
Peer-to-Peer Agent Systems for Textual
Information Dissemination: Algorithms and

Complexity

Manolis Koubarakis and Christos Tryfonopoulos

Dept. of Electronic and Computer Engineering
Technical University of Crete
73100 Chania, Crete, Greece

Tel: +30821037222, Fax: +30821037202

{manolis|trifon}@intelligence.tuc.gr, www.intelligence.tuc.gr

Abstract. We discuss the models WP and AWP especially designed for
the selective dissemination of textual information by peer-to-peer agent
systems. We briefly present the syntax and semantics of these models
and concentrate on the complexity of query satisfiability, satisfaction,
filtering and entailment (these four problems arise naturally in the in-
tended application domain). Finally we discuss an efficient algorithm for
the problem of filtering and evaluate it in a realistic application domain.
In previous research we have shown that the problems of satisfaction and
filtering can be solved in PTIME but this paper demonstrates that the
satisfiability and entailment problems are computationally hard (NP-
complete and coNP-complete respectively).

1 Introduction

The selective dissemination of information to interested users is a problem aris-
ing frequently in today’s information society. This problem has recently received
the attention of various research communities including researchers from agent
systems [7, 18], databases [12, 1, 21, 10], digital libraries [11, 17], distributed com-
puting [4, 3] and others.

We envision an information dissemination scenario in the context of a peer-
to-peer agent architecture like the one shown in Figure 1. Users utilize their end-
agents to post profiles or documents (expressed in some appropriate language)
to some middle-agents. End-agents play a dual role: they can be information
producers and information consumers at the same time. The P2P network of
middle-agents is the “glue” that makes sure that published documents arrive at
interested subscribers. To achieve this, middle-agents forward posted profiles to
other middle-agents using an appropriate P2P protocol. In this way, matching
of a profile with a document can take place at a middle-agent that is as close as
possible to the origin of the incoming document. Profile forwarding can be done
in a sophisticated way to minimize network traffic e.g., no profiles that are less
general than one that has already been processed are actually forwarded.

end-
agent

 middle
agent

middle
agent

middle
agent middle

agent

document

document

profile

document

document

end-
agent

end-
agent

end-
agent

end-
agent

profile

document

Fig. 1. A P2P agent architecture for information dissemination

In their capacity as information producers, end-agents can also post adver-
tisements that describe in a “concise” way the documents that will be produced
by them. These advertisements can also be forwarded in the P2P network of
middle-agents to block the forwarding of irrelevant profiles towards a source.
Advertisement forwarding can also be done in a sophisticated way using ideas
similar to the ones for profile forwarding. The most elegant and complete pre-
sentation of these concepts available in the literature can be found in [4] where
the distributed event dissemination system SIENA is presented. SIENA uses dif-
ferent terminology than the one used here: event, client and server instead of
document, end-agent and middle-agent.

Our work in this paper concentrates on models and languages for express-
ing documents and queries/profiles in textual information dissemination systems
that follow the general architecture of Figure 1.1 We are motivated by a desire
to develop useful P2P agent systems in a principled and formal way, and make
the following technical contributions.

In [15, 16, 18] we have proposed the models WP and AWP especially de-
signed for the dissemination of textual information. Data model WP is based
on free text and its query language is based on the boolean model with proximity
operators. The concepts of WP extend the traditional concept of proximity in
IR [2, 5, 6] in a significant way and utilize it in a content language targeted at

1 We use the terms query and profile interchangeably. In an information dissemination
setting, a profile is simply a long-standing query. We do not consider advertisements,
but it should be clear from our presentation that appropriate subsets of the query
languages that we will present could be used for expressing advertisements as well.

information dissemination applications. Data model AWP is based on attributes
or fields with finite-length strings as values. Its query language is an extension
of the query language of data model WP. Our work on AWP complements
other recent proposals for querying textual information in distributed event-
based systems [4, 3] by using linguistically motivated concepts such as word and
not arbitrary strings. This makes AWP potentially very useful in some applica-
tions e.g., alert systems for digital libraries or other commercial systems such as
Dialog2 or Lexis-Nexis3 where similar models are supported already for retrieval.
In [17] we have proposed DIAS, a distributed information alert system for digital
libraries that follows the architecture of Figure 1 and makes use of model AWP.

For an information dissemination architecture like the one in Figure 1 to
become a reality, several algorithmic problems need to be solved efficiently. The
first problem is the satisfaction problem: Deciding whether a document satisfies
(or matches) a profile. The second problem (which includes the first one) is the
filtering problem: Given a database of profiles db and a document d, find all
profiles q ∈ db that match d. This functionality is very crucial at each middle-
agent because we expect deployed information dissemination systems to handle
hundreds of thousands or millions of profiles. In [18] we presented PTIME worst-
case upper bounds for the complexity of satisfaction and filtering, and we are
currently evaluating profile indexing algorithms that allow us to solve the filtering
problem efficiently for millions of profiles [9]. These results are currently leading
to an implementation of a prototype information dissemination system in the
context of project DIET [19, 13].

In this paper, we built on the foundation of [15, 16, 18] and study the com-
putational complexity of query satisfiability and entailment for models WP
and AWP. Our results show that the satisfiability and entailment problems
for queries in WP is NP-complete and coNP-complete respectively. The most
important contributions of our work are the proof techniques we develop for the
upper bounds based on the model theory of WP (the lower bounds are easy to
see). Our results for AWP show that even for queries in some “canonical” form
satisfiability is NP-complete and query entailment is coNP-complete. The proof
techniques utilised here for the derivation of the upper bounds are mappings to
Boolean logic. These techniques are of significant interest again because they
make available to us all the arena of tools from this area for using them in the
solution of practical problems arising in P2P agent systems.

We also concentrate on the problem of filtering and present an efficient algo-
rithm that is able to handle millions of profiles in just a few hundred milliseconds.
We outline this algorithm and evaluate it experimentally in a realistic application
domain.

The four algorithmic problems we are concerned with arise naturally in agent
approaches to information dissemination. [4] were the first to define carefully
the notions of satisfaction and entailment (called “covers” in [4]) for the SIENA
language of events and profiles, but no complexity analysis has been carried out.

2 www.dialog.com
3 www.lexis-nexis.com

[3] presented a similar language for events and profiles with a textual part very
close to the model AWP, but only the problems of satisfaction and filtering
have been considered. Thus our work is the first to address the computational
complexity of query satisfiability and entailment in agent systems.

The rest of the paper is organised as follows. Section 2 presents data model
WP based on free text and its sophisticated query language. Then Section 3
builds on this foundation and develops the same machinery for data model
AWP. Sections 4 and 5 present our complexity results for the problem of query
satisfiability and entailment. Section 6 outlines a filtering algorithm for textual
information dissemination and presents its experimental evaluation. Finally, Sec-
tion 7 gives our conclusions and discusses useful implications of our work. Most
proofs are omitted and will be given in the long version of this paper.

2 The Model WP
Let us start by presenting the data model WP and its query language. WP
assumes that textual information is in the form of free text and can be queried
by word patterns (hence the acronym for the model). The basic concepts of WP
are subsequently used in Section 3 to define the data model AWP and its query
language.

We assume the existence of a finite alphabet Σ. A word is a finite non-empty
sequence of letters from Σ. We also assume the existence of a (finite or infinite)
set of words called the vocabulary and denoted by V.

Definition 1. A text value s of length n over vocabulary V is a total function
s : {1, 2, . . . , n} → V.

In other words, a text value s is a finite sequence of words from the assumed
vocabulary and s(i) gives the i-th element of s. Text values can be used to rep-
resent finite-length strings consisting of words separated by blanks. The length
of a text value s (i.e., its number of words) will be denoted by |s|.

We now give the definition of word pattern. We assume the existence of a set
of (distance) intervals I defined as follows:

I = {[l, u] : l, u ∈ N, l ≥ 0 and l ≤ u} ∪ {[l,∞) : l ∈ N and l ≥ 0}
The symbols ∈ and ⊆ will be used to denote membership and inclusion in an
interval as usual.

Definition 2. Let V be a vocabulary. A word pattern over vocabulary V is an
expression generated by the following grammar:

PF → w | ¬PF | PF ∧ PF | PF ∨ PF | (PF)

P → w1 ≺i1 · · · ≺in−1 wn

WP → PF | P | WP ∧WP | WP ∨WP | (WP)

The start symbol is WP . Terminals w,w1, . . . ,wn represent words of V, and
i1, . . . , in represent intervals of I.

Example 1. The following are examples of word patterns:

constraint ∧ (optimisation ∨ programming)
applications ∧ (constraint ≺[0,0] programming) ∧ ¬e-commerce,

algorithms ∧ ((complexity ≺[1,5] satisfaction) ∨ (complexity ≺[1,5] filtering))

The expressions generated by the first production of the above grammar
are called proximity-free word patterns while the ones generated by the second
production are called proximity word patterns. Operators ≺i are called proximity
operators and are extensions of the traditional IR operators kW and kN [2, 5,
6]. Proximity operators are used to capture the concepts of order and distance
between words in a text document. The proximity word pattern w1 ≺[l,u] w2

stands for “word w1 is before w2 and is separated by w2 by at least l and at most
u words”. In the above example complexity ≺[1,5] satisfaction denotes that
the word “satisfaction” appears after word “complexity” and at a distance of at
least 1 and at most 5 words. The word pattern constraint ≺[0,0] programming
denotes that the word “constraint” appears exactly before word “programming”
so this is a way to encode the string “constraint programming”. We can also have
arbitrarily long sequences of proximity operators with similar meaning. Note that
proximity-free subformulas in proximity word-patterns cannot be more complex
than words. In [15, 16, 18] this restriction is not present as it is the tradition in
IR systems [2, 5, 6] but the resulting language is provably equivalent to the one
developed here.

We now give semantics to word patterns and define the notions of satisfaction,
satisfiability and entailment.

Definition 3. Let V be a vocabulary, s a text value over V and wp a word
pattern over V. The concept of s satisfying wp (denoted by s |= wp) is defined
as follows:

1. If wp is a word of V then s |= wp iff there exists p ∈ {1, . . . , |s|} and
s(p) = wp.

2. If wp is a proximity word pattern of the form w1 ≺i1 · · · ≺in−1 wn then
s |= wp iff there exist p1, . . . , pn ∈ {1, . . . , |s|} such that, for all j = 2, . . . , n
we have s(pj) = wj and pj − pj−1 − 1 ∈ ij−1.

3. If wp is of the form ¬wp1, wp1 ∧ wp2, wp1 ∨ wp2 or (wp1) then s |= wp is
defined exactly as satisfaction for Boolean logic [20].

A word pattern wp is called satisfiable if there is a text value s that satisfies it.
Otherwise it is called unsatisfiable.

Example 2. The word patterns of Example 1 are satisfiable. The following word
patterns are unsatisfiable:

programming∧¬programming, (constraint ≺[0,0] programming)∧¬programming
Definition 4. Let wp1 and wp2 be word patterns. We will say that wp1 entails
wp2 (denoted by wp1 |= wp2) iff for every text value s such that s |= wp1, we
have s |= wp2. If wp1 |= wp2 and wp2 |= wp1 then wp1 and wp2 are called
equivalent (denoted by wp1 ≡ wp2).

Example 3. The word pattern constraint ∧ programming entails constraint.
The word pattern optimization ∧ (constraint ≺[0,0] programming) entails
constraint ≺[0,10] programming.

The following proposition gives the usual relation between entailment and
unsatisfiability of Boolean logic as it should be stated in our framework. Note
that wp2 is required to be proximity-free so that the negation operator can be
applied.

Proposition 1. Let wp1 and wp2 be word patterns and wp2 is proximity-free.
wp1 |= wp2 iff wp1 ∧ ¬wp2 is unsatisfiable.

We now define normal forms for word patterns.

Definition 5. A word pattern is called atomic if it is a word, a negated word or
a proximity word pattern. A word pattern is called conjunctive (resp. disjunctive)
if it is a conjunction (resp. disjunction) of atomic word patterns. A word pattern
is in conjunctive normal form (CNF) (resp. disjunctive normal form (DNF))
if it is a conjunction (resp. disjunction) of disjunctive (resp. conjunctive) word
patterns.

The following easy proposition is from [15].

Proposition 2. Every word pattern is equivalent to a word pattern in CNF and
a word pattern in DNF.

A longer presentation of the semantic properties of model WP and a detailed
discussion of related data models in IR, databases and pub/sub systems is given
in [15, 16, 18, 17].

3 The Model AWP
Data model AWP is based on attributes or fields with finite-length strings as
values (in the acronym AWP, the letter A stands for “attribute”). Strings will
be understood as sequences of words as formalised by the model WP presented
earlier. Attributes can be used to encode textual information such as author,
title, date, body of text and so on. AWP is restrictive since it offers a flat view
of a text document, but it has wide applicability as we show in [15, 16, 18, 17].

We start our formal development by defining the concepts of document
schema and document. Throughout the rest of this paper we assume the ex-
istence of a countably infinite set of attributes U called the attribute universe.

Definition 6. A document schema D is a pair (A,V) where A is a subset of
the attribute universe U and V is a vocabulary.

Definition 7. Let D be a document schema. A document d over schema (A,V)
is a set of attribute-value pairs (A, s) where A ∈ A, s is a text value over V, and
there is at most one pair (A, s) for each attribute A ∈ A.

Example 4. The following is a document over schema ({AUTHOR, TITLE, ABSTRACT},V):

{ (AUTHOR, “John Brown”),
(TITLE, “Local search and constraint programming”),

(ABSTRACT, “In this paper we show that...”) }
The syntax of our query language is given by the following recursive defini-

tion.

Definition 8. Let D = (A,V) be a document schema. A query over D is a
formula in any of the following forms:

1. A � wp where A ∈ A and wp is a positive word pattern over V. A word
pattern is called positive if it does not contain negation. The formula A � wp
can be read as “A contains word pattern wp”.4

2. A = s where A ∈ A and s is a text value over V.
3. ¬φ, φ1 ∨ φ2, φ1 ∧ φ2 where φ, φ1 and φ2 are queries.

Example 5. The following is a query over the schema of Example 4:

AUTHOR � Brown ∧ TITLE � (search ∧ (constraint ≺[0,0] programming))

Let us now define the semantics of the above query language in our dissemi-
nation setting. We start by defining when a document satisfies a query.

Definition 9. Let D be a document schema, d a document over D and φ a
query over D. The concept of document d satisfying query φ (denoted by d |= φ)
is defined as follows:

1. If φ is of the form A � wp then d |= φ iff there exists a pair (A, s) ∈ d and
s |= wp.

2. If φ is of the form A = s then d |= φ iff there exists a pair (A, s) ∈ d.
3. If φ is of the form ¬φ1 then d |= φ iff d �|= φ1.
4. If φ is of the form φ1 ∧ φ2 then d |= φ iff d |= φ1 and d |= φ2.
5. If φ is of the form φ1 ∨ φ2 then d |= φ iff d |= φ1 or d |= φ2.

Example 6. The query of Example 5 is satisfied by the document of Example 4.

The concepts of query satisfiability, entailment and equivalence can now be
defined as in Section 2.

Definition 10. A query is called atomic if it is in one of the following forms:
A = s,¬A = s,A � w,¬A � w, A � wp or ¬A � wp where s is a text value, w
is a word and wp is a proximity word pattern. A query is called conjunctive (resp.
disjunctive) if it is a conjunction (resp. disjunction) of atomic queries. A query
is in conjunctive normal form (CNF) (resp. disjunctive normal form (DNF)) if
it is a conjunction (resp. disjunction) of disjunctive (resp. conjunctive) queries.

4 In previous papers [15, 16, 18, 17] we have used the less intuitive symbol � for “con-
tains”.

The following proposition is easy to see.

Proposition 3. Let A be an attribute and wp1, wp2 be word patterns. Then the
following equivalences hold:

1. A � (wp1 ∧ wp2) ≡ (A � wp1) ∧ (A � wp2)
2. A � (wp1 ∨ wp2) ≡ (A � wp1) ∨ (A � wp2)
3. ¬(A � (wp1 ∧ wp2)) ≡ (¬A � wp1) ∨ (¬A � wp2)
4. ¬(A � (wp1 ∨ wp2)) ≡ (¬A � wp1) ∧ (¬A � wp2)

From Proposition 2 and 3, we now have the following result of [15] which
closes this section.

Proposition 4. Every query is equivalent to a query in DNF and a query in
CNF.

4 Satisfiability and Entailment in WP
We now turn our attention to the satisfiability and entailment problems for
queries in WP. Let the satisfiability problem for proximity-free word patterns
be denoted by PFWP-SAT. There is an obvious connection of PFWP-SAT and
SAT, the satisfiability problem for Boolean logic [20]. Any instance of PFWP-
SAT can be considered to be an instance of SAT and vice versa (this is a trivial
reduction where the roles of words and Boolean variables are interchanged).
Thus we only have to consider the complications arising in our framework due
to proximity word patterns.

In what follows, we will need the binary operation of concatenation of two
text values.

Definition 11. Let s1 and s2 be text values over vocabulary V. Then the con-
catenation of s1 and s2 is a new text value denoted by s1s2 and defined by the
following:

1. |s1s2| = |s1| + |s2|
2. s1s2(x) = s1(x) for all x ∈ {1, . . . , |s1|}, and
3. s1s2(x) = s2(x) for all x ∈ {|s1| + 1, . . . , |s2| + |s1|}

We will also need the concept of the empty text value which is denoted by ε and
has the property |ε| = 0. The following properties of concatenation are easily
seen:

1. (s1s2)s3 = s1(s2s3), for all text values s1, s2 and s3.
2. sε = εs = s for every text value s.

The associativity of concatenation allows us to write concatenations of more
than two text values without using parentheses.

The following variant of the concept of satisfaction captures the notion of
a set of positions in a text value containing only words that contribute to the
satisfaction of a proximity-free word pattern. This concept is used in the results
that follow.

Definition 12. Let V be a vocabulary, s a text value over V, wp a proximity-free
word pattern over V, and P a subset of {1, . . . , |s|}. The concept of s satisfying
wp with set of positions P (denoted by s |=P wp) is defined as follows:

1. If wp is a word of V then s |=P wp iff there exists x ∈ {1, . . . , |s|} such that
P = {x} and s(x) = wp.

2. If wp is of the form wp1 ∧wp2 then s |=P wp iff there exist sets of positions
P1, P2 ⊆ {1, . . . , |s|} such that s |=P1 wp1, s |=P2 wp2 and P = P1 ∪ P2.

3. If wp is of the form wp1 ∨ wp2 then s |=P wp iff s |=P wp1 or s |=P wp2.
4. If wp is of the form (wp1) then s |=P wp iff s |=P wp1.

We also need the following notation. Let P be a subset of the set of natural
numbers N, and x ∈ N. We will use the notation P + x to denote the set of
natural numbers {p+ x : p ∈ P}.

The following lemma is now easy to see.

Lemma 1. Let s and s′ be text values, wp a proximity-free word pattern and
P ⊆ {1, . . . , |s|}. If s |=P wp then ss′ |=P wp and s′s |=P+|s′| wp.

The following proposition shows that positive proximity-free word patterns
are always satisfiable (its proof can be done by induction on the structure of the
word pattern).

Proposition 5. If wp is a positive proximity-free word pattern then wp is sat-
isfiable. In fact, there exists a text value s0 such that

1. |s0| ≤ words(wp) · ops(wp) where words(wp) is the number of words of wp
(multiple occurrences of the same word are multiply counted) and ops(wp) is
the number of operators of wp (or 1 if wp has no operators).

2. Every word of s0 is a word of wp.
3. s0 |={1,...,|s0|} wp.

We can easily show that proximity word patterns are also always satisfiable.

Proposition 6. Let wp be a proximity word-pattern of the form

w1 ≺i1 · · · ≺in−1 wn.

Then wp is satisfied by a text value s = w1v1 · · · vn−1wn where vk, k = 1, . . . , n−
1 are text values of the following form: If begin(ik) > 0 then vk is formed by
begin(ik) successive occurrences of the special word # which is not contained in
wp. Otherwise, vk is the empty text value ε.

Finally, we can show that any positive word pattern is always satisfiable.

Proposition 7. Let wp be a positive word pattern and θ1 ∨ · · · ∨ θk be the DNF
of wp. Then there exists a j ∈ {1, . . . , k}, and text values s0j , s1j , . . . , smj such
that s0js1j · · · smj |= wp and

1. s0j is a sequence of words appearing as conjuncts of disjunct θj, and

2. for i = 1, . . . ,m, sij is a text value such that sij |={1,...,|sij |} φi where
φ1, . . . , φm are all the proximity conjuncts of θj.

The next theorem shows that when negation is introduced, deciding the sat-
isfiability of a word pattern becomes a hard computational problem. But first
we need a lemma that shows that even in the case of arbitrary word patterns,
satisfiability implies satisfaction by a text value of a special form.

Lemma 2. Let wp be a word pattern and θ1 ∨ · · · ∨ θk be the DNF of wp. Then
wp is satisfiable iff there exists j ∈ {1, . . . , k}, and text values s0j , s1j , . . . , smj

such that s0js1j · · · smj |= wp and

1. s0j is a sequence of words appearing non-negated in disjunct θj, and
2. for i = 1, . . . ,m, sij is a text value such that sij |={1,...,|sij |} φi where
φ1, . . . , φm are all the proximity conjuncts of θj.

We can now utilize Lemma 2 to show the upper bound in the following result
(the lower bound is easy).

Theorem 1. Let wp be a word pattern. Deciding whether wp is satisfiable is an
NP-complete problem.

A tractable case of the satisfiability problem for word patterns in WP is
given by the following easy theorem.

Theorem 2. Let wp be a word pattern in DNF. Deciding whether wp is satis-
fiable can be done in O(κ2ζ) time where κ is the maximum number of words in
a conjunct of wp, and ζ is the number of conjuncts.

Let us now turn our attention to the entailment problem in WP. The problem
is easily seen to be coNP-hard from Proposition 1. Using techniques similar to
the ones developed above we can show that to decide whether φ |= ψ for word
patterns φ and ψ it is enough to consider text values of a special form. This allows
to prove that the entailment problem is in coNP thus we have the following result.

Theorem 3. Deciding whether a word pattern in WP entails another is a coNP-
complete problem.

5 Satisfiability and Entailment in AWP
Let us now turn our attention to the satisfiability and entailment problems for
queries in AWP. Let Q denote the class of queries in AWP with the following
property: every positive word pattern wp appearing in formulas of the form
A � wp is in DNF or CNF form. Let SAT(Q) denote the satisfiability problem
for queries in class Q. The following two propositions show that the problems
SAT and SAT(Q) are equivalent under polynomial time reductions.

Proposition 8. SAT is polynomially reducible to SAT(Q).

Proposition 9. SAT(Q) is polynomially reducible to SAT.

Proof. Let φ be a query in Q. Using Proposition 3, φ can easily be transformed
into a formula θ which is a Boolean combination of atomic queries (see Definition
10) using only operators ∧ and ∨. This transformation can be done in time linear
in the size of the formula.

The next step is to substitute in θ atomic formulas A = s and A � wp
(where wp is a word or a proximity word pattern) by propositional variables
pA=s and pA�wp respectively to obtain formula θ′. Finally, the following formulas
are conjoined to θ′ to obtain ψ:

1. If A = s1 and A = s2 are conjuncts of θ′ and s1 �= s2 then conjoin pA=s1 ≡
¬pA=s2 .

2. If A = s and A � wp are conjuncts of θ′ and s |= wp then conjoin pA=s ⊃
pA�wp.

3. If A = s and A � wp are conjuncts of θ′ and s �|= wp then conjoin pA=s ⊃
¬pA�wp.

4. If A � wp1 and A � wp2 are conjuncts of θ′ and wp1 |= wp2 then conjoin
pA�wp1 ⊃ pA�wp2 .

The above step can be done in polynomial time because satisfaction and entail-
ment of word patterns in θ′ can be done in polynomial time.

It is also easy to see that φ is a satisfiable query iff ψ is a satisfiable formula
of Boolean logic. Then the result holds.

Thus we have the following result.

Theorem 4. The problem SAT(Q) is NP-complete.

Given the reduction of Proposition 9, one can discover tractable subcases of
the problem SAT(Q). As an example, an easy reduction from 2-SAT gives us
the following result.

Corollary 1. Let φ be a query of AWP such that each disjunction of φ has
at most two disjuncts. The problem of deciding whether φ is satisfiable can be
solved in PTIME.

Finally, what is important about Proposition 9 is that it gives us a straight-
forward way of evaluating the satisfiability of a query φ by transforming it into
a propositional formula ψ and invoking a well-known propositional satisfiability
algorithm on ψ (e.g., variations of GSAT [22]). One could also devise filtering
algorithms that are based on Boolean logic techniques as it is done for a similar
language in [3].

The following theorem can now be proved using similar ideas.

Theorem 5. The entailment problem for queries of AWP in class Q is coNP-
complete.

0

500

1000

1500

2000

500000 1000000 1500000 2000000 2500000

number of profiles

fi
lt

er
in

g
 t

im
e

(m
s)

BF Pindex

Fig. 2. Matching time vs number of indexed profiles for queries under AWP.

6 Filtering algorithms for AWP

In this section we briefly describe two main memory algorithms suitable for the
filtering problem in P2P agent systems for textual information dissemination.
The algorithms presented are designed for the following class of queries. A query
can be of the form A1 = s1 ∧ ... ∧ An = sn ∧ B1 � wp1 ∧ ... ∧ Bm � wpm,
where Ai, Bi are attributes, si is a text value and wpi is a word pattern containing
conjunctions of words and proximity formulas with only words as subformulas.

The Brute Force algorithm (BF) is a very simple one and was implemented
for comparison purposes. BF maintains a linked list where all the profiles are
stored and each time a new profile arrives it is inserted at the end of this list.
When an incoming document arrives, BF sequentially scans all the profiles to
find those that match it.

The Profile Index algorithm (PIndex) utilises a two level index over profiles
under the model AWP. Each profile of the form A1 = s1 ∧ ... ∧ An = sn ∧ B1 �
wp1 ∧ ... ∧ Bm � wpm is indexed under all its attributes A1, ..., An, B1, ..., Bm

and m words selected randomly from wp1, ..., wpm. To match an incoming doc-
ument against a set of profiles, PIndex utilises the two level index to retrieve
quickly all matching profiles. To facilitate the matching process several data
structures are used; some of them for indexing the profiles, some others for rep-
resenting the incoming document, and there are also auxiliary data structures
that are used in order to improve performance. The details of this algorithm are
omitted for space reasons.

The experiments were carried out using documents downloaded from Re-
searchIndex 5 and realistic profiles, consisting of terms extracted from the docu-
ments. The same documents were previously used in [8]. Both the profiles and
the documents are stored in main memory and the time measured is the mean
matching time for one hundred incoming documents. The experiments were run
on a standard PC with Pentium III 1.6GHz processor and 1GB RAM, running
Linux. As it is shown in Figure 2, PIndex deals with 2.5 million profiles in less
than 500 milliseconds.

7 Conclusions

We discussed the models WP and AWP especially designed for the selective
dissemination of textual information by peer-to-peer agent systems. We briefly
presented the syntax and semantics of these models and concentrated on the
complexity of query satisfiability, satisfaction, filtering and entailment (these
four problems arise naturally in the intended application domain). We also out-
lined two algorithms for the problem of filtering and presented some preliminary
performance evaluation results based on corpus documents and realistic profiles.
We are currently working on more sophisticated filtering algorithms which ex-
ploit similarities among profiles. We are currently also implementing a complete
version of our P2P agent architecture on top of the DIET core software presented
in [14].

Acknowledgements

This work was carried out as part of the DIET (Decentralised Information
Ecosystems Technologies) project (IST-1999-10088), within the Universal Infor-
mation Ecosystems initiative of the Information Society Technology Programme
of the European Union. We would like to thank the other participants in the
DIET project, from Departmento de Teoria de Senal y Comunicaciones, Univer-
sidad Carlos III de Madrid, the Intelligent Systems Laboratory, BTexact Tech-
nologies and the Intelligent and Simulation Systems Department, DFKI, for their
comments and contributions.

We would also like to thank Evangellos Milios and his group at Dalhousie
University for providing us the original Neural Network Corpus.

Special thanks go to Thodoros Koutris and Paraskevi Raftopoulou for their
help in the processing of the corpus and for reading previous versions of this
paper and providing useful comments on it.

References

1. M. Altinel and M.J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proceedings of the 26th VLDB Conference, 2000.

5 www.researchindex.org

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

3. A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficent filtering in
publish-subscribe systems using binary decision diagrams. In Proceedings of the
23rd International Conference on Software Engineering, Toronto, Ontario, Canada,
2001.

4. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and expres-
siveness in an internet-scale event notification service. In Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing (PODC’2000), pages
219–227, 2000.

5. C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Boolean Query Mapping
across Heterogeneous Information Sources. IEEE Transactions on Knowledge and
Data Engineering, 8(4):515–521, 1996.

6. C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting for Trans-
lating Boolean Queries in a Heterogeneous Information System. ACM Transactions
on Information Systems, 17(1):1–39, 1999.

7. K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In
Proceedings of IJCAI-97, 1997.

8. L. Dong. Automatic term extraction and similarity assessment in a domain specific
document corpus. Master’s thesis, Department of Computer Science, Dalhousie
University, Halifax, Canada, 2002.

9. M. Koubarakis et. al. Project DIET Deliverable 7 (Information Brokering), De-
cember 2001.

10. F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe systems.
In Proceedings of ACM SIGMOD-2001, 2001.

11. D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and A. Steidinger. Hermes – A
Notification Service for Digital Libraries. In Proceedings of the Joint ACM/IEEE
Conference on Digital Libraries (JCDL’01), Roanoke, Virginia, USA, 2001.

12. M. J. Franklin and S. B. Zdonik. “Data In Your Face”: Push Technology in Per-
spective. In Proceedings ACM SIGMOD International Conference on Management
of Data, pages 516–519, 1998.

13. A. Galardo-Antolin, A. Navia-Vasquez, H.Y. Molina-Bulla, A.B. Rodriquez-
Gonzalez, F.J. Valvarde-Albacete, A.R. Figueiras-Vidal, T. Koutris, A. Xiruhaki,
and M. Koubarakis. I-Gaia: an Information Processing Layer for the DIET Plat-
form. In Proceedings of the 1st International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS 2002), September 15–19 2002.

14. C. Hoile, F. Wang, E. Bonsma, and P. Marrow. Core specification and experiments
in DIET: a decentralised ecosystem-inspired mobile agent system. In Proceedings
of the 1st International Joint Conference on Autonomous Agents & Multiagent
Systems (AAMAS 2002), September 15–19 2002.

15. M. Koubarakis. Boolean Queries with Proximity Operators for Information Dis-
semination. Proceedings of the workshop on Foundations of Models and Languages
for Information Integration (FMII-2001), Viterbo, Italy , 16-18 September, 2001.
In LNCS (forthcoming).

16. M. Koubarakis. Textual Information Dissemination in Distributed Event-Based
Systems. Proceedings of the International Workshop on Distributed Event-Based
systems (DEBS’02), July 2-3, 2002, Vienna, Austria.

17. M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou. Information
Alert in Distributed Digital Libraries: The Models, Languages and Architecture

of DIAS. In Proceedings of the 6th European Conference on Digital Libraries
(ECDL2002), September 2002. Forthcoming.

18. M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris. Data models
and languages for agent-based textual information dissemination. In Proceedings
of the 6th International Workshop on Cooperative Information Agents (CIA’2002),
September 2002. Forthcoming.

19. P. Marrow, M. Koubarakis, R.H. van Lengen, F. Valverde-Albacete, E. Bonsma,
J. Cid-Suerio, A.R. Figueiras-Vidal, A. Gallardo-Antolin, C. Hoile, T. Koutris,
H. Molina-Bulla, A. Navia-Vazquez, P. Raftopoulou, N. Skarmeas, C. Tryfonopou-
los, F. Wang, and C. Xiruhaki. Agents in Decentralised Information Ecosystems:
The DIET Approach. In M. Schroeder and K. Stathis, editors, Proceedings of the
AISB’01 Symposium on Information Agents for Electronic Commerce, AISB’01
Convention, pages 109–117, University of York, United Kingdom, March 2001.

20. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
21. J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-based

publish/subscribe systems. In Proceedings of COOPIS-2000, 2000.
22. B. Selman, H. Levesque, and D. Mitchell. GSAT: A new method for solving hard

satisfiability problems. In Proceedings AAAI-92, pages 440–446, San Jose, CA,
USA, 1992.

