94, 130, 123].

2.6.3 Getting Rid of Middle-agents

In the revolutionary approach middle-agents disappear altogether and their func-
tionality is transferred to each individual agent. This approach has not been
implemented so far in any existing multi-agent system. Nice examples of this ap-

30

proach can be found in peer-to-peer content sharing systems such as Gnutella30

and Freenet [32].

Freenet

Freenet is a peer-to-peer network of individual nodes connected to each other
for the purpose of sharing information in the form of data files [32]. An explicit
design goal of Freenet was to avoid the need for centralised middleware. Every
Freenet node keeps a datastore containing a number of shared data files, and a
dynamic routing table that contains addresses of other nodes and a description
of the kind of information they are thought to have. This information is in
the form of a key obtained by hashing a textual description of a data file (e.g.,
agents/brokering/survey.doc).

To retrieve data, a user of Freenet chooses a short descriptive string, which
is thought to describe the data file, and hashes it to obtain a file key. The user
then sends a request for a file with this key to her own node. Whenever a node
receives a request, checks its local datastore first. If the file is found, it is returned
together with a note saying that this node was the source of the data. If the file is
not found, the routing table is consulted, the neighbouring node with the closest
matching key is chosen, and the request is forwarded to it. When the data file
is finally found, it is returned to the requester via the same path. Additionally,
intermediate nodes save a local copy of the data file together with an entry in
the routing table associating the requested key with the data source. Each data
request in Freenet is given a hops-to-live count, which is decremented at each
node the request goes through successfully in order to reduce message traffic.
To prevent requests from going into an infinite loop, Freenet assigns a unique
identifier to each request so that a node will never forward a request that goes
through it for a second time. To store files, users go through a similar procedure
so that nodes will come to be known to other nodes only if they are contributing
files to the system [32].

Freenet is an interesting peer-to-peer file sharing system with several positive
features claimed by its implementers:

• It is very robust because data is duplicated in several places.

• Its storage strategies lead to clustering of files with similar keys on the same
nodes. Also, data files tend to be stored close to their requesters (where
close does not denote geographical proximity but rather key closeness).

• The quality of routing requests improves over time because nodes become
specialists in locating sets of similar keys.

30Gnutella web site: http://www.gnutella.wego.com

31

• The privacy of information requesters and information providers is pro-
tected since a node can never tell whether a requester is actually interested
in a data file or is simply forwarding somebody elses request (questions of
privacy are further discussed in Section 2.7.

Gnutella

Like Freenet, Gnutella is also a peer-to-peer file sharing system used widely today
for sharing music files (e.g., MP3s). Gnutella is very similar to Freenet but it
has serious deficiencies [62]. First of all, a Gnutella node broadcasts a request
to all of its neighbours thus generating a great amount of network traffic (e.g.,
in contrast Freenet chooses one of its neighbours to forward a request). Also,
the privacy of information requesters and providers is not really protected (e.g.,
Gnutella messages contain IP addresses, and URLs are returned to information
requesters so that they can retrieve the files they desire).

Other Theoretical and Experimental Work

Shehory [115] presents a theoretical analysis of the problem of finding the location
of an agent with certain capabilities in open multi-agent systems that are like the
peer-to-peer networks of Gnutella and Freenet (i.e., there are no intermediaries
so each agent keeps a local list of other agents and their capabilities). [115] con-
siders situations where agents are connected in a lattice-like rectangular graph
structure, and shows that dramatic improvements in the number of communi-
cation operations is possible by randomly connecting a small number of pairs of
nodes in the original graph. Additionally, Shehory gives some evidence that these
results apply to larger classes of graphs as well. The practical relevance of this
work is that it shows that if there is enough structure in the topology of open
multi-agent systems then approaches with no intermediaries may result in very
small communication costs. Experimental results that would demonstrate this
would be very welcome.

[100] present an experimental study concerned with matchmaking between
service providers and consumers without involving middle-agents. The multi-
agent system of [100] involves a collection of simple agents that need or can
offer services, a set of tasks that each agent needs to complete using outside
help, a set of task categories and an algorithm for task matching. There is
no centralized control and agents are allowed to communicate only with their
neighbours. The notion of neighbourhood is defined by considering each task
an agent has to perform as an interface to the agent. At each moment of time,
an agent can communicate with only as many agents as it has open tasks that
need to be carried out by others. This can be understood by visualizing agents
as being distributed spatially so that interfaces of various agents are adjacent.
Each agent looks out for needed service providers by carrying out some form

32

of local search among agents with adjacent interfaces. If another agent with a
matching interface is found, then these two agents form a cluster. Clusters are
subsequently allowed to rotate so that interfaces that have not been matched
can also find matchings. When new matchings are found, clusters are enlarged
to include the new service provider agents. This local search procedure seems
to perform very well as demonstrated by the simulations of [100]. For example,
in a system of 3 tasks per agent, 80 categories and 2000 agents, more than 90
iterations of the search procedure. Unfortunately, the behaviour of the system
deteriorates as the number of categories increase beyond 90. [100] also show that
the success of the system in finding matchings scales linearly with respect to the
number of agents considered.

Although the study of [100] presents interesting arguments in favor of the
revolutionary approach to agent middleware, it is not clear whether their experi-
mental settings (e.g., their notion of neighbourhood) can arise in practice. More
work is needed in this direction as pointed out in [100].

We conclude this section by conjecturing that research efforts in this area
will multiply in the near future as systems like Gnutella attract the attention
of academics (see for example, the recent proposal of [62] to use the distributed
event notification system Siena [21] to implement a Gnutella-like system). There
is also a Peer-to-Peer Working Group31 devoted to the development of standards
for peer-to-peer computing (Intel is a member company, and HP and IBM are
supporting companies).

2.7 Middle-agents and Privacy

Protecting the privacy of information producers and consumers has become an
important issue in the age of the web. Today, more than ever before, it is very
easy for someone to learn a lot about somebody elses preferences or capabilities
by carefully observing their behaviour during electronic transactions. However,
parties involved in a transaction might not wish to reveal some information about
themselves to other participating parties (e.g., a customer browsing the web pages
of various electronic shops might not want to reveal any information about her
until finally choosing a shop and a product to buy). These observations have
resulted in a flurry of interesting research dealing with privacy issues on the web
[110].

[39] have categorised various configurations of agents from a privacy view-
point. This has been achieved by examining the possible flows of information
from requesters to providers (and vice versa) via the middle-agents. Preference
information can be kept private at the requester, be revealed to some middle-
agent, or be known by the provider itself. The same three possibilities exist for

31http://www.peer-to-peerwg.org

33

Capabilities known by
Preferences known by provider only provider and

middle agent
provider and
middle and
requester

requester only direct com-
munication
(to middle
agent)

recommending
protocol

requester and middle agent brokering and
recruiting
protocol

requester and middle and
provider

blackboard
protocol

Table 2.2: Middle-agent roles from a privacy viewpoint

capability information. From a privacy viewpoint, this leads to nine general pro-
tocols for middle-agents (see Table 2.2 below taken from [39]). In the following
we analyse three of these cases but similar observations follow for the other six
cases. The diligent reader should note that we are using slightly different termi-
nology from [39] (we are using the term recommending instead of matchmaking
as in [39]).

In the recommending protocol presented in Section 2.4, capabilities are adver-
tised with a middle-agent (e.g., using the KQML performative advertise). When
a request of the form “Give me the names of all agents with capability X” ar-
rives at the middle-agent (using a performative recommend-all), the matchmaker
checks the advertisement database and chooses all advertisements that serve the
request. Then, the matchmaker provides the requester with the names and In-
ternet addresses of the chosen providers that can satisfy the request. Finally, the
requester chooses which providers to query in order to get the information. Thus,
using the recommending protocol one can protect the privacy of a requester by
not allowing its preferences to become known to providers (until one or more of
the providers are contacted by the requester). The blackboard protocol is sym-
metric to the recommending protocol: only the privacy of providers is protected
(the exact details of the protocol are omitted).

Finally, the brokering and recruiting protocols allow one to protect the privacy
of both requesters and providers. As explained in Section 2.4, a middle-agent us-
ing the brokering protocol keeps track of advertisements coming from information
providers and requests coming from information consumers. The middle-agent
forwards requests to appropriate providers, collects replies and sends the final
information to the requesters. Therefore, requesters and providers never get to
know each other if their transactions are handled by a middle-agent using a bro-

34

kering protocol. The recruiting protocol is similar: the middle-agent forwards
the request to appropriate providers, but now the chosen providers reply to the
requester directly.

Another dimension, which is not included in Table 2.2, concerns the actual
occurrence and/or content of a broker-based transaction. Both recruit and broker,
allow the broker to know the actual content exchanged between the requester
and the brokered or recruited agent. In such a case, the broker is also aware
that the provider agent responded and that the requester is aware of (received)
that response. By contrast, when the recommend primitive is used the broker
not only does not know the actual response to the requester but it does not even
know whether the requester ever placed a request or whether the “recommended”
agent responded to it. The implications of these differences, include liability of
the broker and knowledge of a third party (the broker) that a transaction occurred
and a particular fragment of knowledge has been received by the requester, or
sent by a provider 32. For example, in the case of the Napster P2P system, where
the Napster server acts as a broker that essentially processes recommendation
requests, the Napster server is not aware of whether requesters actually contact
providers and eventually download content from the providers.

2.8 Performance Issues: Scalability, Robustness

and Adaptivity

The various protocols for middle-agents discussed in Section 2.4 have been de-
ployed in the context of various implemented applications (e.g., SHADE, COINS
[78] and WARREN [101] discussed above). Application requirements will usu-
ally determine which protocol is appropriate in each case (e.g., recommending
or brokering). However, performance comparisons can guide the choice of an
implementer in a design space where more than one approach is possible.

There is little published work which compares different agent middleware
solutions regarding scalability, robustness and adaptivity [39, 75, 76]. [39] present
a comparison of three protocols (blackboard, recommending and brokering) with
respect to scaling up efficiently to large numbers of requests. The formal tool
of [39] is an analytical queuing network model [86], which is also validated by
experimental results carried out in the context of WARREN [101]. As it might
be expected, the results of this analysis show that middle-agents running the
brokering protocol can achieve better response times by balancing the load on
information providers.

[39] also observe that centralized systems using a single middle-agent are
vulnerable to failures of the middle-agent. The solution proposed is to have

32On a related note, broker and recruit requests can allow the broker to cache responses from
prior queries, for future usage, in cases where the exchanged knowledge has a known “life”.

35

requesters cache results of recommend-one or recommend-all operations so that
if the middle-agent fails, the requester can use the locally cached information
until the agent functions properly again (this is not possible for brokers). A
distributed configuration of middle-agents where robustness would obviously be
enhanced has not been considered in [39].

A more interesting scheme for recovery from middle-agent failure has been pro-
posed in [75, 76] and has been implemented in the Adaptive Agent Architecture
system 33. The authors consider multi-agent systems with multiple end-agents
and middle-agents. In their proposal whenever an end-agent A advertises its ca-
pabilities to a certain middle-agent M, this information is propagated to the rest
of the middle-agents which undertake a commitment to connect to end-agent A
whenever M disconnects from the rest of the middle-agents. This is essentially a
nice way to use teamwork to have a more robust and reliable system of middle-
agents. [75] presents the formal underpinnings of this work using the formal
concepts of commitment and joint intention, and [76] demonstrate the utility of
the recovery scheme experimentally. The findings of [76] are the following:

• The proposed recovery scheme allows the system to function despite middle-
agent failure as long as there is at least one middle-agent left in the system.

• There is no significant communication overhead due to the extra messages
middle-agents will exchange.

• Adding new middle-agents does not significantly affect the performance of
the system.

• The scheme can be implemented so that a specified number of middle-agents
is always present in the system.

[39] have also considered the problem of adaptivity of middle-agents in the
presence of dynamic changes in the availability of information providers. When
providers can come and go, middle-agents using the brokering protocol can achieve
better response times by performing careful load balancing. The same effect can
be achieved in middle-agents using the recommending protocol but now the re-
sponsibility for load balancing relies entirely on information requesters. The
related topic of adapting to dynamic changes in the preferences of information
requesters or the capabilities of information providers is not handled in depth
in [39]. Moukas [96, 97] shows how relevance feedback and techniques from ge-
netic algorithms can be used to improve the adaptivity of similar systems when
dynamic changes in preferences of information requesters take place. Relevance
feedback techniques for the same problem are also analysed in the elegant frame-
work of [23]. Unfortunately, the techniques of [23, 96, 97] are applicable only to

33http://chef.cse.ogi.edu/AAA

36

keyword-based information retrieval over WWW sources. Thus it is not clear how
such algorithms can be employed in the context of [39] where more sophisticated
languages for expressing preferences are envisioned (e.g., LARKS [127]).

[38, 117] have also considered execution adaptation for agents that function as
information providers (information agents in the terminology of the multi-agent
system RETSINA [38]). The main proposal here is that if agents become over-
loaded with information requests, they can create a clone of themselves and direct
some of their load to this new agent. The new agent can execute in a separate
agent server using an appropriate implementation language with code migration
facilities (e.g., Java). The introspective facilities needed so that an agent can
actually notice that it has become overloaded are easily provided in RETSINA.
[38, 117] do not mention the related issue of cloning a middle-agent when the
available information exceeds the storage capacity available to the agent.

2.9 Conclusions

In this chapter we surveyed recent research on agent middleware with an emphasis
on information management applications. We started with the origins of agent
middleware (the concepts of mediator and facilitator) and continued with related
work up to today. We also discussed some popular Internet systems (search
engines, publish/subscribe systems, peer-to-peer systems) and show how they
can be casted as multi-agent systems with a central role for agent middleware.

In the rest of this report we concentrate on textual information dissemination
as it arises int he architecture sketched in Chapter 1. Our work can be seen as a
contribution to the general area of agent middleware surveyed here.

37

Chapter 3

Data Models and Query
Languages for Textual
Information Dissemination

In this chapter we concentrate on defining the syntax and semantics of three
progressively more extensive data models and query languages for textual infor-
mation dissemination.

We define formally the modelsWP ,AWP and AWPS, and their correspond-
ing languages for textual information dissemination in distributed agent systems
such as the ones surveyed in Chapter 2. Data modelWP is based on free text and
its query language is based on the boolean model with proximity operators. The
concepts of WP extend the traditional concept of proximity in IR [10, 27, 28] in
a significant way and utilize it in a content language targeted at information dis-
semination applications. Data model AWP is based on attributes or fields with
finite-length strings as values. Its query language is an extension of the query lan-
guage of data model WP . Our work on AWP complements recent proposals for
querying textual information in distributed event-based systems [20, 19] by using
linguistically motivated concepts such as word and not arbitrary strings. This
makes AWP potentially very useful in some applications (e.g., alert systems for
digital libraries or other commercial systems where similar models are supported
already for retrieval). Finally, the model AWPS extends AWP by introducing a
“similarity” operator in the style of modern IR, based on the vector space model
[10]. The novelty of our work in this area is the move to query languages much
more expressive than the one used in the information dissemination system SIFT
[145] where documents and queries are represented by free text. The similarity
concept of AWPS is an extension of the similarity concept pioneered by the
system WHIRL [34] and recently also used in the XML query language ELIXIR
[30]. We note that both WHIRL and ELIXIR target information retrieval and
integration applications, and pay no attention to information dissemination and
the concepts/functionality needed in such applications. The work in this chapter

38

has been previously presented in [41, 69, 73, 72, 70].

3.1 Text Values and Word Patterns

In this section we present our first data model and query language for textual
information dissemination. The data model is based on free text which is captured
formally by the concept of text value. Our query language is based on the Boolean
model with proximity operators. Queries in this model are formalised using the
concept of word pattern [28]. The two basic concepts of this section (text values
and word patterns) are subsequently used in Section 3.4 to define the attribute-
based data model and query language.

We assume the existence of a finite alphabet Σ. A word is a finite non-empty
sequence of letters from Σ. We also assume the existence of an infinite set of
words called the vocabulary and denoted by V .

Definition 1 A text value s of length n over vocabulary V is a total function
s : {1, 2, . . . , n} → V.

In other words, a text value s is a finite sequence of words from the assumed
vocabulary and s(i) gives the i-th element of s. Text values can be used to
represent finite-length strings consisting of words separated by blanks. The length
of a text value s (i.e., its number of words) will be denoted by |s|.

Example 1 In all the examples of this chapter, our vocabulary will be the vocab-
ulary of the English language and will be denoted by E. The string

my holiday in Milos

can be represented by a text value s of length 4 over vocabulary E with s(1) =
my, s(2) = holiday etc. The text value “in Milos” is included in s.

We now give the definition of word-pattern. The definition is given recursively
in three stages.

Definition 2 Let V be a vocabulary. A proximity-free word pattern over vocab-
ulary V is an expression in any of the following forms:

1. w where w is a word in the vocabulary V.

2. ¬wp where wp is a proximity-free word pattern.

3. wp1 ∧ wp2 where wp1, wp2 are proximity-free word patterns.

4. wp1 ∨ wp2 where wp1, wp2 are proximity-free word patterns.

5. (wp) where wp is a proximity-free word pattern.

39

A proximity-free word pattern will be called positive if it does not contain the
negation operator.

Example 2 The following are proximity-free word patterns that might appear in
queries of a user of a news dissemination system interested in articles on holidays:

holiday, holiday ∧ hotel ∧ beach,

holiday ∧ Athens ∧ hotel ∧ ¬Hilton, holiday ∧ (beach ∨mountains)

Word patterns made of words and the Boolean operators ∧,∨ and ¬ should be un-
derstood as in traditional IR systems and modern search engines. These systems
typically have a version of negation in the form of binary operator AND-NOT
which is essentially set difference thus safe (in the database sense of the term
[3]). For example, a search engine query wp1 AND-NOT wp2 will return the
set of documents that satisfy wp1 minus these that satisfy wp2. In our informa-
tion dissemination setting, there is no problem considering an “unsafe” version of
negation since word patterns are checked for satisfaction against a single incom-
ing document. Note that the previous work of [28] has not considered negation
in its word pattern language (but has considered negation in the query language
which supports attributes; see Section 3.4).

We now introduce a new class of word patterns that allows us to capture
the concepts of order and distance between words in a text document. We will
assume the existence of a set of (distance) intervals I defined as follows:

I = {[l, u] : l, u ∈ N, l ≥ 0 and l ≤ u} ∪ {[l,∞) : l ∈ N and l ≥ 0}

The symbols ∈ and ⊆ will be used to denote membership and inclusion in an
interval as usual.

The following definition uses intervals to impose lower and upper bounds on
distances between word patterns.

Definition 3 Let V be a vocabulary. A proximity word pattern over vocabulary
V is an expression

wp1 ≺i1 wp2 ≺i2 · · · ≺in−1
wpn

where wp1, wp2, . . . , wpn are positive proximity-free word patterns over V and
i1, i2, . . . , in−1 are intervals from the set I. The symbols ≺i where i ∈ I are called
proximity operators. The number of proximity-free word patterns in a proximity
word pattern (i.e., n above) is called its size.

Example 3 The following are proximity word patterns:

Holiday ≺[0,0] Inn, The ≺[0,0] Mini ≺[0,0] Palace ≺[0,0] Hotel,

luxurious ≺[0,3] hotel, luxurious ≺[0,3] (hotel ∨ apartment),

holiday ≺[0,10] beach ≺[0,10] (clean ∧ sandy), hotel ≺[0,∞) view

40

The proximity word pattern wp1 ≺[l,u] wp2 stands for “word pattern wp1

is before wp2 and is separated by wp2 by at least l and at most u words”. In
the above example luxurious ≺[0,3] hotel denotes that the word “hotel” appears
before word “luxurious” and at a distance of at least 0 and at most 3 words. The
word patternHoliday ≺[0,0] Inn denotes that the word “Holiday” appears exactly
before word “Inn” so this is a way to encode the string “Holiday Inn”. We can
also have arbitrarily long sequences of proximity operators with similar meaning
(see the examples above). Note that proximity-free subformulas in proximity
word-patterns can be more complex than just simple words (but negation is not
allowed; this restriction will be explained below). This makes proximity-word
patterns a very expressive notation.

Traditional IR systems have proximity operators kW and kN where k is a
natural number. The proximity word pattern wp1 kW wp2 stands for “word
pattern wp1 is before wp2 and is separated by wp2 by at most k words”. In our
work this can be captured by wp1 ≺[0,k] wp2. The operator kN is used to denote
distance of at most k words where the order of the involved patterns does not
matter. In our framework the expression wp1 kN wp2 can be approximated by
wp1 ≺[0,k] wp2 ∨ wp2 ≺[0,k] wp1 as in [28].1 In addition to the above operators,
our framework allows the expression of simple order constraints between words
using operators ≺[0,∞]. This feature does not appear to be useful immediately,
but it is required if we want to be able to express some word patterns that are
logically entailed (see Section 3.2). Order constraints of the form ≺[0,∞] between
various text structures are also present in more advanced text model proposals
such as the model of proximal nodes of [98].

Note that proximity operators are very useful and have been popular with
sophisticated users of search engines. However, only limited forms of them are in
use in current popular search engines (e.g., Altavista’s operator NEAR means
word-distance 10, Lycos’ operator NEAR means word-distance 25, Infoseek used
to have a more sophisticated facility but not any more2). Proximity operators
have also been implemented in other systems such as freeWAIS3 [104] and IN-
QUERY [18]. There are also advanced IR models such as the model of proximal
nodes [98] with proximity operators between arbitrary structural components of a
document (e.g., paragraphs or sections). Query languages for XML will probably
be the next place to see proximity operators (the recent work [146] contains such
an example).

Definition 4 Let V be a vocabulary. A word pattern over vocabulary V is an
expression in any of the following categories:

1[28] (page 23) gives an example that demonstrates why these two expressions are not
equivalent given the meaning of operator kN . The example involves a text value and word
patterns with overlapping positions in that text value hence the difference.

2www.searchlores.org
3http://ls6-www.informatik.uni-dortmund.de/ir/projects/freeWAIS-sf/

41

1. a proximity-free word pattern over V

2. a proximity word pattern over V

3. wp1 ∧ wp2 where wp1, wp2 are word patterns.

4. wp1 ∨ wp2 where wp1, wp2 are word patterns.

5. (wp) where wp is a word pattern.

A word pattern will be called positive if its proximity-free subformulas are positive.

Example 4 The following are word patterns of the most general kind we allow:

holiday ∧ (hotel ≺[0,10] (cheap ∧ clean)),

holiday ∧ (luxurious ≺[0,0] hotel) ∧ ¬Hilton,

holiday ∧ (luxurious ≺[0,0] hotel) ∧ (Holiday ≺[0,0] Inn),

V iterbo ∧((Dolce ≺[0,0] V ita ≺[0,0] Hotel) ∨ (The ≺[0,0] Mini ≺[0,0] Palace ≺[0,0] Hotel)),

holiday ∧ (luxurious ≺[0,0] hotel ≺[0,5] beach)

We have here completed the definition of the concept of word pattern. We
now turn to defining their semantics.

3.2 Semantics

We now give meaning to the expressions that define word patterns. First, we
define what it means for a text value to satisfy a proximity-free word pattern.

Definition 5 Let V be a vocabulary, s a text value over V and wp a proximity-
free word pattern over V. The concept of s satisfying wp (denoted by s |=P wp)
is defined as follows:

1. If wp is a word of V then s |= wp iff there exists p ∈ {1, . . . , |s|} and
s(p) = wp.

2. If wp is of the form ¬wp1 then s |= wp iff s 6|= wp1.

3. If wp is of the form wp1 ∧ wp2 then s |= wp iff s |= wp1 and s |= wp2.

4. If wp is of the form wp1 ∨ wp2 then s |= wp iff s |= wp1 or s |= wp2.

5. If wp is of the form (wp1) then s |= wp iff s |= wp1.

The above definition mirrors the definition of satisfaction for Boolean logic [102].
This will allow us to draw on a lot of related results in the rest of this chapter.

42

Example 5 Let s be the following text value:

During our holiday in Milos we stayed in a luxurious hotel by the beach

Then s |= holiday ∧Milos.

The following definition captures the notion of a set of positions in a text value
containing exactly the words that contribute to the satisfaction of a proximity-
free word pattern. This notion is then used to define satisfaction of proximity
word patterns.

Definition 6 Let V be a vocabulary, s a text value over V, wp a proximity-free
word pattern over V, and P a subset of {1, . . . , |s|}. The concept of s satisfying
wp with set of positions P (denoted by s |=P wp) is defined as follows:

1. If wp is a word of V then s |=P wp iff there exists x ∈ {1, . . . , |s|} such that
P = {x} and s(x) = wp.

2. If wp is of the form wp1∧wp2 then s |=P wp iff there exist sets of positions
P1, P2 ⊆ {1, . . . , |s|} such that s |=P1

wp1, s |=P2
wp2 and P = P1 ∪ P2.

3. If wp is of the form wp1 ∨ wp2 then s |=P wp iff s |=P wp1 or s |=P wp2.

4. If wp is of the form (wp1) then s |=P wp iff s |=P wp1.

Now we define what it means for a text value to satisfy a proximity word
pattern.

Definition 7 Let V be a vocabulary, s a text value over V and wp a proximity
word pattern over V of the form

wp1 ≺i1 wp2 ≺i2 · · · ≺in−1
wpn.

Then s |= wp iff there exist sets P1, P2, . . . , Pn ⊆ {1, . . . , |s|} such that s |=Pj
wpj

and min(Pj)−max(Pj−1)− 1 ∈ ij−1 for all j = 2, . . . , n (the operators max and
min have the obvious meaning).

Example 6 The text value

During our holiday in Milos we stayed in a luxurious hotel by the beach

satisfies the following word patterns:

luxurious ≺[0,0] hotel ≺[0,5] beach, luxurious ≺[0,0] (hotel∨apartment) ≺[0,5] beach,

(holiday ∧Milos) ≺[0,10] luxurious ≺[0,0] hotel

The sets of positions required by the definition are for the first and second word
pattern {10}, {11} and {14}, and for the third one {3, 5}, {10} and {11}.

43

If the structure of wp falls under the four cases of our most general definition
(Definition 4), satisfaction is similarly defined in a recursive way as in Definition
5 (for Cases 1, 3 and 4) and Definition 7 (for Case 2).

Example 7 The text value

During our holiday in Milos we stayed in a luxurious hotel by the beach

satisfies word pattern holiday ∧ (luxurious ≺[0,0] hotel ≺[0,5] beach).

We have here completed the definition of the concept of satisfaction of a word
pattern by a text value. Let us now compare our development with the approach
of Chang and colleagues presented in papers [27, 28, 26]. To the best of our
knowledge, these papers contain the only comprehensive treatment of proxim-
ity word patterns that exists in the literature. The development of proximity
word patterns in [27, 28, 26] follows closely the IR tradition i.e., operators kW
and kN (already mentioned above) are used together with the boolean opera-
tors AND and OR. These operators can be intermixed in arbitrary ways (e.g.,
((w1 AND (w2 (8W) w3)) (10W) w4) where w1, w2, w3, w4 are words is a legal
expression), and the result of their evaluation on document databases is defined
in an algebraic way (page 9 of [28]). We have opted for an approach which is
more in the spirit of Boolean logic, allows negation and carefully distinguishes
word patterns with and without proximity operators. Thus operators cannot be
mixed in arbitrary ways but only as prescribed by Definition 4. This leads to a
simpler language because cumbersome (and not especially useful) constructions
such as the above are avoided. In the spirit of Boolean logic, a word pattern
allows us to distinguish between text values: these that satisfy it, and these that
do not. The presence of a word w in some word pattern means “word w is in the
text value that satisfies it”. Boolean operators are then given the usual semantics
as in Boolean logic. Proximity operators are given semantics separately as we
have done above. Negation is not allowed to appear inside proximity formulas
because it does not seem to offer us any useful capabilities in terms of expressing
interesting queries.

We now continue our development with the concept of satisfiable word pat-
terns.

Definition 8 A word pattern wp is called satisfiable if there is a text value s that
satisfies it. Otherwise it is called unsatisfiable.

Example 8 The following word patterns are satisfiable:

holiday ∧ hotel, holiday ∨ vacation, Holiday ≺[0,0] Inn

The following word patterns are unsatisfiable:

holiday ∧ ¬holiday, (nice ≺[0,0] holiday) ∧ ¬holiday

44

Definition 9 Let wp1 and wp2 be word patterns. We will say that wp1 entails
wp2 (denoted by wp1 |= wp2) iff for every text value s such that s |= wp1, we have
s |= wp2. If wp1 |= wp2, we also say that wp2 subsumes wp1. If wp1 |= wp2 and
wp2 |= wp1 then wp1 and wp2 are called equivalent (denoted by wp1 ≡ wp2).

Example 9 The word pattern holiday∧hotel entails holiday. The word pattern
holiday ∧ (luxurious ≺[0,0] hotel ≺[0,5] beach) entails the word pattern holiday ∧
(hotel ≺[0,10] beach) ∧ luxurious. The word pattern vacation subsumes the word
pattern sun ∧ vacation ∧ beach. Similarly, vacation ∨ cruise subsumes cruise.
The word pattern vacation ∧ (beach ∨ mountains) is equivalent to (vacation ∧
beach) ∨ (vacation ∧mountains).

The notions of entailment, subsumption and equivalence defined above natu-
rally correspond to standard notions of Boolean logic. If we consider word pat-
terns to be queries, we also have a natural correspondence with the same notions
of relational database theory [25, 67]. In the case of proximity-free word patterns
the correspondence with Boolean logic is exact, thus the only new feature in our
enquiry is the presence of proximity word patterns. Subsumption and minimal
subsuming queries involving proximity word patterns have also been studied in
[28]. Our work differs from [28] in the following ways: (i) we deal with proximity
in a slightly different way (our proximity operators are more general and we do
not mix proximity and boolean operators in arbitrary ways), and (ii) the problem
in [28] is one of integration thus capabilities of data sources have to be taken into
account in relevant definitions. However, many of the results of [28] are important
to us and appropriate credits will be given in the rest of the chapter.

Let us close this section by discussing why negation is not allowed to apply
to proximity word patterns (Definition 4). If negation is allowed, we should not
expect that the resulting formula could always be rewritten equivalently into one
where negation is moved somehow inwards as in the case of Boolean logic. The
interested reader can be persuaded by trying to do this for the following formula
(which illegal in our model):

¬(luxurious ≺[0,3] hotel ≺[0,3] beach)

If we restrict our attention to proximity formulas with a single proximity operator,
this restriction can easily be lifted. The word pattern ¬(luxurious ≺[0,3] hotel)
is equivalent to

¬luxurious ∨ ¬hotel ∨ (hotel ≺[0,∞] luxurious) ∨ (luxurious ≺[4,∞] hotel).

3.3 Some Properties of Satisfaction and Entail-

ment

In this section we present some results that are easy to show and give some
important facts about the semantic notions introduced in Section 3.2. These

45

results are fundamental for any system of information dissemination based on
the data model we develop here.

Proposition 1 Let wp1 and wp2 be word patterns and wp2 is proximity-free.
wp1 |= wp2 iff wp1 ∧ ¬wp2 is unsatisfiable.

The above proposition gives the usual relation between entailment and unsatisfi-
ability of Boolean logic as it should be stated in our framework. Note that wp2

is required to be proximity-free so that the negation operator can be applied.
The next proposition allows us to compute proximity-free word patterns en-

tailed by a given proximity word pattern. A similar result is stated in [28] for
the case of IR operator kW .

Proposition 2 Let wp0, wp1, wp2, . . . , wpn be proximity-free word patterns. If
∨n

k=1wpk |= wp0 then

wp1 ≺i1 wp2 ≺i2 · · · ≺in−1
wpn |= wp0

Example 10 From the above proposition we have that luxurious ≺[0,0] hotel

entails hotel. Also, hotel ≺[0,20] (view ∧ sunset) entails view ∨ cliff .

The next three propositions allows us to compute proximity word patterns
entailed by a given proximity word pattern. The first one enables us to com-
pute an entailed word pattern by eliminating the first or the last proximity-free
subformula in a given proximity word pattern.

Proposition 3 Let wp1, wp2, . . . , wpn−1, wpn be proximity-free word patterns, and
wp the proximity word pattern

wp1 ≺i1 wp2 ≺i2 · · · ≺in−2
wpn−1 ≺in−1

wpn.

Then wp entails
wp2 ≺i2 · · · ≺in−2

wpn−1 ≺in−1
wpn

and
wp1 ≺i1 wp2 ≺i2 · · · ≺in−2

wpn−1.

Example 11 Let wp be

luxurious ≺[0,0] hotel ≺[2,5] (sandy ∧ clean) ≺[0,0] beach.

Then wp entails

hotel ≺[2,5] (sandy ∧ clean) ≺[0,0] beach

and
luxurious ≺[0,0] hotel ≺[2,5] (sandy ∧ clean).

46

The next proposition enables us to compute an entailed word pattern by
eliminating any proximity-free subformula other than the first or the last in a
proximity word pattern. In this case, a new proximity operator must be computed
for the resulting formula.

Proposition 4 Let wp1, wp2, . . . , wpk−1, wpk, wpk+1, . . . , wpn be proximity-free word
patterns, and wp the proximity word pattern

wp1 ≺i1 wp2 ≺i2 · · · ≺ik−2
wpk−1 ≺ik−1

wpk ≺ik wpk+1 ≺ik+1
· · · ≺in−1

wpn

where wpk is a word or a conjunction of words. If n > 1 and 2 ≤ k ≤ n− 1 then
wp entails

wp1 ≺i1 wp2 ≺i2 · · · ≺ik−2
wpk−1 ≺i′ wpk+1 ≺ik+1

· · · ≺in−1
wpn

where i′ is an interval defined as follows. Let ik−1 be [lk−1, uk−1] and ik be [lk, uk].
If wpk ≡ w where w is a word then i′ = [lk−1 + lk + 1, uk−1 + uk + 1]. Otherwise,
wpk ≡ w1 ∧ · · · ∧ wm where m > 1 and w1, . . . , wm are distinct words and i′ =
[lk−1 + lk +m,∞). Interval i′ is defined similarly if the right endpoint of ik−1 or
ik is ∞.

Example 12 Let wp be

luxurious ≺[0,0] hotel ≺[2,5] (sandy ∧ clean) ≺[0,0] beach.

Then wp entails

luxurious ≺[3,6] (sandy ∧ clean) ≺[0,0] beach

and
luxurious ≺[0,0] hotel ≺[4,∞) beach.

The new proximity operator in the above word pattern is ≺[4,∞) because we cannot
put an upper bound on the number of words between s(min(P3)) and s(max(P3))
for any text value s such that s |=P3

sandy ∧ clean (see Definition 7).

It is interesting to point out that a result similar to the one stated in Propo-
sition 4, is not included in [28] for the case of the IR operator kW although it
seems to be natural. For example, the word pattern

luxurious ≺[0,0] (small ∧ hotel) ≺[0,5] beach

can be expressed by

luxurious (0W) (small ∧ hotel) (5W) beach

in the framework of [28], and it entails word pattern luxurious ≺[2,∞) beach.
But this entailed word pattern cannot be expressed in the language of [28], thus
the class of proximity word patterns studied there is not closed with respect to
entailment.

The next proposition allows us to compute an entailed formula by weakening
a proximity constraint.

47

Proposition 5 Let wp1, wp2, . . . , wpk, wpk+1, . . . , wpn be proximity-free word pat-
terns, and wp the proximity word pattern

wp1 ≺i1 wp2 ≺i2 · · · ≺ik−1
wpk ≺ik wpk+1 ≺ik+1

· · · ≺in−1
wpn.

If k ∈ N and 1 ≤ k ≤ n− 1 then wp entails

wp1 ≺i1 wp2 ≺i2 · · · ≺ik−1
wpk ≺i′ wpk+1 ≺ik+1

· · · ≺in−1
wpn

for every interval i′ such that i ⊆ i′.

Example 13 Let wp be

luxurious ≺[0,0] hotel ≺[2,5] (sandy ∧ clean) ≺[0,0] beach.

Then wp entails

luxurious ≺[0,5] hotel ≺[2,5] (sandy ∧ clean) ≺[0,0] beach.

The usual laws for equivalent Boolean expressions with connectives ¬,∧ and
∨ hold for the case of proximity-free word patterns (commutativity, associativity
etc. – see Proposition 4.1 in [102]). The following equivalence which is easy to
show states that proximity operators distribute over ∨. However, proximity oper-
ators do not distribute over ∧ i.e., (luxurious∧hotel) ≺[2,2] wp3 is not equivalent
to

(luxurious ≺[2,2] beach) ∧ (hotel ≺[2,2] beach)

because there is a text value (e.g., “a luxurious hotel on the beach”) that satisfies
the former but not the latter formula [28].

Proposition 6 Let wp1, . . . , wpk, . . . , wpn be proximity-free word patterns, and
wp the proximity word pattern

wp1 ≺i1 · · · ≺ik−1
wpk ≺ik · · · ≺in−1

wpn.

If word pattern wpk is of the form φ ∨ ψ then wp is equivalent to

(wp1 ≺i1 · · · ≺ik−1
φ ≺ik · · · ≺in−1

wpn)

∨

(wp1 ≺i1 · · · ≺ik−1
ψ ≺ik · · · ≺in−1

wpn).

For the case of IR operators kW and kN , the above law was recently presented
in [28]. The curious reader can also see the rather archaic [93] (credited with the
proximity laws in [28]) for related discussion that took place a long time ago.

48

Example 14 The word pattern

luxurious ≺[0,0] (hotel ∨ bungalow) ≺[2,10] beach

is equivalent to

(luxurious ≺[0,0] hotel ≺[2,10] beach) ∨ (luxurious ≺[0,0] bungalow ≺[2,10] beach).

Proposition 7 Let wp1, . . . , wpk, . . . , wpn be proximity-free word patterns, and
wp the proximity word pattern

wp1 ≺i1 · · · ≺ik−1
wpk ≺ik · · · ≺in−1

wpn.

If word pattern wpk is of the form w1∧· · ·∧wm where w1, . . . , wm are words then
wp is equivalent to

∨

(l1,...,lm) is a permutation of (w1,...,wm)

l1 ≺[0,∞) · · · ≺[0,∞) lm.

Example 15 The word pattern

(clean ∧ cheap) ≺[0,5] hotel ≺[2,5] beach

is equivalent to

clean ≺[0,∞) cheap ≺[0,5] hotel ≺[2,5] beach

∨

cheap ≺[0,∞) clean ≺[0,5] hotel ≺[2,5] beach.

3.3.1 Normal Forms

We now define the concepts of atomic word patterns, conjunctive/disjunctive
word patterns, and the conjunctive/disjunctive normal forms.

Definition 10 A word pattern is called atomic if it is a word, a negated word
or a proximity word pattern w1 ≺i1 · · · ≺in−1

wn where w1, . . . , wn are words. A
word pattern is called conjunctive (resp. disjunctive) if it is a conjunction (resp.
disjunction) of atomic word patterns. A word pattern is in conjunctive normal
form (CNF) (resp. disjunctive normal form (DNF)) if it is a conjunction (resp.
disjunction) of disjunctive (resp. conjunctive) word patterns.

The following easy proposition can be proved by induction on the structure
of a word pattern given the laws discussed above.

Proposition 8 Every word pattern is equivalent to a word pattern in CNF and
a word pattern in DNF.

For the case of IR operators kW and kN , the above proposition has been stated
in [28].

49

3.4 An Attribute-Based Data Model and Query

Language

Now that we have studied text values and word patterns in great detail, we are
ready to define our second data model and query language. This data model for
text documents is based on attributes or fields with finite-length strings as values.
Attributes are used to encode information such as author, title, date, body of
text and so on. This simple data model is restrictive since it offers a rather flat
view of a text document, but it has wide applicability as we will show below.

We start our formal development by defining the concepts of document schema
and document. Throughout the rest of this chapter we assume the existence of a
countably infinite set of attributes U called the attribute universe.

Definition 11 A document schema D is a pair (A,V) where A is a subset of
the attribute universe U and V is a vocabulary.

Example 16 An example of a document schema for a news dissemination ap-
plication is D = ({SENDER, EMAIL, BODY }, E).

Definition 12 Let D be a document schema. A document d over schema (A,V)
is a set of attribute-value pairs (A, s) where A ∈ A, s is a text value over V, and
there is at most one pair (A, s) for each attribute A ∈ A.

Example 17 The following is a document over the schema of Example 16:

{ (SENDER, “Manolis Koubarakis”), (EMAIL, “manolis@ced.tuc.gr”),

(BODY, “During our holiday in Milos we stayed in a wonderful hotel by the beach”) }

Before we proceed, it is instructive to compare our text document data model
with other models available in the literature. Simple text data models like ours
have been popular with database researchers for some time due to their obvious
connections to the relational data model [10, 95]. The model of this section
is essentially the model of [27, 28, 26] with a different class of proximity word
patterns as explained in Section 3.2. The database community has now moved to
semi-structured XML-based models for the representation of textual information
[2] and our work can naturally be extended to follow this important research
avenue.

The model of this section appears to be rather simple in comparison with
traditional relational or object-oriented models as they could have been used for
storing textual data [95]. However our model is not as rigid as the relational
or object-oriented data model so it enables a useful form of heterogeneity in
the limited structure allowed. In this respect, our model is similar to recently
proposed network directory models [64] although it does not contain a notion

50

of class or hierarchy and all attributes have the same type. In fact, one could
imagine extending network directory data models (such as the one in [64]) to
allow for a text data type, and also extend the relevant query languages (such as
the language L0 of [64]) to have the boolean and proximity operators discussed
in Section 3.1.

As it has been first discussed in [28], simple attribute-value data models like
ours have also been popular with commercial information retrieval services (e.g.,
Dialog4 or Lexis-Nexis5), digital library protocols (e.g., Z39.506), resource discov-
ery systems [89], and metadata standardisation activities for digital collections
(e.g., Dublin Core7). The results of this work will be useful to any of these systems
if an information integration and dissemination service like the one discussed in
the application scenario of Section 2.1 is developed.

Our document model and query language is also related to the data model
for news group warehouses recently proposed in [61]. This is rather reasonable
given that news dissemination is one of the motivating applications of our work.
The query language presented in [61] allows selection of news articles based on
conditions involving = and w operators like we do in our work. Also, the news-
group maintenance problem as defined in [61] can be rephrased in our framework
as the problem of finding which posted profiles are satisfied by a document that
has just arrived.

The syntax of our query language is given by the following recursive definition.

Definition 13 Let D = (A,V) be a document schema. A query over D is a
formula in any of the following forms:

1. A w wp where A ∈ A and wp is a positive word pattern over V. The
formula A w wp can be read as “A contains word pattern wp”.

2. A = s where A ∈ A and s is a text value over V.

3. ¬φ where φ is a query containing no proximity word patterns.

4. φ1 ∨ φ2 where φ1 and φ2 are queries.

5. φ1 ∧ φ2 where φ1 and φ2 are queries.

Example 18 The following are queries over the schema of Example 16:

SENDER w (John ≺[0,2] Smith),

(BODY w (Milos ∧ (hotel ≺[0,5] beach))) ∧ ¬SENDER = “John Smith”

4www.dialog.com
5www.lexis-nexis.com
6http://www.niso.org/standard.html
7www.dublincore.org

51

3.4.1 Semantics

Let us now define the semantics of the above query language in our dissemination
setting. We start by defining when a document satisfies a query.

Definition 14 Let D be a document schema, d a document over D and φ a
query over D. The concept of document d satisfying query φ (denoted by d |= φ)
is defined as follows:

1. If φ is of the form A w wp then d |= φ iff there exists a pair (A, s) ∈ d and
s |= wp.

2. If φ is of the form A = s then d |= φ iff there exists a pair (A, s) ∈ d.

3. If φ is of the form ¬φ1 then d |= φ iff d 6|= φ1.

4. If φ is of the form φ1 ∧ φ2 then d |= φ iff d |= φ1 and d |= φ2.

5. If φ is of the form φ1 ∨ φ2 then d |= φ iff d |= φ1 or d |= φ2.

Example 19 The first query of Example 18 is not satisfied by the document of
Example 17 while the second one is satisfied.

We now define the concepts of query satisfiability, entailment and equivalence.

Definition 15 Let φ be a query over schema D. If there is a document d over
D such that d |= φ then φ is called satisfiable otherwise it is called unsatisfiable.

Example 20 The queries

SENDER = “Jones” ∧ SENDER = “King”,

SENDER w Jones ∧ ¬SENDER w Jones,

SENDER = “Michael Jones” ∧ ¬SENDER w Jones

are unsatisfiable.

Definition 16 Let φ1 and φ2 be queries over schema D. Then φ1 entails φ2

(denoted by φ1 |= φ2) iff every document d over D that satisfies φ1 also satisfies
φ2. If φ1 entails φ2 then we also say that φ2 subsumes φ1. We will say that φ1 is
equivalent to φ2 (denoted by φ1 ≡ φ2) iff φ1 entails φ2 and vice versa.

Example 21 The query

(BODY wMilos)∧(BODY wMilos∧(hotel ≺[0,3] beach))∧¬SENDER = “John Smith”

is equivalent to

(BODY wMilos ∧ (hotel ≺[0,5] beach)) ∧ ¬SENDER = “John Smith”.

The latter query entails (equivalently: is subsumed by) BODY wMilos.

52

We now define the concepts of atomic queries, conjunctive/disjunctive queries,
and conjunctive/disjunctive normal forms.

Definition 17 A query is called atomic if it is in one of the following forms:
A = s,¬A = s, A w w,¬A w w or A w wp where s is a text value, w is a word
and wp is an atomic proximity word pattern. A query is called conjunctive (resp.
disjunctive) if it is a conjunction (resp. disjunction) of atomic queries. A query
is in conjunctive normal form (CNF) (resp. disjunctive normal form (DNF)) if
it is a conjunction (resp. disjunction) of disjunctive (resp. conjunctive) queries.

The following proposition is easy to see.

Proposition 9 Let A be an attribute and wp1, wp2 be word patterns. Then the
following equivalences hold:

1. A w (wp1 ∧ wp2) ≡ (A w wp1) ∧ (A w wp2)

2. A w (wp1 ∨ wp2) ≡ (A w wp1) ∨ (A w wp2)

3. ¬(A w (wp1 ∧ wp2)) ≡ (¬A w wp1) ∨ (¬A w wp2)

4. ¬(A w (wp1 ∨ wp2)) ≡ (¬A w wp1) ∧ (¬A w wp2)

In Cases 3 and 4, wp1 and wp2 are assumed not to contain proximity operators.

From Proposition 8 and 9, we now have the following result which closes this
chapter.

Proposition 10 Every query is equivalent to a query in DNF and a query in
CNF.

3.5 Extending AWP with Similarity

Let us now define our third data model AWPS and its query language. AWPS
extendsAWP with the concept of similarity between two text values (the letter S
stands for similarity). The idea here is to have a “soft” alternative to the “hard”
operator w. This operator is very useful for queries such as “I am interested in
documents sent by John Brown” which can be written in AWP as

SENDER w (John ≺[0,0] Brown)

but it might not be very useful for queries “I am interested in documents about
the use of ideas from agent research in the area of information dissemination”.

The desired functionality can be achieved by resorting to an important tool of
modern IR: the weight of a word as defined in the Vector Space Model (VSM) [10,
91, 141]. In VSM, documents (text values in our terminology) are conceptually

53

represented as vectors. If our vocabulary consists of n distinct words then a text
value s is represented as an n-dimensional vector of the form (ω1, . . . , ωn) where
ωi is the weight of the i-th word (the weight assigned to a non-existent word is
0). With a good weighting scheme, the VSM representation of a document can
be a surprisingly good model of its semantic content in the sense that “similar”
documents have very close semantic content. This has been demonstrated by
many successful IR systems recently (see for example, WHIRL [34]). 8

In VSM, the weight of a word is computed using the heuristic of assigning
higher weights to words that are frequent in a document and infrequent in the
collection of documents available. This heuristic is made concrete using the
concepts of word frequency and the inverse document frequency defined below.

Definition 18 Let wi be a word in document dj of a collection C. The term
frequency of wi in dj (denoted by tfij) is equal to the number of occurrences of
word wi in dj. The document frequency of word wi in the collection C (denoted
by dfi) is equal to the number of documents in C that contain wi. The inverse
document frequency of wi is then given by idfi =

1
dfi
. Finally, the number tfij ·idfi

will be called the weight of word wi in document dj and will be denoted by ωij.

At this point we should stress that the concept of inverse document frequency
assumes that there is a collection of documents which is used in the calculation.
In our dissemination scenario we assume that for each attribute A there is a
collection of text values CA that is used for calculating the idf values to be used
in similarity computations involving attribute A (the details are given below).
CA can be a collection of recently processed text values as suggested in [145].

We are now ready to define the main new concept in AWPS, the similarity
of two text values. The similarity of two text values sq and sd is defined as the
cosine of the angle formed by their corresponding vectors:9

sim(sq, sd) =
sq · sd

‖sq‖ · ‖sd‖
=

∑N

i=1wqi
· wdi

√

∑N

i=1 w
2
qi
·
∑N

i=1w
2
di

(3.1)

By this definition, similarity values are real numbers in the interval [0, 1].
Let us now proceed to give the syntax of the query language for AWPS.

Since AWPS extends AWP , a query in the new model is given by Definition
3.4 with one more case for atomic queries:

8Note that in the VSM model and systems adopting it (e.g., WHIRL [34]) word stems,
produced by some stemming algorithm [108], are forming the vocabulary instead of words. Ad-
ditionally, stopwords (e.g., “the”) are eliminated from the vocabulary. These important details
have no consequence for the theoretical results of this chapter, but it should be understood
that our current implementation of the ideas of this section utilizes these standard techniques.

9The IR literature gives us several very closely related ways to define the notions of weight
and similarity [10, 91, 141]. All of these weighting schemes come by the name of tf ·idf weighting
schemes. Generally a weighting scheme is called tf · idf whenever it uses word frequency in a
monotonically increasing way, and document frequency in a monotonically decreasing way.

54

• A ∼k s where A ∈ A, s is a text value over V and k is a real number in the
interval [0, 1].

Example 22 The following are some queries in AWPS using the schema of
Example 17:

BODY ∼0.6 “Milos is the ideal place for holidays by the beach”,
(SENDER w (John ≺[0,2] Brown))∧

(TITLE ∼0.9 “Hotels and resorts in Greece”),
BODY ∼0.9 “Stock options during Easter holidays”

We now give the semantics of our query language, by defining when a docu-
ment satisfies a query. Naturally, the definition of satisfaction in AWPS is as in
Definition 14 with one additional case for the similarity operator:

• If φ is of the form A ∼k sq then d |= φ iff there exists a pair (A, sd) ∈ d

and sim(sq, sd) ≥ k.

The reader should notice that the number k in a similarity predicate A ∼k s

gives a relevance threshold that candidate text values s should exceed in order
to satisfy the predicate. This notion of relevance threshold was first proposed in
an information dissemination setting by [50] and later on adopted by [145]. The
reader is asked to contrast this situation with the typical information retrieval
setting where a ranked list of documents is returned as an answer to a user query.
This is not a relevant scenario in an information dissemination system because
very few documents (or even a single one) enter the system at a time, and need
to be forwarded to interested users.

A low similarity threshold in a predicate A ∼k s might result in many irrel-
evant documents satisfying a query, whereas a high similarity threshold would
result in very few achieving satisfaction (or even no documents at all). In an
implementation of our ideas, users can start with a certain relevance threshold
and then update it using relevance feedback techniques to achieve a better sat-
isfaction of their information needs. Recent techniques from adaptive IR can be
utilised here [23].

Example 23 The first query of Example 22 is likely to be satisfied by the doc-
ument of Example 17 (of course, we cannot say for sure until the exact weights
are calculated in the manner suggested above). The second query is not satis-
fied, since attribute TITLE does not exist in the document. Moreover the third
query is unlikely to be satisfied since the only common word between the query
and Example 17 is the word “holiday”.

55

3.6 Conclusions

In this chapter we concentrated on data models and query languages for textual
information dissemination. We concentrated on defining the syntax and semantics
of three progressively more extensive models and languages, namelyWP , AWP ,
AWPS.

Data model WP is based on free text and its corresponding query language
on the boolean model with proximity operators. Moreover data model AWP is
based on attributes with finite-length strings as values.Its query language is an
extension of the query language of data model WP . Finally AWPS extends
AWP by introducing a similarity operator in the style of modern IR. In the next
chapter we define four important reasoning problems that arise when the models
of this section are used for information dissemination scenarios such as the ones
surveyed in Chapter 2 and study their computational complexity.

56

Chapter 4

The Complexity of Information
Dissemination with WP and
AWP

The previous chapter presented the textual information models WP , AWP and
AWPS. In this chapter we study the computational complexity of the following
problems that arise when the models WP and AWP are used in information
dissemination environments:

1. Satisfiability: Given a query q, is it satisfiable?

2. Satisfaction: Given a document d and a query q, does d satisfy q?

3. Filtering: Given a database of long-standing queries db and an incoming
document d, which elements of db satisfy q?

4. Entailment (equivalently, subsumption): Given two queries q1 and q2, is it
the case that q1 entails q2 (equivalently, q2 subsumes q1)?

It should be apparent that finding efficient algorithms for the solution of the
above problems is an important requirement in the development of textual in-
formation dissemination systems. Our results are summarized in the following
table:

Queries WP WP-DNF AWP AWP-DNF
Problem
Satisfaction PTIME PTIME PTIME PTIME
Matching PTIME PTIME PTIME PTIME
Satisfiability NP-complete PTIME NP-complete PTIME
Entailment coNP-complete coNP-complete

57

The notation WP-DNF or AWP-DNF means that we are referring to the
class of queries in WP or AWP that are in DNF form.

From the above table we see that the problems of satisfaction and matching
can always be solved in PTIME for both models of this chapter.

Unfortunately, things do not look as bright for the satisfiability problem: if
one wants a PTIME algorithm for these problems, he has to concentrate on special
classes of queries (for example, queries in DNF form). The remaining sections of
this chapter present our complexity results in more detail. Things are similarly
hard for the subsumption problem.

4.1 The Complexity of Satisfaction and Filter-

ing

In this section we present PTIME upper bounds for the satisfaction problem and
filtering problem in models WP and AWP .

In previous research, [28] have presented a method for evaluating positive
word patterns with proximity operators kW and kN on sets of text values (Fig.
2 of [28]). This method is intended to provide semantics to word patterns, and
nothing is said about the computational complexity of evaluation. In this chapter
we have followed the more formal route of separating the definition of semantics
from the algorithms and complexity of deciding satisfaction.

We start with the satisfaction problem for proximity-free word patterns of the
model WP .

Lemma 1 Let s be a text value and wp a proximity-free word pattern. We can
decide whether s |= wp in O(δ + ρ) time on average where δ is the number of
words and ρ is the number of operators in wp.

Proof: We can easily construct a recursive algorithm that operates on a parse
tree representation of wp and solves the problem. As it is common in IR research
[10], each text value s will be represented by a hash table of size m with hash
function h that maps each word w ∈ V to an element of {0, . . . ,m−1}. Each slot
of the hash table can be a linked list of words that hash to this slot (i.e., collisions
are handled by chaining [35]). We also assume that the computation of the hash
function takes O(1) time, and that the average number of elements stored in each
chain is constant. Then, at each leaf of the parse tree corresponding to a word
w, our algorithm will decide s |= w in O(1) time on average using the hash table
for s. At inner nodes of the parse tree, a single yes/no value will suffice for the
completion of the algorithm.

We now turn to proximity word patterns. We first need the following lemma.

Lemma 2 Let s be a text value and wp a positive proximity-free word pattern.
Function eval-pos-prox-free(wp, s) shown in Figure 4.1 returns a non-empty set

58

function eval-pos-prox-free(wp, s)

if wp is a word of V then

return { [x, x] : s(x) = wp }

else if wp is of the form wp1 ∧ wp2 then

return { [min(l1, l2), max(u1, u2)] : [l1, u1] ∈ eval-pos-prox-free(wp1, s) and

[l2, u2] ∈ eval-pos-prox-free(wp2, s) }

else if wp is of the form wp1 ∨ wp2 then

return { [l, u] : [l, u] ∈ eval-pos-prox-free(wp1, s) ∪ eval-pos-prox-free(wp2, s) }

else if wp is of the form (wp1) then

return eval-pos-prox-free(wp1)

function prox-comp(wp, s)

if wp is a positive proximity-free word pattern then

return eval-pos-prox-free(wp, s)

else

Let wp be wp1 ≺i rest where rest is a proximity word pattern

return { [l1, u1] : [l1, u1] ∈ eval-pos-prox-free(wp1, s) and there exists a position

interval [l2, u2] ∈ prox-comp(rest, s) such that l2− u1− 1 ∈ i }

end

Figure 4.1: Some useful functions for deciding whether s |= wp

of position intervals O iff s |= wp. Additionally, for every set of positions P such
that s |=P wp there exists an interval [l, u] ∈ O such that

P ⊆ [l, u], min(P) = l and max(P) = u.

The set O can be computed in O((δ+ρ) |s|4) time where δ is the number of words
and ρ is the number of operators in wp.

Proof: Let us first prove the “only-if” part of the first statement of the lemma
i.e., if the call eval-pos-prox-free(wp, s) returns a non-empty set then s |= wp.
The proof is by induction on the structure of wp.

Base case: wp is a word w. If the call eval-pos-prox-free(wp, s) returns a
non-empty set, then the first if-statement of the function returns a non-empty
set. In other words, there exists x ∈ {1, . . . , |s|} and s(x) = wp. Thus s |= wp.

Inductive step: Let us first consider the case when wp is of the form wp1∧wp2.
If the call eval-pos-prox-free(wp, s) returns a non-empty set, then both calls
eval-pos-prox-free(wp1, s) and eval-pos-prox-free(wp2, s) return non-empty sets.
The inductive hypothesis then implies that s |= wp1 and s |= wp2. Therefore
s |= wp. The proof is similar for the other two cases of the inductive step.

Let us now consider the“if” part. It is easy to see that the “if” part follows
immediately from the second statement, so let us consider that second statement
instead. The proof is again by induction on the structure of wp.

59

Base case: wp is a word and the lemma follows immediately (see the first if
statement of function eval-pos-prox-free).

Inductive step: Let us first consider the case when wp is of the form wp1∧wp2.
Let P be a set of positions such that s |=P wp. Then Definition 20 implies
that there exist sets of positions P1, P2 ⊆ {1, . . . , |s|} such that s |=P1

wp1,
s |=P2

wp2 and P = P1 ∪ P2. Let O1 and O2 be the sets returned by the
recursive calls eval-pos-prox-free(wp1, s) and eval-pos-prox-free(wp2, s). The
inductive hypothesis now implies that there exist position intervals [l1, u1] ∈ O1

and [l2, u2] ∈ O2 such that

P1 ⊆ [l1, u1], min(P1) = l1 and max(P1) = u1

and
P2 ⊆ [l2, u2], min(P2) = l2 and max(P2) = u2.

It is easy to see now that

P ⊆ [min(l1, l2),max(u1, u2)], min(P) = min(l1, l2) and max(P) = max(u1, u2).

Thus the conclusion of the lemma holds for wp. The proof is similar for the other
two cases of the inductive step.

Let us now calculate the complexity of eval-pos-prox-free assuming that we
represent word pattern wp by a parse tree and text value s by a hash table as in
Lemma 1. Now each slot of the hash table will be a linked list of all pairs (w, x)
where w is a word of s that hashes to this slot and x is a position of w in s. At
each leaf of the parse tree corresponding to a word w, the function calculates the
set of all position intervals [x, x] such that s(x) = w. Each such set is of size O(|s|)
and can be computed in O(|s|) time (under assumptions about hashing similar
to the ones in Lemma 1). At each inner node of the parse tree corresponding to
an operator ∧,∨ or ¬, the sets of position intervals computed by the function are
of size at most O(|s|2) and can be computed in at most O(|s|4) time. Thus, the
set returned finally by eval-pos-prox-free is of size O(|s|2) and is computed in
O((δ + ρ) |s|4) time.

We now use the above lemma to compute an upper bound on the complexity
of satisfaction for proximity word patterns.

Lemma 3 Let s be a text value and wp a proximity word pattern. We can decide
whether s |= wp in O(n(δmax+ρmax) |s|

4) time where n is the number of proximity
free subformulas of wp, δmax is the maximum number of words in a proximity-free
subformula of wp and ρmax is the maximum number of operators in a proximity-
free subformula of wp.

Proof: The recursive function prox-comp shown in Figure 4.1 can be used for
the required computation. Let the input wp be of the form

wp1 ≺i1 · · · ≺in−1
wpn

60

where wp1, wp2, . . . , wpn are positive proximity-free word patterns. Then s satis-
fies wp if and only if prox-comp returns a non-empty set.

prox-comp recursively reaches the last proximity-free word pattern wpn and
with a call to eval-pos-prox-free computes and returns the set of all position
intervals [l, u] that certify satisfaction of wpn. Let us denote this set by O. This
is done by the if-part of the function. Then prox-comp computes all position
intervals [l, u] that certify satisfaction of wpn−1 and keeps only the subset of
these that are in the required distance with some element of O. This subset is
returned so that it can play the role of set O in a similar computation involving
wpn−2. This is done in the else-part of the function. In this way, when we reach
the first proximity-free word pattern wp1, a chain of position intervals has been
established that verifies that s |= wp. If at any point an empty set is returned,
this set is propagated back and obviously s 6|= wp. A formal proof can be easily
done by induction and is omitted.

For the complexity bound notice that according to Lemma 2, each call to
eval-prox-free can be done in O((δmax+ρmax) |s|

4) time and returns a set of size
O(|s|2). Thus the worst-case complexity of prox-comp is O(n(δmax + ρmax) |s|

4).

We can now show that satisfaction can be decided in PTIME for all formulas
in WP .

Theorem 1 Let s be a text value and wp a word pattern. The problem of deciding
whether s |= wp can be solved in O(µnmax(δmax + ρmax) |s|

4) time where µ is the
number of operators ∧ and ∨ in wp, nmax is the maximum number of proximity-
free subformulas in a proximity word pattern of wp, δmax is the maximum number
of words in a proximity-free subformula of wp and ρmax is the maximum number
of operators in a proximity-free subformula of wp.

Proof: Given the functions eval-pos-prox-free and prox-comp of the above
lemmas, it is easy to write a recursive function that decides s |= wp by traversing a
parse tree for wp (as implied by Definition 4). In this case, we do not need to keep
track of sets of position intervals at inner nodes of the parse tree corresponding
to proximity-free word patterns (Case 1 of Definition 4), proximity word patterns
(Case 2 of Definition 4) and operators ∧ and ∨ (Cases 3 and 4 of Definition 4).
In fact, a single yes/no value will suffice. The correctness follows easily by an
inductive argument. The complexity bound also follows easily from the above
lemmas.

We close this section by showing that satisfaction can be decided in PTIME
for all formulas of AWP as well.

Theorem 2 Let d be a document and φ be a query in AWP. Deciding whether
d |= φ can be done in O((E + H)(α + V)MN(∆ + P)2S4) time where E is the
number of atomic subqueries in φ, H is the number of operators in φ, α is the
number of attributes in d, V is the maximum size of a text value appearing in φ,

61

M is the maximum number of operators ∧ and ∨ in a word pattern of φ, N is
the maximum number of proximity-free subformulas in a proximity word pattern
of φ, ∆ is the maximum number of words in a proximity-free subformula of φ, P
is the maximum number of operators in a proximity-free subformula of φ, and S
is the maximum size of a text value appearing in d.

Proof: We assume that φ is represented by a parse tree. We also assume that
d is represented by a linked list of triples (A, s, Ts) where A is an attribute, s is
a text value and Ts is a hash table mapping each word of s to its position in s.
Thus, we have a dual representation for text value s. The former representation
will be used for evaluating queries of the form A = s and the latter for queries
A A wp.

Evaluating a subquery of φ of the form A = v can be done in time O(α+ |v|)
where α is the number of attributes in d and |v| is the size of text value v.

Using Theorem 1, we can see that evaluating a subquery of the form A A wp

can be done in time O(α + nmaxµ(δmax + ρmax) |s|
4) where α is the number of

attributes in d and the rest of the parameters are as in Theorem 1.
Given the above bounds, we can easily decide whether d |= φ by a recursive

algorithm that traverses the parse tree for φ. This algorithm evaluates atomic
subqueries at the leaves while at intermediate nodes (corresponding to operators)
computes a yes/no value. The complexity bound follows easily now.

To solve the filtering problem in models WP and AWP one should solve
|db| satisfaction problems where |db| is the size of the database of long-standing
queries db. Thus the filtering problem can also be solved in PTIME (the exact
upper bounds are omitted because they can be easily computed using Theorems
1 and 2). In practice one would create indices over the database of long-standing
queries db to solve the filtering problem more efficiently [143, 145]. This is the
approach we take in Chapter 5 of this report.

4.2 Satisfiability and Entailment in WP

We now turn our attention to the satisfiability and entailment problems for
queries inWP . Let the satisfiability problem for proximity-free word patterns be
denoted by PFWP-SAT. There is an obvious connection of PFWP-SAT and SAT,
the satisfiability problem for Boolean logic [102]. Any instance of PFWP-SAT
can be considered to be an instance of SAT and vice versa (this is a trivial reduc-
tion where the roles of words and Boolean variables are interchanged). Thus we
only have to consider the complications arising in our framework due to proximity
word patterns.

In what follows, we will need the binary operation of concatenation of two
text values.

62

Definition 19 Let s1 and s2 be text values over vocabulary V. Then the con-
catenation of s1 and s2 is a new text value denoted by s1s2 and defined by the
following:

1. |s1s2| = |s1|+ |s2|

2. s1s2(x) = s1(x) for all x ∈ {1, . . . , |s1|}, and

3. s1s2(x) = s2(x) for all x ∈ {|s1|+ 1, . . . , |s2|+ |s1|}

We will also need the concept of the empty text value which is denoted by ε and
has the property |ε| = 0. The following properties of concatenation are easily
seen:

1. (s1s2)s3 = s1(s2s3), for all text values s1, s2 and s3.

2. sε = εs = s for every text value s.

The associativity of concatenation allows us to write concatenations of more than
two text values without using parentheses.

The following variant of the concept of satisfaction captures the notion of
a set of positions in a text value containing only words that contribute to the
satisfaction of a proximity-free word pattern. This concept is used in the results
that follow.

Definition 20 Let V be a vocabulary, s a text value over V, wp a proximity-free
word pattern over V, and P a subset of {1, . . . , |s|}. The concept of s satisfying
wp with set of positions P (denoted by s |=P wp) is defined as follows:

1. If wp is a word of V then s |=P wp iff there exists x ∈ {1, . . . , |s|} such that
P = {x} and s(x) = wp.

2. If wp is of the form wp1∧wp2 then s |=P wp iff there exist sets of positions
P1, P2 ⊆ {1, . . . , |s|} such that s |=P1

wp1, s |=P2
wp2 and P = P1 ∪ P2.

3. If wp is of the form wp1 ∨ wp2 then s |=P wp iff s |=P wp1 or s |=P wp2.

4. If wp is of the form (wp1) then s |=P wp iff s |=P wp1.

We also need the following notation. Let P be a subset of the set of natural
numbers N, and x ∈ N. We will use the notation P + x to denote the set of
natural numbers {p+ x : p ∈ P}.

The following lemma is now easy to see.

Lemma 4 Let s and s′ be text values, wp a proximity-free word pattern and
P ⊆ {1, . . . , |s|}. If s |=P wp then ss′ |=P wp and s′s |=P+|s′| wp.

63

The following proposition shows that positive proximity-free word patterns
are always satisfiable (its proof can be done by induction on the structure of the
word pattern).

Proposition 11 If wp is a positive proximity-free word pattern then wp is sat-
isfiable. In fact, there exists a text value s0 such that

1. |s0| ≤ words(wp) · ops(wp) where words(wp) is the number of words of wp
(multiple occurrences of the same word are multiply counted) and ops(wp)
is the number of operators of wp (or 1 if wp has no operators).

2. Every word of s0 is a word of wp.

3. s0 |={1,...,|s0|} wp.

We can easily show that proximity word patterns are also always satisfiable.

Proposition 12 Let wp be a proximity word-pattern of the form

w1 ≺i1 · · · ≺in−1
wn.

Then wp is satisfied by a text value s = w1v1 · · · vn−1wn where vk, k = 1, . . . , n−1
are text values of the following form: If begin(ik) > 0 then vk is formed by
begin(ik) successive occurrences of the special word # which is not contained in
wp. Otherwise, vk is the empty text value ε.

Finally, we can show that any positive word pattern is always satisfiable.

Proposition 13 Let wp be a positive word pattern and θ1 ∨ · · · ∨ θk be the DNF
of wp. Then there exists a j ∈ {1, . . . , k}, and text values s0j, s1j, . . . , smj such
that s0js1j · · · smj |= wp and

1. s0j is a sequence of words appearing as conjuncts of disjunct θj, and

2. for i = 1, . . . ,m, sij is a text value such that sij |={1,...,|sij |} φi where
φ1, . . . , φm are all the proximity conjuncts of θj.

The next theorem shows that when negation is introduced, deciding the sat-
isfiability of a word pattern becomes a hard computational problem. But first
we need a lemma that shows that even in the case of arbitrary word patterns,
satisfiability implies satisfaction by a text value of a special form.

Lemma 5 Let wp be a word pattern and θ1 ∨ · · · ∨ θk be the DNF of wp. Then
wp is satisfiable iff there exists j ∈ {1, . . . , k}, and text values s0j, s1j, . . . , smj

such that s0js1j · · · smj |= wp and

1. s0j is a sequence of words appearing non-negated in disjunct θj, and

64

2. for i = 1, . . . ,m, sij is a text value such that sij |={1,...,|sij |} φi where
φ1, . . . , φm are all the proximity conjuncts of θj.

We can now utilize Lemma 5 to show the upper bound in the following result
(the lower bound is easy).

Theorem 3 Let wp be a word pattern. Deciding whether wp is satisfiable is an
NP-complete problem.

A tractable case of the satisfiability problem for word patterns inWP is given
by the following easy theorem.

Theorem 4 Let wp be a word pattern in DNF. Deciding whether wp is satisfiable
can be done in O(κ2ζ) time where κ is the maximum number of words in a
conjunct of wp, and ζ is the number of conjuncts.

The following proposition gives the usual relation between entailment and
unsatisfiability of Boolean logic as it should be stated in our framework. Note
that wp2 is required to be proximity-free so that the negation operator can be
applied.

Proposition 14 Let wp1 and wp2 be word patterns and wp2 is proximity-free.
wp1 |= wp2 iff wp1 ∧ ¬wp2 is unsatisfiable.

Let us now turn our attention to the entailment problem inWP . The problem
is easily seen to be coNP-hard from the previous Proposition. Using techniques
similar to the ones developed above we can show that to decide whether φ |= ψ

for word patterns φ and ψ it is enough to consider text values of a special form.
This allows to prove that the entailment problem is in coNP thus we have the
following result.

Theorem 5 Deciding whether a word pattern in WP entails another is a coNP-
complete problem.

4.3 Satisfiability and Entailment in AWP

Let us now turn our attention to the satisfiability and entailment problems for
queries in AWP . Let Q denote the class of queries in AWP with the following
property: every positive word pattern wp appearing in formulas of the form
A w wp is in DNF or CNF form. Let SAT(Q) denote the satisfiability problem
for queries in class Q. The following two propositions show that the problems
SAT and SAT(Q) are equivalent under polynomial time reductions.

Proposition 15 SAT is polynomially reducible to SAT(Q).

Proposition 16 SAT(Q) is polynomially reducible to SAT.

65

Proof: Let φ be a query in Q. Using Proposition 9, φ can easily be transformed
into a formula θ which is a Boolean combination of atomic queries (see Definition
17) using only operators ∧ and ∨. This transformation can be done in time linear
in the size of the formula.

The next step is to substitute in θ atomic formulas A = s and A w wp

(where wp is a word or a proximity word pattern) by propositional variables pA=s

and pAwwp respectively to obtain formula θ′. Finally, the following formulas are
conjoined to θ′ to obtain ψ:

1. If A = s1 and A = s2 are conjuncts of θ′ and s1 6= s2 then conjoin pA=s1
≡

¬pA=s2
.

2. If A = s and A w wp are conjuncts of θ′ and s |= wp then conjoin pA=s ⊃
pAwwp.

3. If A = s and A w wp are conjuncts of θ′ and s 6|= wp then conjoin pA=s ⊃
¬pAwwp.

4. If A w wp1 and A w wp2 are conjuncts of θ′ and wp1 |= wp2 then conjoin
pAwwp1

⊃ pAwwp2
.

The above step can be done in polynomial time because satisfaction and entail-
ment of word patterns in θ′ can be done in polynomial time.

It is also easy to see that φ is a satisfiable query iff ψ is a satisfiable formula
of Boolean logic. Then the result holds.

Thus we have the following result.

Theorem 6 The problem SAT(Q) is NP-complete.

Given the reduction of Proposition 16, one can discover tractable subcases of
the problem SAT(Q). As an example, an easy reduction from 2-SAT gives us the
following result.

Corollary 1 Let φ be a query of AWP such that each disjunction of φ has at
most two disjuncts. The problem of deciding whether φ is satisfiable can be solved
in PTIME.

Finally, what is important about Proposition 16 is that it gives us a straight-
forward way of evaluating the satisfiability of a query φ by transforming it into
a propositional formula ψ and invoking a well-known propositional satisfiability
algorithm on ψ (e.g., variations of GSAT [114]). One could also devise filtering
algorithms that are based on Boolean logic techniques as it is done for a similar
language in [19].

The following theorem can now be proved using similar ideas.

Theorem 7 The entailment problem for queries of AWP in class Q is coNP-
complete.

66

4.4 Conclusions

In this section we have studied the following four fundamental problems that arise
in textual information dissemination systems like the ones presented in Chapter
2:

1. Satisfiability. Deciding whether a given query φ can be satisfied by any
document at all.

2. Satisfaction or matching. Deciding whether an incoming document satisfies
(or matches) a query φ.

3. Filtering. Given a database of profiles db and an incoming document d, find
all profiles q ∈ db that match d.

4. Entailment or subsumption. Deciding whether a profile is more or less
“general” than another.

In the next section we concentrate our attention on the filtering problem as
it arises in textual information dissemination and study efficient main memory
algorithms.

67

Chapter 5

Fast Algorithms for Textual
Information Dissemination under
the Model AWP

In this chapter we present two main memory algorithms suitable for the filtering
problem in textual information dissemination systems. The algorithms presented
are designed for a subset of the model AWP . The model AWP presented in
detail in Section 3.4 and also in [69, 70, 73, 41]. We design and carry out a
realistic evaluation of these algorithms based on a special corpus of documents
originally compiled in [40], and later on used in [74] for the evaluation of various
filtering algorithms for the special case of the modelWP . We process the corpus
documents to fit for our evaluation and develop a formal way to create realistic
profiles following the original methodology of [74].

The rest of this chapter is organised as follows. Section 5.1 describes the algo-
rithms, while Section 5.2 introduces the corpus used and discusses the processing
carried out to fit the documents to our needs. Moreover it presents our method
for the generation of realistic user profiles. Section 5.3 describes the experimental
evaluation carried out. Finally Section 5.4 concludes this chapter.

5.1 Filtering Algorithms for Model AWP

In this section we present two algorithms that solve the problem of filtering for
a subset of the model AWP [69, 70, 73] defined as follows. The concept of
document in AWP will be as it has been defined in Definition 12 of Chapter
3. The concept of query or profile is restricted as follows. A profile can be of
the form A1 w wp1 ∧ ... ∧ An w wpn, where Ai is an attribute and wpi is a
word pattern containing conjunctions of words and proximity formulas with only
words as subformulas. The first approach adopts the brute force strategy and
was implemented for comparison purposes. The second approach uses inverted

68

indexes [10] for accessing the user profiles in an efficient way.

5.1.1 Brute Force Algorithm

The Brute Force algorithm (BF) is a very simple one and was implemented for
comparison purposes. BF maintains a linked list where all the profiles are stored
and each time a new profile arrives it is inserted at the end of this list.

Document Data Structures

To facilitate the matching process, BF uses a hash table to represent the incoming
document. This hash table is called the occurrence table (OT), and uses words
as keys. An example of an OT is given in Figure 5.2. OT is used for storing
all the attributes of the document in which a specific word appears, along with
the positions this word occupies in the text that is the value of this attribute.
Open addressing, with linear probing is used for the implementation of the hash
table [35]. Moreover the size of the hash table is set to a prime number, causing a
more uniform distribution of data into the hash table [5, page 435]. This results in
lower insertion and search times. This design choice is made for all the instances
of the hash tables used in the algorithms described in this section.

Auxiliary Data Structures

Apart from the linked list for storing the profiles and the OT for storing the
document, BF uses the following data structures:

1. A linked list, called Success List (SL), used for storing the profile identifiers
of all the profiles that are found to match the incoming document.

2. An array, called the Positions Array (PA), that is used during the evaluation
of a proximity formula contained in a profile’s attribute. This array stores
all the operands (words) of a proximity formula, along with a pointer to the
positions of this operand (remember that this information is stored in the
OT). This array is used by function EvAllProx() which is shown in Figure
5.1.

Matching Process

BF examines the profiles stored in the linked list exhaustively using a fail-first
strategy. For every word wi,j contained in an attribute Aj of a profile P , BF
probes OT to determine if it is also contained in the corresponding document
attribute, stopping as soon as a non-matching word is found. If all words in Aj

are found in the document’s attribute, BF calls EvAllProx() to determine if the
proximity operations are also satisfied. This is repeated for all profile attributes in

69

function EvAllProx(attribute A) {
for each proximity formula pfj ∈ A with words wi do

if pfj−1 matched then

call EvOneProx(positions(w1), positions(w2))
else return not satisfied

end for

return satisfied

}

function EvOneProx(positions(wi) , positions(wi+1)) {
for each position pi ∈ wido

for each position pi+1 ∈ wi+1 do

if pi+1 − pi − 1 < distance then

if wi+1 is the last word in formula then

return match

else add pi+1 in the Candidate Positions Listi+1

end if

end if

end for

end for

if wi+1 is the last word in formula then

return not match

else call EvOneProx(Candidate Positions Listi+1, positions(wi+2))
end if

}

Figure 5.1: Pseudo-code for the proximity evaluation algorithm

profile P . In this way the linked list containing the profiles is scanned sequentially
until all profiles have been evaluated.

5.1.2 The Algorithm PIndex

The algorithm PIndex (Profile Indexing) utilises a two-level index over profiles,
where the first level corresponds to attributes and the second to words contained
in attribute values. To match an incoming document against a set of profiles,
PIndex needs several data structures. Some of these data structures are used
for indexing the profiles, some others for representing the incoming document,
and there are also auxiliary data structures that are used in order to improve
performance, or to facilitate the matching process.

70

c

w

b

a

.

.

.

a1 a7 a13

5 11 30

WD Attributes word w
appears in

Positions of word w
in attribute a 1

Figure 5.2: A document’s occurrence table

Document Data Structures

For each document d PIndex uses the following data structures:

1. The distinct attribute list DAL(d). This is a linked list that stores all the
distinct attributes contained in the document. Each element of the list
(representing an attribute), points to another linked list, the distinct word
list (DWL), containing all the distinct words that appear in this attribute.
The size of DAL(d) is equal to the number of attributes contained in d.

2. The occurrence table OT (d). This is a hash table that uses words as keys.
For each word w, OT (d) stores all the attributes of d with values that con-
tain w, along with w’s positions in those values. This position information
helps PIndex decide whether an attribute that contains proximity formulas
matches the corresponding attribute of the incoming document or not.

Profile Data Structures

To store the profiles in an efficient way, PIndex uses the following data struc-
tures:

1. An array, called the attribute directory (AD), that stores pointers to all
word directories (WDs are described below). The size of the AD equals the
total number of attributes in the attribute set. If attributes are a1, a2, ..., an

then the first element of AD refers to attribute a1, the second to a2 and so
on.

2. A hash table, called word directory (WD), for each attribute in the attribute
set. This table is used for storing all the words that are contained in a

71

profile’s attribute. We use a randomly chosen word as the key that each
attribute is hashed with. For each attribute in the attribute set, PIndex

maintains a WD which is used to store the words each profile contains in a
certain attribute, along with additional information needed (e.g., the profile
identifier, information about the proximity formulas contained, distance
values in proximity formulas). Each WD slot corresponds to a different
word in the profile vocabulary and only profiles that contain this word
(and are obviously hashed with it) are stored in the slot.

The above two data structures that store the profiles form a two-level index called
the profile index. Figure 5.3 shows the profile index for the set of profiles:

P1 : (A5 w a ∧ b ≺[0,3] f) ∧ (A8 w b ≺[0,2] w ≺[0,3] g ∧ a)

P5 : A5 w w ∧ f ∧m

Auxiliary Data Structures

Apart from the data structures for storing profiles and documents, PIndex uses
some auxiliary data structures that are useful for the matching process. These
are:

1. Two arrays, named Total and Count. These arrays are used to help us de-
cide which of the profiles stored match the incoming document. The size of
each array equals the number of profiles that are stored in the profile index.
Each profile has an entry, that depends on its unique profile identifier, in
both of these arrays. In this way the i-th entry in both arrays belongs to
profile with identifier i. Array Total stores the number of attributes that
are contained in each profile. Array Count is used for counting how many
attributes of a profile match the corresponding attributes of the document.
As a result, if a profile’s entry in array Total equals its entry in Count, then
the profile matches, since all of its attributes match those of the document.

2. A linked list, called success list (SL), used for storing the profile identifiers
of all the profiles that are found to match the incoming document.

Let us now discuss the various steps of PIndex.

The Insertion Algorithm

The algorithm for inserting a profile into the profile index is as follows. Let us
assume that the profile p to be inserted in the PI is as follows:

A1 w wp1 ∧ ... ∧ An w wpn

72

a1

a5

a8

an

.

.

.

.

.

.

.

.

.

c

w

b

a

word

isProx

distance

b

2

1

w

3

1

g

-1

1

a

-1

0

word

isProx

a

-1

0

b

3

1

f

-1

1

distance

c

w

b

a

P1

P1

word

isProx

distance

P5

.

.

.

.

.

.

WD

WD

AD

w f m

-1 -1 -1

0 0 0

Figure 5.3: The profile index

where Ai is an attribute and wpi is a word pattern containing conjunctions
of words and proximity operations. In the first level of the profile index, p will
be hashed according to all attributes A1, ..., An i.e., it will be hashed under n
different entries of AD. In the second level, corresponding to an attribute Ai of p,
PIndex chooses a word w of wpi randomly and hashes p under the entry w of the
WD for Ai. All the words forming the attribute formula are stored in a WD slot,
along with the word distances that should be satisfied in order a profile to match
an incoming document. In order for the algorithm to be able to recognize whether
a word is a part of a proximity formula or a simple conjunct, a discrimination
bit is used. It follows that no word distances are stored for words that do not
participate in a proximity operation. Moreover, additional information useful for
the matching process like the profile identifier, is stored.

73

function Match (document d) {
for each attribute A ∈ DAL(d) do

for each word w ∈ DWL(A) do

probe the AD with A

probe the WD pointed to by AD(A) with word w

for each profile Pi stored in the WD slot do

for each word v ∈ P do

probe OT (d) going to Pi+1 as
soon as a non-existing word v is found

end for

call EvAlProx(A) to decide for
satisfaction of proximity formulas
if all proximity formulas in Pi are satisfied then

Count[i] = Count[i] + 1
end if

end for

end for

end for

for each entry i of arrays Total and Count

if Total[i] = Count[i] then

add profile identifier to SL(d)
end if

end for

}

Figure 5.4: Pseudo-code for the matching algorithm

The Filtering Algorithm

The idea behind the filtering algorithm is to examine only those profiles that are
possible to match the incoming document, and to do the minimum amount of
work needed in order to decide that a profile cannot match the document. The
aid to implement our first idea is PI that PIndex uses for storing the profiles.
The aid for our second idea is the observation that proximity queries are similar
to conjunctive queries, in the sense that in both types of queries all keywords
have to appear in the incoming document, in order for a query to match the
document. Taking advantage of this observation, the existence of keywords is
checked first and the evaluation of the proximity formulas follows, since it is a
time-consuming operation. The pseudo-code for the matching algorithm is given
in Figure 5.4. The proximity evaluation algorithm is the same one used by BF
and was presented in Figure 5.1.

74

Description Value

Number of documents 10,426
Document vocabulary size 641,242
Maximum document size (words) 110,452
Minimum word size (letters) 1
Maximum word size (letters) 35

Table 5.1: Some characteristics of the NN corpus

5.2 Documents and profiles

To evaluate the filtering algorithms presented earlier we use a special document
corpus. For the profile generation we use words and technical terms extracted
automatically from the corpus using the method proposed in [52]. In the rest
of this section we will introduce our corpus, present the processing that had to
be carried out to tailor it to our needs, and show how it can be used to create
realistic user profiles. Our intention is to evaluate our algorithms with realistic
data that would closely correspond to dissemination scenarios in digital libraries.

5.2.1 The Neural Network Corpus

The corpus we use (called the NN corpus) consists of a fraction of research pa-
pers from ResearchIndex [1, 85] with subject Neural Networks. ResearchIndex,
formerly known as Citeseer, is a scientific literature digital library that targets
the improvement in the dissemination of scientific literature. ResearchIndex in-
dexes research articles in various formats and provides without charge a variety of
useful services. Such services are full-text indexing of the articles enhanced with
techniques such as stop words exclusion, autonomous citation indexing, linking
the articles with the cited papers and statistics for all articles in the database.

The NN corpus consists of 10,426 scientific papers in English. Some impor-
tant values for this corpus are summarised in Table 5.1. The NN corpus was
initially compiled and processed by Evangelos Milios and his group at Dalhousie
University1. The documents were downloaded from the ResearchIndex site as
postscript files and were converted to text files. Then all references and equa-
tions were removed and each word in the document was assigned a grammatical
tag (e.g. noun, verb etc.) using a simple rule-based part of speech (POS) tagger
[16]. This processing was necessary as a first step for the extraction of multi-word
terms by the C-value/NC-value method described in [52].

To use the corpus for our experiments, further processing had to be carried
out. Two important components were used for this further processing. The

1http://www.cs.dal.ca/∼eem

75

Attribute % fraction of documents

title 63%
authors 58%
abstract 88%

body 86%
year 63%

Table 5.2: Percentage of documents containing each attribute

first one was the corpus itself in an easily processable form prepared by Thodoros
Koutris [74] and the full citation graph of ResearchIndex that was made available
to us from . This processing progressed as follows.

Initially we removed all the POS tags from all the documents. We then used
the information from the full citation graph2 of ResearchIndex to extract the
title, authors and year of the publication. This information was not extracted
from the actual corpus since the flat form of the documents contained consid-
erable noise even after several rule-based filters were applied to it. The next
step was to process the abstracts that were also provided to us by the Dalhousie
group as POS-tagged text files, extracted from the original postscript files. After
processing the abstracts we used them in the extraction of the actual body of
the documents. After the processing phase was completed, we merged the dif-
ferent attributes extracted, along with the appropriate attribute tags. We then
had at our disposal an attribute-tagged corpus with five fields: title, authors,
abstract, body and year. At this point we have to stress out that the infor-
mation obtained from the citation graph was incomplete, resulting in documents
without all the attribute fields filled in. This is actually not a problem in our ex-
perimental setting since in an information dissemination scenario users may post
documents with only some of the attributes filled in. Table 5.2 gives some in-
teresting measures of the fraction of documents out of the document corpus that
contain each attribute, whereas Table 5.3 summarises the fraction of documents
that contain a specific number of attributes.

Attribute year will not be used in our evaluation because it does not appear
to be useful for expressing user profiles in our target application.

5.2.2 Automatic Term Extraction

The multi-word terms used in the profiles for our experiments are extracted from
the NN corpus using the C-value/NC-value approach of [52]. The process of
identification of terms or technical terms or terminological phrases from a col-
lection of documents belongs to the research area called automatic term recog-

2The citation graph was also made available to us by Evangelos Milios[7].

76

Number of attributes % fraction of documents

1 7.4%
2 28%
3 1.9%
4 16%
5 45%

Table 5.3: Percentage of documents containing one or more attributes

nition. The C-value/NC-value approach of [52] specifies the “termhood” of a
candidate multi-word term as the probability to be a real term. C-value stands
for Collocation-value, whereas NC-value stands for New Collocation value. The
C-value of a term is an enhancement of the common statistical measure of fre-
quency of occurrence, incorporating information about nested terms, whereas
NC-value embodies information form words that appear in the vicinity of terms
in texts. Both methods have been shown to perform better than the classical
frequency of occurrence measure in terms of precision and recall [40]. For details
on the C-value/NC-value method the reader is invited to see [52, 40, 74].

5.2.3 Profile Generation

The main construct in our profile creation process is that of a unit. Units in our
context represent different entities that can be used to create a profile. In the
experiments that will be described in Section 5.3 we used four different sets of
units for the generation of the profiles database. The first two unit sets consist
of proximity formulas created from multi-word terms, that were extracted from
the NN corpus using the NC-value method described earlier. The third one is
the set of all the nouns extracted from document abstracts, and the fourth one
is the set of all author last names in the NN corpus documents. Combining units
from these four sets in a well defined way allows us to create realistic profiles
databases in order to conduct our experiments.

Creation of the Different Unit Sets

The creation of the first two unit sets was based on the extraction of multi-word
terms from the corpus. To create these sets, a ranked list of multi-word terms
was extracted from the corpus documents. We then excluded from this list all
terms that contained more than five words since they were noise produced by the
C-/NC-value methods. Additionally we specified an upper and lower NC-value
cut-off threshold for the terms remaining in the list. These cut-off thresholds were
used to increase the discriminating power of the set of terms. The upper cut-off
threshold was used to exclude top ranked terms, that is terms that appear very

77

often in corpus documents. Such an example is the 2-word term neural networks
that is contained in most of our documents. Moreover the bottom ranked terms
are also excluded from the list of the useful terms since they are mostly noise
created from the procedure of transforming the original postscript files to simple
text files. This processing resulted in a list containing 2-, 3-, 4- and 5-word terms,
which was then used to create the two different sets as follows.

Let a1a2...an, where each ai is a word, be a multi-word term from the afore-
mentioned list, containing n words. A proximity formula is created out of this
term in the following two ways:

1. a1 ≺[0,0] a2 ≺[0,0] ... ≺[0,0] an. For each multi-word term in the list we in-
troduce the proximity operator ≺[0,0] between the words of the multi-word
term in order to create proximity formulas that represent strings. All the
proximity formulas that are created this way form the first set of units
named PF0, which stands for proximity formulas with word distance zero.
The number of operands in these proximity formulas varies according to
the number of words contained in the multi-word terms. The minimum
number of words in a multi-word term is obviously two, whereas the maxi-
mum is five. An example of a unit in this unit set is INVERSE ≺[0,0] DY-
NAMIC ≺[0,0] FUNCTION, which was produced from the term INVERSE
DYNAMIC FUNCTION.

2. a1 ≺[0,k] an, where 1 6 k 6 10. From each term in the list of multi-
word terms we create proximity formulas with exactly two operands. These
proximity formulas are created as follows. We replace all the middle words
of the 3-, 4-, 5-word terms with the proximity operator ≺[0,k], specifying k
to be a natural number drawn uniformly between 1 and 10. The choice of
using a relatively small upper bound in the distance between two operands
is inspired by the implementation of operator NEAR in well-known search
engines such as AltaVista3, where NEAR represents distance of ten words.
All the proximity formulas created this way form the second set of units
named PFk, since they are proximity formulas with word distance k. An
example of a unit in this set could be RBF ≺[0,6] NETWORKS, which could
be created from the term e.g., RBF DYNAMIC DECAY ADJUSTMENT
NETWORKS.

The second set of units used in the creation of our profiles database is the
set of nouns that were extracted from document abstracts. The choice of nouns
taken from document abstracts as opposed to the whole document can be justified
by the argument that the abstracts are expected to be a brief description of the
work carried out in the paper, thus very appropriate to describe the content of a
paper. The procedure of creating the set of nouns is as follows. First we identified

3http://www.altavista.com

78

all the nouns in singular and plural form using the part-of-speech (POS) tagged
abstracts that were available to us. After that we created a frequency-ranked list
of these words and specified a upper and lower cut-off threshold to cut the most
frequent and the least frequent words. The set of units that resulted from this
procedure is denoted by NS, which stands for nouns.

The last set of units created is that of the authors’ last names. We extracted
all the names of the authors that were available to us from the corpus documents
to obtain an author vocabulary Vauthor of 8833 last names. Using this author
vocabulary to draw uniformly author names that will be used in a profile is not
the best choice. This is because authors that are more active or produce more
important papers than others are expected to be used heavier in profiles than
the rest. The criterion for identifying the more important authors is how many
citations they get from papers written by other researchers. In the citation graph
corresponding to our corpus this is captured by the in-degree of the nodes for
their paper as explained in [7]. The highest the in-degree for the papers of a
specific author, the highest the probability for this author to appear in a profile.
We define Na to be the number of papers in the corpus that refer to at least
one document of author a, and Vauthor the author vocabulary. Na can easily be
extracted from the full citation graph, and the author vocabulary is available to
us from the NN corpus documents. The probability of author a to be used in a
profile is given by:

P (a) =
Na

∑

k∈Vauthor
Nk

The above formula associates an author with the popularity of his writings, and
thus with a probability degree of another researcher being interested in his work.
As we can see, this set apart from containing the names of the authors that will
be used for the profile creation, also contains information about the probability
distribution that will be used for choosing the authors. This probability distri-
bution is Zipf-like as it is shown in the log-log graph of Figure 5.5. This can
be explained taking into account the general observation that in every scientific
domain there exist a few heavily cited authors, while the rest receive less visibil-
ity (in terms of citations of their work). The unit set that is described above is
denoted by AS, which stands for author surnames.

5.2.4 Details

Now that we have described the creation and the contents of the different unit
sets, we are ready to give some details of how all this information is combined
to create profiles. A profile under the subset of query language AWP supported
by BF and PIndex (see section 5.1) consists of a conjunction of atomic queries.
These atomic queries can only be of the form A w wp, where A is an attribute and
wp is a conjunction of words and proximity formulas. In the rest of this section we

79

1

10

100

1000

1 10 100 1000 10000 100000

Author identifier (log)

N
um

be
r

of
 c

it
at

io
ns

 (
lo

g)

Figure 5.5: Distribution of citations among authors

will examine the different types of atomic queries that can be created according
to the attributes that are available to us, that is author, title, abstract and
body.

In our context creating a profile can be also looked at as the problem of
choosing with a probability distribution between units contained in different sets.
Not all the sets of units participate in the creation of an atomic formula of a
specific attribute. Moreover different unit sets that participate in an atomic
formula may have different selection probabilities in being chosen to participate
in a profile. The unit sets that participate in the creation of an atomic formula,
along with an indicatory value for the selection probability4 of each unit are
summarised in Table 5.4.

In general a creation of an atomic query is a 3-step process that can be
described as follows:

1. Choose the number of units (or the size of an atomic query) S. This value
is drawn uniformly from [1, Smax], where Smax is the maximum number of
units in an atomic query. Smax is defined to be two for atomic formulas
of author and title attributes, whereas it is set to three for the ab-

stract and body attributes. This differentiation in Smax is due to the
different number of words contained typically in the different attributes of
a document.

2. Taking into account the units that may participate in a specific atomic for-
mula, we pick S units from these sets according to the selection probabilities

4Of course these values may vary depending on the wanted properties of the profile database
to be generated.

80

Attribute: Participating unit sets Indicatory value
of selection probability

title PF0 0.4
PFk 0.4
NS 0.2

abstract PF0 0.4
PFk 0.4
NS 0.2

body PF0 0.4
PFk 0.4
NS 0.2

author AS 1.0

Table 5.4: Participation of different unit sets in the creation of atomic formulas
for each attribute

summarised in Table 5.4.

3. Having chosen these units, we take their conjunction to create the atomic
formula.

For example an atomic formula for the title attribute may be:

title w (RBF ≺[0,6] NETWORKS) ∧ JAV A

which contains two units (remember that this is the maximum number of units
allowed for the title attribute): unit (RBF ≺[0,6] NETWORKS) drawn from
unit set PFk and unit JAVA drawn from unit set NS. Changing the selection
probabilities of different unit sets results in changing how often units of a specific
set will appear in atomic queries of the corresponding attribute. Other possible
atomic formulas could be:

title w IMPLEMENTATION∧(INV ERSE ≺[0,0] DYNAMIC ≺[0,0] FUNCTION)

title w REAL ≺[0,0] WORLD ≺[0,0] APPLICATION

title w ALGORITHM ∧ IMPLEMENTATION

Atomic queries for abstract and body attributes are created in a similar way.
The only differentiations between atomic formulas for different attributes are
different selection probabilities for the unit sets and different maximum atomic
query sizes.

At the same time creating atomic queries for attribute author is somewhat
different. Atomic queries for attribute author can have a maximum size of two
units and can contain either one unit or a conjunction of two units from unit set

81

AS. Note that for the case of an atomic query for the author attribute using
more words in conjunction would make the profile very specific, thus not suitable
for an information alert setting. Note also that proximity operations could also be
used in these atomic queries (e.g., JOHN ≺[0,0] BROWN). However the authors
first names were not available from the corpus documents so this option was not
adopted. Below are some examples of such atomic queries:

author w BROWN

author w SMITH ∧ JOHNSON

As we have already mentioned, in the subset of the language that is supported
by the two implemented algorithms, a profile consists of a conjunction of such
atomic queries. What is needed now is a way to select which atomic queries
will be introduced in each profile. To do so we assign selection probabilities
to each one of the four types of atomic queries and according to this selection
probabilities we decide which atomic query be included in a single profile and
which will not. Each type of atomic atomic queries is (or is not) included in a
profile independently of the rest of the types. For example for a specific profile
generation scenario if the selection probability of all four types of atomic queries
is 85% then atomic queries for the author attribute will appear in the 85% of
the profiles in the profile database. The same holds for the rest of the attribute
types (title, abstract and body). At this point we should stress that in this
way all possible combinations of atomic queries can appear in generated profiles,
and that a simple probability calculation allows us to control or even exclude5

certain types of atomic queries from the generated profiles.

5.3 Experimental Evaluation

Having specified how the profile database is created we now move to the experi-
mental evaluation of our main memory algorithms. In this section we present four
different experiments that clearly demonstrate the advantages and disadvantages
of each algorithm.

5.3.1 Settings

The algorithms described in section 5.1 were implemented in C, and all the exper-
iments were run on a PC, with a Pentium III 1.7GHz processor, with 1GB RAM,
running Linux. The time shown in the graphs is elapsed time in milliseconds and
no other processes were run on the PC during the experiments. For each of our
conducted experiments we followed a standard procedure described below.

5By setting the selectivity probability of this type to a very low number or even zero.

82

0

500

1000

1500

2000

2500

3000

0 500000 1000000 1500000 2000000 2500000

number of profiles

fi
lt

er
in

g
 t

im
e

(m
s)

BF PIndex

Figure 5.6: Effect of the profiles database size in filtering time

Initially we generate the database of profiles and select the documents that
will be used as an input for the algorithms. Both the profile creation and the
document selection depend on the nature of the experiment and the targeting
behaviour of the algorithms. Having decided on these, we populate the data
structures of each algorithms, load the document into main memory and run
each algorithm. All the experiments are run five times and the results are aver-
aged to eliminate any fluctuations in the time measurements. Note that when we
refer to the matching time of a document against a database of profiles we mean
only the time needed by the algorithms to discover which profiles are satisfied by
the incoming document. This time does not include the time needed to upload
the document from the secondary storage to the main memory, or the time to
construct the document index. Finally we have to note that an important factor
affecting the matching time for a profile is how many atomic formulas it contains.
The profiles we used for the experiments described in this chapter had an aver-
age of 3.5 atomic formulas per profile (remember that our attribute universe for
these experiments consists of four attributes). This means that we used “heavily
loaded” profiles something that also affected the mean matching time (this is
demonstrated clearly in Section 5.3.4).

5.3.2 Varying the Number of Profiles

The first experiment that we conducted to evaluate our algorithms, targeted the
performance of the two algorithms under different sizes of profiles databases.
In this experiment we randomly selected one hundred document from the NN
corpus and used them as input document in the profile databases of different
sizes (but of the same general properties). The size and the matching percentage
for each document used was different but the average document size was 6869

83

0

500

1000

1500

2000

2500

3000

3500

BF PIndex

fi
lt

er
in

g
 t

im
e

(m
s)

Document A Document B

Figure 5.7: Effect of the profiles’ matching percentage in filtering time

words whereas the average matching percentage for the one hundred documents
was around 1%.

As we can see in Figure 5.6 both algorithms are linear to the size of the
profiles database, however PIndex seems to be less sensitive in the change of
the profile database size. Moreover due to the index structures used by PIndex

we can observe a significant improvement in the matching time compared to the
sequential scan method BF. PIndex seems to speedup the matching procedure
by a factor of 2, managing to filter as much as 2.5 million profiles in less than
one second.

5.3.3 Varying the Matching Percentage

In this experiment we wanted to observe the behaviour of the two algorithms
when the number of profiles that match an incoming document increases. That
is we wanted to examine how sensitive each algorithm is to the matching degree
of profiles. For this experiment we used two document with about the same
size and the same attributes. However the matching percentage of the document
was different for the same 2.5 million profiles. More specifically we conducted
the experiment comparing the behaviour of the algorithms in two documents.
Document A was 7055 words in size and had a matching percentage of about
1%, whereas document B contained 7059 words and had a matching percentage
of 0.4%. Both documents contained four (attribute, value) pairs (remember that
the size of the attribute universe is four), and there were no significant variations
in the size (in words) of the corresponding values between the two documents.

Many interesting conclusions can be drawn about the performance of the two

84

1500

2000

2500

3000

3500

350 450 550 650 750 850

matching percentage

fi
lt

er
in

g
 t

im
e

in
 (

m
s)

1.0% 1.2% 1.4% 1.6% 1.8% 2.0%

Figure 5.8: Sensitivity of each algorithm to matching percentage of profiles

algorithms under this evaluation scenario. As it is shown in figure 5.7, BF is
relatively insensitive to the change in the matching percentage, as opposed to
PIndex which shows remarkable improvement at lower matching percentage.
More specifically the reduction by 150% of the matching percentage results in a
reduction of only 5% for BF, whereas the corresponding reduction for PIndex

is nearly 50%. This can be explained by the fact that BF scans sequentially
all the profiles to discover those that are satisfied by the incoming document.
This time is relatively big compared to the overhead added to the algorithm to
perform some extra test for the case of more matching profiles. On the other
hand, PIndex achieves low filtering times for small matching percentages, and
the overhead imposed by the extra matching tests has a more visible effect. This
overhead is mainly due to the increase in the similarity between the profiles.
This similarity results in the searching of longer lists at each hash table slot thus
adding extra cost to match the indexed profiles.

The sensitivity of PIndex can also be seen in Figure 5.8 where we can see that
the two algorithms behave very differently. BF shows a remarkable stability to
matching percentage changes, whereas PIndex seems to degrade in performance
as the matching percentage increases.

This behaviour of PIndex shows one of the main weaknesses of the specific
indexing scheme. Imagine a scenario where PIndex is used in a news alert
system and a sudden crisis occurs (e.g., an earthquake or terrorist act). This
would result in users posting many similar profiles thus causing a serious degrade
in the performance of the algorithm.

5.3.4 Varying the Average Number of Atomic Formulas

The structure and the size of the profiles themselves are expected to have a sig-
nificant effect on the filtering time for both algorithms. To verify this observation

85

0

500

1000

1500

2000

2500

500000 1000000 1500000 2000000 2500000

number of profiles

fi
lt

er
in

g
 t

im
e

(m
s)

BF (1.5) Pindex (1.5) BF (3.5) Pindex (3.5)

Figure 5.9: Effect of the number of atomic formulas in a profile

and also to see how the nature of the stored profiles affects the performance of
each algorithm, we conducted an experiment were we use a profile database with
“simpler” profiles. This means that we defined the profile generation parameters,
so as to reduce the selection probabilities for atomic formulas (see Section 5.2.4)
to create profiles with less atomic formulas per profile. In this experiment an
average of 1.5 atomic formulas per profile is used and the filtering times for both
algorithms are compared with those presented in Figure 5.6 where the average
is 3.5. In Figure 5.9 we can see both this experiment and the results from the
experiment in Section 5.3.2.

As we can easily observe our conjecture about the difference in the filtering
time between profile databases with different characteristics is confirmed. Both
algorithms seem to be influenced by the different nature of the profiles, something
that was expected since they have an “easier” task with the profile set that
contains fewer atomic formulas per profile. However as we can see BF is much
less affected from this change in the profile characteristics than PIndex. This
is because the sequential scan of the profiles is a time consuming operation and
consumes most of the filtering time, thus not leaving other parameters (such as
the number of atomic formulas in a profile) to play an important role. On the
other hand we can see a significant improvement on the performance of PIndex.
This can be explained as follows. Specifying the profiles to have three or four
atomic formulas results in a considerable overload of the index structure in terms
of the size of lists in each hash table slot. This overload of the index structures
results in a decrease in the performance of the algorithm. On the other hand
specifying profiles to have less atomic formulas (e.g., one of two) results less load
on the index structure (since the atomic formulad are dispersed over the different

86

0

200

400

600

800

1000

1200

500000 1000000 1500000 2000000 2500000

number of profiles

m
em

o
ry

 in
 M

B
s

BF PIndex

Figure 5.10: Memory usage for different sizes of the profile database

WDs of PIndex). Of course this behaviour of PIndex can be also seen as a
weakness of the algorithm. Ideally we would like the performance of the index
structures to be efficient and yet insensitive to changes in the nature of the data
indexed.

5.3.5 Memory Usage

The main objective of this experiment was to see what is the additional space
cost that we have to pay due to the index structures used by PIndex. This
experiment was carried out with several size varying profile databases with the
same general characteristics. The evaluation was carried out using a relatively big
document (about 27000 words) that would be considerably demanding in terms
of its index structures.

As we can see in Figure 5.10 both BF and PIndex are linear in terms of
the memory usage. Moreover we can observe that the index structures utilised
by PIndex do not impose a great space cost and both algorithms seem to need
about the same amount of memory for performing a filtering task. This happens
because apart from the two tables (TOTAL and COUNT) that are used for
the final comparison of how many atomic formulas of a profile match, no other
extra information is kept for each profile. Finally the index that is built upon the
incoming documents is apparently not space consuming even for large documents.
This is because we are indexing only the distinct words that exist in an incoming
document, thus gaining a significant reduction in the storage cost.

87

5.4 Summary

In this chapter we have presented in detail two main memory algorithms that
support profile filtering under the model AWP , presented in Section 3.4. We
have also evaluated these algorithms experimentally using real documents and
realistic user profiles.

88

Chapter 6

Concluding Remarks

In this work we dealt with the problem of textual information dissemination in
the context of distributed P2P systems. We put our main focus on data mod-
els and query languages especially designed for information dissemination, when
information is in the form of text. We also identified problems that frequently
arise in such a scenario and studied their computational complexity. Finally
we designed, implemented and experimentally evaluated two algorithms for the
problem of filtering as it arises in textual information dissemination.

Initially our study surveyed the area of agent middleware and paid specific
attention to information management applications. To better position ourselves
regarding other areas of related research, we also discussed in detail some popular
Internet systems. We showed that these systems can be considered to be multi-
agent systems with a central role for the middleware.

Then we focused on defining data models and query languages to express
documents and user profiles. We incrementally developed three such models
and query languages moving from very simple ones to ones with more expres-
sive power. Our work in this field extends traditional concepts that are already
known in information retrieval [10, 27, 28], and complements recent proposals for
querying textual information dissemination in event-based systems [20, 19]. It is
our belief that such models and languages can be of great use to applications like
alert systems for digital libraries or news dissemination systems.

Having defined the languages for information dissemination, we then identi-
fied four fundamental problems of all information dissemination systems (satis-
fiability, satisfaction, filtering and entailment) and studied their computational
complexity.

Finally, we proposed two main memory algorithms that solve the problem of
filtering in information dissemination under the data model AWP [72, 73]. The
first algorithm adopts a brute force strategy and was mainly implemented for
comparison purposes. The second algorithm adopts a two dimensional indexing
on user profiles. To prove our case we evaluated both algorithms under a realistic
scenario using documents from the NN corpus [74, 40] and realistic profiles created

89

from terms extracted from the documents.

6.1 Future Work

There are many problems that need to be addressed in future work. We are
already in the process of designing new algorithms for the problem of filtering
that take into consideration commonalities among user profiles. We are also
currently implementing a new algorithm for the case of the model AWPS.

On the language front, we would like to extend our data models and languages
to cope also with other types of information, for example prices. This can be use-
ful in many applications (e.g., e-commerce) and can easily be done by introducing
attributes of numeric type and comparison operators such as “less than” [19, 20].
Moreover we envision moving towards a document representation based on XML
and a profile language based on XPath [136] or XQuery [137]. Designing efficient
filtering algorithms for such languages is a difficult task that could be tackled
using ideas from recent work such as [6, 24]. Finally, architecting peer-to-peer
systems that allow for efficient retrieval and dissemination of information is a
difficult problem and a lot of research remains to be done in this area. For recent
work by our research group in this area see [133].

90

Bibliography

[1] ResearchIndex: The NEC Research Institute scientific literature digital li-
brary. http://www.researchindex.com.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web - From Relations
to Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley, 1995.

[4] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra.
Matching Events in a Content-based Subscription System. In Proceedings
of the Eighteenth Annual ACM Symposium on Principles of Distributed
Computing (PODC ’99), pages 53–62, New York, May 1999. Association
for Computing Machinery.

[5] A. Aho, R. Sethi, and J. Ullman. Compilers, principles, techniques, and
tools. Addison Wesley, 1986.

[6] M. Altinel and M.J. Franklin. Efficient Filtering of XML Documents for Se-
lective Dissemination of Information. In Amr El Abbadi, Michael L. Brodie,
Sharma Chakravarthy, Umeshwar Dayal, Nabil Kamel, Gunter Schlageter,
and Kyu-Young Whang, editors, VLDB 2000, Proceedings of 26th Inter-
national Conference on Very Large Data Bases, September 10–14, 2000,
Cairo, Egypt, pages 53–64, Los Altos, CA 94022, USA, 2000. Morgan Kauf-
mann Publishers.

[7] Y. An, J. Janssen, and E. Milios. Characterizing and Mining the Citation
Graph of the Computer Science Literature. Technical Report CS-2001-02,
Dalhousie University, Canada, 26 September 2001.

[8] V. Arens, C. Y. Chee, C. N. Hsu, and C. A. Knoblock. Retrieving and
Integrating Data from Multiple Information Sources. International Journal
on Intelligent and Cooperative Information Systems, 2(2):127–158, 1993.

[9] J.L. Austin. How to Do Things With Words. Harvard University Press,
Cambridge, MA, 1962.

91

[10] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Ad-
dison Wesley, 1999.

[11] S. Baker. CORBA Distributed Objects Using Orbix. Addison-Wesley and
ACM Press, 1997.

[12] R. J. Bayardo, W. Bohrer, R. Brice, A. Cichocki, J. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid,
M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk.
InfoSleuth: agent-based semantic integration of information in open and
dynamic environments. In Joan M. Peckman, editor, Proceedings, ACM
SIGMOD International Conference on Management of Data: SIGMOD
1997: May 13–15, 1997, Tucson, Arizona, USA, volume 26(2) of SIGMOD
Record (ACM Special Interest Group on Management of Data), pages 195–
206, New York, NY 10036, USA, 1997. ACM Press.

[13] S. Bergamaschi. Extraction of Information from Highly Heterogeneous
Source of Textual Data. In Peter Kandzia and Matthias Klusch, editors,
Proceedings ot the First International Workshop on Cooperative Informa-
tion Agents, volume 1202 of LNAI, pages 42–63, Berlin, February 26–28
1997. Springer.

[14] C. Bowman, P. B. Danzig, D.R. Hardy, U. Manber, and M. F. Schwartz.
Scalable internet resource discovery: research problems and approaches.
Comm. A.C.M., 37(8):98–107, August 1994.

[15] C.M. Bowman, P.B. Danzig, D.R. Hardy, Udi Manbe, Michael F. Schwartz,
and Duane P. Wessels. Harvest: A Scalable, Customizable Discovery and
Access System. Technical Report CU-CS-732-94, Department of Computer
Science, University of Colorado, Boulder, August 1994.

[16] Eric Brill. A simple rule-based part-of-speech tagger. In Proceedings of
ANLP-92, 3rd Conference on Applied Natural Language Processing, pages
152–155, Trento, 1992. URL: citeseer.nj.nec.com/brill92simple.html.

[17] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems, 30(1–7):107–117, April
1998.

[18] James P. Callan, W. Bruce Croft, and Stephen M. Harding. The INQUERY
retrieval system. In Proceedings of the International Conference Database
and Expert Systems Applications (DEXA’92), pages 78–83, 1992.

[19] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficent filtering in
publish-subscribe systems using binary decision diagrams. In Proceedings

92

of the 23rd International Conference on Software Engineering, Toronto,
Ontario, Canada, 2001.

[20] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and
expressiveness in an internet-scale event notification service. In Proceed-
ings of the 19th ACM Symposium on Principles of Distributed Computing
(PODC’2000), pages 219–227, 2000.

[21] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achieving Scalability and
Expressiveness in an Internet-scale Event Notification Service. In Proceed-
ings of the 19th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC-00), pages 219–228, NY, July 16–19 2000. ACM Press.

[22] A. Cassandra, D. Chandrasekara, and M. Nodine. Capability-Based Agent
Matchmaking. In Carles Sierra, Maria Gini, and Jeffrey S. Rosenschein, ed-
itors, Proceedings of the Fourth International Conference on Autonomous
Agents, pages 201–202, Barcelona, Catalonia, Spain, June 2000. ACM
Press. Poster announcement.

[23] U. Çetintemel, M. Franklin, and C. Giles. Self-Adaptive User Profiles for
Large-Scale Data Delivery. In 17th International Conference on Data En-
gineering (ICDE’ 00), Heidelberg - Germany, May 2000. IEEE.

[24] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Rastogi. Tree
Pattern Aggregation for Scalable XML Data Dissemination. In Proceedings
of the 28th VLDB Conference, Hong Kong, China, 2002.

[25] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proceedings of the Ninth Annual ACM
Symposium on Theory of Computing, pages 77–90, 1977.

[26] C.-C. K. Chang. Query and Data Mapping Across Heterogeneous Informa-
tion Sources. PhD thesis, Stanford University, January 2001.

[27] C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Boolean Query Map-
ping across Heterogeneous Information Sources. IEEE Transactions on
Knowledge and Data Engineering, 8(4):515–521, 1996.

[28] C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting
for Translating Boolean Queries in a Heterogeneous Information System.
ACM Transactions on Information Systems, 17(1):1–39, 1999.

[29] D. Chauhan and A.D. Baker. JAFMAS: A Multiagent Application De-
velopment System. In Katia P. Sycara and Michael Wooldridge, editors,
Proceedings of the 2nd International Conference on Autonomous Agents
(Agents’98), pages 100–107, New York, May 9–13, 1998. ACM Press.

93

[30] T. T. Chinenyanga and N. Kushmerick. Expressive retrieval from XML
documents. In Proceedings of SIGIR’01, September 2001.

[31] J. Cho, H. Garćıa-Molina, and L. Page. Efficient crawling through URL
ordering. Computer Networks and ISDN Systems, 30(1–7):161–172, April
1998.

[32] Ian Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In Workshop on
Design Issues in Anonymity and Unobservability, July 2000.

[33] P.R. Cohen and H.J. Levesque. Communicative Actions for Artificial
Agents. In Jeffrey M. Bradshaw, editor, Software Agents, chapter 18, pages
419–436. AAAI Press / The MIT Press, 1997.

[34] William W. Cohen. WHIRL: A word-based information representation
language. Artificial Intelligence, 118(1-2):163–196, 2000.

[35] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[36] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield,
and A. Boughanam. Jackal: A Java-based Tool for Agent Development. In
AAAI-98, Workshop on Tools for Agent Development, Madison, WI, July
1998.

[37] R. Davis and R. Smith. Negotiation as a Metaphor for Distributed Problem
Solving. Artificial Intelligence, 20(1):63–109, January 1983.

[38] K. Decker and K. Sycara. Intelligent adaptive information agents. Intelli-
gent Information Systems, 9(3), 1997.

[39] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet.
In Proceedings of IJCAI-97, 1997.

[40] L. Dong. Automatic term extraction and similarity assessment in a do-
main specific document corpus. Master’s thesis, Department of Computer
Science, Dalhousie University, Halifax, Canada, 2002.

[41] M. Koubarakis et. al. Project DIET Deliverable 7 (Information Brokering),
December 2001.

[42] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe
systems. In Proceedings of ACM SIGMOD-2001, 2001.

94

[43] F. Fabret, F. LLirbat, J. Pereira, and D. Shasha. Publish/Subscribe on
the Web at Extreme Speed. In Proceedings of ACM SIGMOD Conf. on
Management of Data, 2000.

[44] D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and A. Steidinger. Her-
mes – A Notification Service for Digital Libraries. In Proceedings of the
Joint ACM/IEEE Conference on Digital Libraries (JCDL’01), Roanoke,
Virginia, USA, 2001.

[45] D. Fensel. The semantic Web and its languages. Trends and Controversies
Column. IEEE Intelligent Systems, 15(6), November 2000.

[46] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent
Communication Language. In N. Adam, B. Bhargava, and Y. Yesha, ed-
itors, Proceedings of the 3rd International Conference on Information and
Knowledge Management (CIKM’94), pages 456–463, Gaithersburg, MD,
USA, 1994. ACM Press.

[47] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication
language. In Jeffrey M. Bradshaw, editor, Software Agents, chapter 14,
pages 291–316. AAAI Press / The MIT Press, 1997.

[48] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay,
J. McGuire, R. Pelavin, S. Shapiro, and C. Beck. Draft specification of the
KQML Agent-Communication Language, 1993.

[49] T.W. Finin and Y. Labrou. Napster as a Multi-Agent System. Presentation
at the 18th FIPA meeting, University of Maryland Baltimore County, July
2000.

[50] P.W. Foltz and S.T. Dumais. Personalised information delivery: An
analysis of information filtering methods. Communications of the ACM,
35(12):29–38, 1992.

[51] M. J. Franklin and S. B. Zdonik. “Data In Your Face”: Push Technology
in Perspective. In Proceedings ACM SIGMOD International Conference on
Management of Data, pages 516–519, 1998.

[52] K. Frantzi, S. Ananiadou, and H. Mima. Automatic recognition of multi-
word terms:the C-value/NC-value method. International Journal on Digital
Libraries, 5(2), 2000.

[53] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sa-
giv, J. D. Ullman, V. Vassalos, and J. Widom. The TSIMMIS Approach to
Mediation: Data Models and Languages. Journal of Intelligent Information
Systems, 8(2):117–132, 1997.

95

[54] M. R. Genesereth and S. P. Ketchpel. Software agents. Communications
of the ACM, 37(4), July 1994.

[55] Michael R. Genesereth. An agent-based framework for interoperability. In
Jeffrey M. Bradshaw, editor, Software Agents, chapter 15, pages 317–346.
AAAI Press / The MIT Press, 1997.

[56] M.R. Genesereth, A.M. Keller, and O.M. Duschka. Infomaster: an in-
formation integration system. In Joan M. Peckman, editor, Proceedings,
ACM SIGMOD International Conference on Management of Data: SIG-
MOD 1997: May 13–15, 1997, Tucson, Arizona, USA, volume 26(2) of
SIGMOD Record (ACM Special Interest Group on Management of Data),
pages 539–542, New York, NY 10036, USA, 1997. ACM Press.

[57] J.A. Giampapa, M.Paolucci, and K. Sycara. Agent Interoperation across
Multiagent System Boundaries. In Carles Sierra, Maria Gini, and Jeffrey S.
Rosenschein, editors, Proceedings of the Fourth International Conference
on Autonomous Agents, pages 179–186, Barcelona, Catalonia, Spain, June
2000. ACM Press.

[58] J. Goguen, D. Nguyen, J. Meseguer, Luqi, D. Zhang, and V. Berzins. Soft-
ware Component Search. Journal of Systems Integration, 6:93–134, 1996.

[59] B. Grosof and Y. Labrou. An approach to using XML and a rule-based
content language with an Agent Communication Language. In Workshop
on Agent Communication Languages, IJCAI-99, Stockholm, Sweden, July
1999.

[60] T. Gruber. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 6(4):199–121, 1993.

[61] H. Gupta and D. Srivastava. The data warehouse of newsgroups. In Pro-
ceedings of the 7th International Conference on Database Theory (ICDT
’99), volume 1540 of Lecture Notes in Computer Science, pages 471–488.
Springer, 1999.

[62] D. Heimbigner. Adapting Publish/Subscribe Middleware to Achieve
Gnutella-like Functionality. In ACM Symposium on Applied Computing
(SAC 2001): Special Track on Coordination Models, Languages and Appli-
cations, Las Vegas, NV, March 11–14 2001.

[63] J. Hendler and D. McGuinness. The DARPA Agent Markup Lan-
guage. Trends and Controversies Column. IEEE Intelligent Systems, 15(6),
November 2000.

96

[64] H. V. Jagadish, L. V. S. Lakshmanan, T. Milo, D. Srivastava, and D. Vista.
Querying network directories. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 133–144, 1999.

[65] S. Jha, P. Chalasani, O. Shehory, and K. Sycara. A Formal Treatment of
Distributed Matchmaking. In Katia P. Sycara and Michael Wooldridge,
editors, Proceedings of the 2nd International Conference on Autonomous
Agents (Agents’98), pages 457–458, New York, May 9–13, 1998. ACM Press.

[66] A.M. Julienne and B. Holtz. ToolTalk and open protocols, inter-application
communication. Englewood Cliffs, NJ, 1994.

[67] Anthony Klug. On Conjunctive Queries Containing Inequalities. Journal
of ACM, 35(1):146–160, 1988.

[68] C. A. Knoblock and S. Minton. The Ariadne approach to web-based infor-
mation integration. IEEE Intelligent Systems, 13(5), September 1998.

[69] M. Koubarakis. Boolean Queries with Proximity Operators for Information
Dissemination. Proceedings of the Workshop on Foundations of Models and
Languages for Information Integration (FMII-2001), Viterbo, Italy , 16-18
September, 2001. In LNCS (forthcoming).

[70] M. Koubarakis. Textual Information Dissemination in Distributed Event-
Based Systems. Proceedings of the International Workshop on Distributed
Event-Based systems (DEBS’02), July 2-3, 2002, Vienna, Austria.

[71] M. Koubarakis, T. Koutris, P. Raftopoulou, and C. Tryfonopoulos. Efficient
Agent-Based Dissemination of Textual Information. In 2nd Hellenic Con-
ference on Artificial Intelligence (SETN 02), Thessaloniki, Greece, 11-12
April 2002.

[72] M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou. Infor-
mation Alert in Distributed Digital Libraries: The Models, Languages and
Architecture of DIAS. In Proceedings of the 6th European Conference on
Digital Libraries (ECDL2002), September 2002.

[73] M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris. Data
models and languages for agent-based textual information dissemination. In
Proceedings of the 6th International Workshop on Cooperative Information
Agents(CIA2002), Madrid, Lecture Notes in Computer Science. Springer,
2002.

[74] T. Koutris. Textual Information Dissemination in Distributed Agent Sys-
tems: Architectures and Efficient Filtering Algorithms. Master’s thesis,
Department of Electronic and Computer Engineering, Technical University
of Crete, Greece. (forthcoming) .

97

[75] S. Kumar and P.R. Cohen. Towards a fault-tolerant multi-agent system
architecture. In Carles Sierra, Gini Maria, and Jeffrey S. Rosenschein,
editors, Proceedings of the 4th International Conference on Autonomous
Agents (AGENTS-00), pages 459–466, NY, June 3–7 2000. ACM Press.

[76] S. Kumar, P.R. Cohen, and H.J. Levesque. The Adaptive Agent Architec-
ture: Achieving Fault-Tolerance Using Persistent Broker Teams. In Pro-
ceedings of the 4th International Conference on Multi-Agent Systems, pages
159–166, July 7–12 2000.

[77] D. Kuokka and L. Harada. A communication infrastructure for concurrent
engineering. Artificial Intelligence in Engineering, Design, Analysis and
Manufacturing, 1995.

[78] D. Kuokka and L. Harada. Matchmaking for information agents. In Chris S.
Mellish, editor, Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-95), pages 672–679, Montreal, Que-
bec, Canada, August 1995. Morgan Kaufmann publishers Inc.: San Mateo,
CA, USA.

[79] D. Kuokka and L. Harada. Issues and Extensions for Information Match-
making Protocols. International Journal of Cooperative Information Sys-
tems, 5(2-3):251–273, 1996.

[80] D. R. Kuokka and L. P. Harada. Issues and extensions for information
matchmaking protocols. International Journal of Cooperative Information
Systems, 5(2-3):251–274, 1996.

[81] Y. Labrou. Semantics for an Agent Communication Language. PhD thesis,
Department of Computer Science and Electrical Engineering, University of
Maryland, Baltimore County, 1996.

[82] Y. Labrou and T. Finin. Semantics and Conversations for an Agent Com-
munication Language. In Martha E. Pollack, editor, Proceedings of the
Fifteenth International Joint Conference on Artifical Intelligence (IJCAI-
97), pages 584–591. Morgan Kaufmann publishers Inc.: San Mateo, CA,
USA, 1997.

[83] Y. Labrou, T. Finin, and Y. Peng. Agent Communication Languages: The
Current Landscape. IEEE Intelligent Systems, 14(2):45–52, March/April
1999.

[84] Yannis Labrou and Tim Finin. A semantics approach for KQML-a general
purpose communication language for software agents. In 3rd International
Conference on Information and Knowledge Management, November 1994.

98

[85] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital libraries and
autonomous citation indexing. IEEE Computer, 32(6):67–71, 1999.

[86] E. D. Lazowska, J. L. Zahorjan, G. S. Graham, and K. C. Sevcik. Quanti-
tative System Performance. Prentice-Hall, 1984.

[87] A.Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in
Global Information Systems. Journal of Intelligent Information Systems -
Special Issue on Networked Information Discovery and Retrieval, 5(2):121–
143, 1995.

[88] S.H. Li and P.B. Danzig. Boolean similarity measures for resource discov-
ery. IEEE Transactions on Knowledge and Data Engineering, 9(6):863–876,
November/December 1997.

[89] Shih-Hao Li and Peter B. Danzig. Boolean similarity measures for resource
discovery. TKDE, 9(6):863–876, 1997.

[90] J. Lu, J. Mylopoulos, and J. Ho. Towards Extensible Information Brokers
Based on XML. In Proceedings of CAISE2000, pages 32–46, Stockholm,
Sweden, June 5–9 2000.

[91] C.D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. The MIT Press, Cambridge, Massachusetts, 1999.

[92] D. Martin, A. Cheyer, and D. Moran. The Open Agent Architecture: a
framework for building distributed software systems. Applied Artificial In-
telligence, 13(1-2):91–128, 1999.

[93] P. C. Mitchell. A note about the proximity operators in information retieval.
In Proceedings of SIGIR’73, pages 177–179, 1973.

[94] T. Mohri and Y. Takada. Virtual Integration of Distributed Database by
Multiple Agents. In Setsuo Arikawa and Hiroshi Motoda, editors, Proceed-
ings of the 1st International Conference on Discovery Science (DS-98), vol-
ume 1532 of LNAI, pages 413–414, Berlin, December 14–16 1998. Springer.

[95] E. Moss, editor. Data Engineering – Special Issue on Integrating Text Re-
trieval and Databases, volume 19, March 1996.

[96] A. Moukas. Amalthaea: Information Discovery and Filtering using a Multi-
agent Evolving Ecosystem. Applied Artificial Intelligence: An International
Journal, 11(5):437–457, 1997.

[97] A. Moukas and G. Zacharia. Evolving a Multiagent Information Filtering
Solution in Amalthaea. In W. Lewis Johnson and Barbara Hayes-Roth,
editors, Proceedings of the First International Conference on Autonomous

99

Agents (Agents’97), pages 394–403, New York, February 5–8, 1997. ACM
Press.

[98] G. Navarro and R. A. Baeza-Yates. Proximal Nodes: A Model to Query
Document Databases by Content and Structure. ACM Transactions on
Information Systems, 15(4):400–435, 1997.

[99] J. Nunez-Suarez, D. O’Sullivan, H. Brouchoud, P. Cros, C. Moore, and
C. Byrne. Experiences in the use of FIPA agent technologies for the de-
velopment of a personal travel application. In Proceedings of Agents 2000,
pages 357–364, Barcelona, Spain, 2000.

[100] E. Ogston and S. Vassiliadis. Matchmaking among minimal agents with-
out a facilitator. In Jörg P. Müller, Elisabeth Andre, Sandip Sen, and
Claude Frasson, editors, Proceedings of the Fifth International Conference
on Autonomous Agents, pages 608–615, Montreal, Canada, May 2001. ACM
Press.

[101] M. Paolucci, Z. Niu, K. Sycara, C. Domashnev, S. Owens, and M. Van
Velsen. Matchmaking to Support Intelligent Agents for Portfolio Man-
agement. In Proceedings of the 7th Conference on Artificial Intelligence
(AAAI-99) and of the 12th Conference on Innovative Applications of Arti-
ficial Intelligence (IAAI-99), pages 1125–1126, Menlo Park, CA, July 30–
3 1999. AAAI Press.

[102] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[103] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-
based publish/subscribe systems. In Proceedings of COOPIS-2000, 2000.

[104] U. Pfeifer, N. Fuhr, and T. Huynh. Searching Structured Documents with
the Enhanced Retrieval Functionality of freeWAIS-sf and SFgate. In Pro-
ceedings of the 3rd International World-Wide Web Conference, pages 1027–
1036, 1995.

[105] J. Pitt, F. Guerin, and C. Stergiou. Protocols and Intentional Specifications
of Multi-Party Agent Conversations for Brokerage and Auctions. In Carles
Sierra, Maria Gini, and Jeffrey S. Rosenschein, editors, Proceedings of the
Fourth International Conference on Autonomous Agents, pages 269–276,
Barcelona, Catalonia, Spain, June 2000. ACM Press.

[106] J. Pitt and A. Mamdani. A Protocol-Based Semantics for an Agent Com-
munication Language. In Proceedings of International Joint Conference on
Artificial Intelligence, pages 486–491, Stocholm, Sweden, 1999.

100

[107] J. Pitt and A. Mamdani. Some Remarks on the Semantics of FIPA’s Agent
Communication Language. Autonomous Agents and Multi-Agent Systems,
2(4):486–491, November 1999.

[108] M.F. Porter. An Algorithm for Suffix Striping. Program, 14(3):130–137,
1980.

[109] A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-
architecture. In James F. Allen, Richard Fikes, and Erik Sandewall, editors,
KR’91: Principles of Knowledge Representation and Reasoning, pages 473–
484. Morgan Kaufmann, San Mateo, California, 1991.

[110] M.K. Reiter and A.D. Rubin. Anonymous web transactions with Crowds.
Communications of the ACM, 42(2):32–38, February 1999.

[111] M.D. Sadek. A Study in the Logic of Intention. In Bernhard Nebel, Charles
Rich, and William Swartout, editors, KR’92. Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Third International Confer-
ence, pages 462–473. Morgan Kaufmann, San Mateo, California, 1992.

[112] G. Salton. Automatic Text Processing: The Transformation, Analysis and
Retrieval of Information by Computer. Addison-Wesley, 1989.

[113] J. Searle. Speech Acts. Cambridge Univesity Press, Cambridge, England,
1969.

[114] B. Selman, H. Levesque, and D. Mitchell. GSAT: A new method for solving
hard satisfiability problems. In Proceedings AAAI-92, pages 440–446, San
Jose, CA, USA, 1992.

[115] O. Shehory. A Scalable Agent Location Mechanism. In Proceedings of
ATAL 1999, pages 162–172, 1999.

[116] O. Shehory and K. Sycara. The RETSINA communicator. In Carles
Sierra, Maria Gini, and Jeffrey S. Rosenschein, editors, Proceedings of the
Fourth International Conference on Autonomous Agents, pages 199–200,
Barcelona, Catalonia, Spain, June 2000. ACM Press.

[117] O. Shehory, K. Sycara, P. Chalasani, and S. Jha. Increasing Resource Uti-
lization and Task Performance by Agent Cloning. In Jörg Müller, Munin-
dar P. Singh, and Anand S. Rao, editors, Proceedings of the 5th Interna-
tional Workshop on Intelligent Agents V : Agent Theories, Architectures,
and Languages (ATAL-98), volume 1555 of LNAI, pages 413–426, Berlin,
July 04–07 1998. Springer.

[118] M. Singh. A semantics for speech acts. Annals of Mathematics and Artificial
Intelligence, 8(1-2):47–71, 1993.

101

[119] M.P. Singh. A logic of intentions and beliefs. Journal of Philosophical Logic,
22:513–544, 1993.

[120] M.P. Singh. Agent Communication Languages: Rethinking the Principles.
IEEE Computer, 31(12):40–47, December 1998.

[121] N. Singh, M.R. Genesereth, and M. Syed. A Distributed and Anonymous
Knowledge Sharing Approach to Software Interoperation. International
Journal of Cooperative Information Systems, 4(4):339–368, 1995.

[122] N. Skarmeas and K. Clark. Content-Based Routing as the Basis for Intra-
Agent Communication. In Jörg Müller, Munindar P. Singh, and Anand S.
Rao, editors, Proceedings of the 5th International Workshop on Intelligent
Agents V : Agent Theories, Architectures, and Languages (ATAL-98), vol-
ume 1555 of LNAI, pages 345–362, Berlin, July 04–07 1998. Springer.

[123] S. Soltysiak, T. Ohtani, M. Thint, and Y. Takada. An Agent-Based Intelli-
gent Distributed Information Management System for Internet Resources.
Available at http://www.isoc.org/inet2000/cdproceedings/2f/2f 1.htm.

[124] Sun Microsystems, Inc. Java Distributed Event Specification, 1998.

[125] The Semantic Web web site: http://www.semantic-web.org.

[126] K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic Service Matchmaking
Among Agents in Open Information Environments. SIGMOD Record (ACM
Special Interest Group on Management of Data), 28(1):47–53, 1999.

[127] K. Sycara, J. Lu, M. Klusch, and S. Widoff. Matchmaking among Heteroge-
neous Agents on the Internet. In Proceedings of the 1999 AAAI Symposium
on Intelligent Agents in Cyberspace, March 1999.

[128] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmak-
ing Among Heterogeneous Software Agents in Cyberspace. Autonomous
Agents and Multi-Agent Systems, 5:173–203, 2002.

[129] Y. Takada, T. Mohri, and H. Fujii. Mediators in the Architecture of Future
Information Systems. IEEE Computer, 25(3):38–49, 1992.

[130] Y. Takada, T. Mohri, and H. Fujii. Multi-agent System for Virtually In-
tegrating Distributed Databases. FUJITSU Sci. Tech. Journal, 34(2):245–
255, December 1998.

[131] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond Hierarchies: Design
Considerations for Distributed Caching on the Internet. In Proceedings of
ICDCS 99, May 1999.

102

[132] P. Triantafillou and A. Economides. Subscription Summaries for Scalabil-
ity and Efficiency in Publish/Subscribe Systems. In IEEE Workshop on
Distributed Event-based Systems, July 2002.

[133] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos. Towards
High-Performance Peer-to-Peer Content and Resource Sharing Systems. In
Conference on Innovative Data Systems Research (forthcoming), January
5-9 2003.

[134] A. Umar. Distributed Computing: A Practical Synthesis. Prentice-Hall,
1993.

[135] F. van Harmelen and I. Horrocks. FAQs on OIL: The Ontology Inference
Layer. Trends and Controversies Column. IEEE Intelligent Systems, 15(6),
November 2000.

[136] W3C. XML Path Language (XPath) 1.0. http://www.w3.org/TR/xpath,
1999.

[137] W3C. XQuery 1.0. http://www.w3.org/TR/xquery, 2002.

[138] G. Wiederhold. Intelligent integration of information. In Peter Buneman
and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’93, Washington,
DC, May 26–28, 1993, volume 22(2) of SIGMOD Record (ACM Special
Interest Group on Management of Data), pages 434–437, New York, NY
10036, USA, 1993. ACM Press.

[139] G. Wiederhold. Value-added Mediation in Large-Scale Information Sys-
tems. In R. Meersman and L. Mark, editors, Proceedings of the 6th IFIP
TC-2 Working Conference on Data Semantics (DS-6), pages 34–56, 1995.

[140] G. Wiederhold and M.R. Genesereth. The Conceptual Basis for Mediation
Services. IEEE Expert, 12(5):38–47, 1997.

[141] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kauffman Publishing, San
Francisco, 2nd edition, 1999.

[142] H. Chi Wong and K. Sycara. A Taxonomy of Middle-Agents for the Internet.
In Proceedings of 4th International Conference on Multi Agent Systems
(ICMAS-2000), Boston, Massachusetts, July 2000.

[143] T.W. Yan and H. Garcia-Molina. Distributed selective dissemination of
information. In Proceedings of the 3rd International Conference on Parallel
and Distributed Information Systems (PDIS), pages 89–98, 1994.

103

[144] T.W. Yan and H. Garcia-Molina. Index structures for selective dissem-
ination of information under the boolean model. ACM Transactions on
Database Systems, 19(2):332–364, 1994.

[145] T.W. Yan and H. Garcia-Molina. The SIFT information dissemination
system. ACM Transactions on Database Systems, 24(4):529–565, 1999.

[146] C. Zhang, J. Naughton, D. De Witt, Q. Luo, and G. Lohman. On Support-
ing Containment Queries in Relational Database Management Systems. In
Proceedings ACM SIGMOD International Conference on Management of
Data, 2001.

104

