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1 Introduction
We consider the problem of implementing publish/subscribe (pub/sub) systems
[3] on top of distributed hash tables (DHTs) such as Chord [11]. In pub/sub sys-
tems, clients post continuous queries (or subscriptions) to receive notifications
whenever certain resources of interest are published. There has been lots of work
in the area of pub/sub systems concentrating mostly on algorithms for the filtering
problem: If Q is the set of queries posted to the network and p is a publication,
how do we find efficiently which queries q ∈ Q match p?

This work presents DHTrie, a distributed algorithm that uses a Chord-based
protocol to distribute queries to super-peers and a forest of tries to index these
queries at each super-peer. These data structures are used to solve the filtering
problem efficiently. Our work adopts the super-peer architecture and the lan-
guages of P2P-DIET [8, 6]. Thus our pub/sub network has two kinds of nodes:
super-peers and clients. All super-peers are equal and have the same responsi-
bilities, thus the super-peer subnetwork is a pure P2P network. Each super-peer
serves a fraction of the clients. It is very easy to modify our proposal to work in
the case of pure P2P networks where all nodes are equal. The fundamental differ-
ence of this work and our previous work on P2P-DIET is that DHTrie is based on
ideas from distributed hash tables.
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We use the data model AW P of P2P-DIET for specifying queries and re-
source meta-data. AW P is based on concepts from Information Retrieval (IR) :
the concept of attribute with values of type text [9]. To the best of our knowl-
edge, this is the first paper that discusses how to implement pub/sub systems with
IR-based languages using ideas from DHTs. Other interesting work in this area
which adopts different data models includes [10, 12].

The rest of this extended abstract is organised as follows. Section 3 discusses
the distributed algorithm DHTrie. Section 4 briefly describes algorithm BestFit-
Trie that is the local component of DHTrie run by each super-peer and summarizes
our experimental evaluation of BestFitTrie. Finally, Section 5 discusses work in
progress.

2 The Data Model AW P

In [9] we presented the data model AW P for specifying queries and textual re-
source meta-data. We give here a brief description of the main concepts of AW P
since it is the data model used in the rest of the paper. AW P is based on the
concept of attributes with values of type text. The query language of AW P offers
Boolean and proximity operators on attribute values as in the work of [4] which
is based on the Boolean model of IR.

Let Σ be a finite alphabet. A word is a finite non-empty sequence of letters
from Σ. Let A be a countably infinite set of attributes called the attribute universe.
In practice attributes will come from namespaces appropriate for the application
at hand e.g., from the set of Dublin Core Metadata Elements2. If A ∈ A then VA
denotes a set of words called the vocabulary of attribute A. A text value s of length
n over a vocabulary V is a total function s : {1,2, . . . ,n}→ V .

A publication n is a set of attribute-value pairs (A,s) where A ∈ A , s is a text
value over VA, and all attributes are distinct. The following is a publication:

{ (AUT HOR,“John Smith”),
(T IT LE,“In f ormation dissemination in P2P systems”),

(ABST RACT,“In this paper we show that ...”) }

A query is a conjunction of atomic formulas of the form A = s or A w wp,
where wp is a word pattern containing conjunction of words and proximity for-
mulas with only words as subformulas. The following is an example of a query
under AW P :

(AUT HOR = “John Smith”) ∧
(T IT LE w (peer-to-peer ∧ (selective≺[0,0] dissemination≺[0,3] in f ormation)))

The above query requests all resources that have John Smith as their author,
and their title contains the word peer-to-peer and a word pattern where the word
selective is immediately followed by the word dissemination which in turn is fol-
lowed by the word information after at most three words.

2http://purl.org/dc/elements/1.1/



3 The Algorithm DHTrie
DHTrie uses three levels of indexing to store continuous queries submitted by
clients. The first level corresponds to the partitioning of the global query index
to different super-peers using DHTs as the underlying infrastructure. Each super-
peer is responsible for a fraction of the submitted user queries through a mapping
of attribute-value combinations to super-peer identifiers. The distributed hash ta-
ble infrastructure is used to define the mapping scheme and also manages the
routing of messages between different super-peers.

The other two levels of our indexing mechanism are managed by each one
of the super-peers, as they are used for indexing the user queries that a peer is
responsible for. In the second level each super-peer uses a hash table to index the
attributes contained in a query, whereas in the third level a trie-like structure that
exploits commonalities between atomic queries is utilised.

3.1 Mapping Keys to Super-Peers
We use a Chord-like DHT to implement our super-peer network. Chord [11] uses
consistent hashing to map keys to nodes. Each node and data item is assigned an
k bit identifier, where k is the length of an identifier that should be large enough to
avoid the possibility of different items hashing to the same identifier. Identifiers
can be thought of as being placed on a circle from 0 to 2k−1, called the identifier
circle or Chord ring. If H is the hash function used, then data item r is stored at
the node with identifier H(r) if this node exists. Alternatively, r is stored at the
node whose identifier is the first identifier clockwise in the Chord ring starting
from H(r). This node is called the successor of node H(r) and is denoted by
successor(H(r)). We will say that this node is responsible for data item r.

3.2 Subscribing With a Continuous Query
Let us assume that a client C wants to submit a continuous query q of the form:

A1 = s1 ∧ ... ∧ Am = sm ∧
Am+1 w wpm+1 ∧ ... ∧ An w wpn

C contacts a super-peer S (its access point) and sends it a SUBMITCQUERY(id(C),q)
message, where id(C) is a unique identifier assigned to C by S in their first
communication. When S receives q, it selects a random attribute Ai, 1 ≤ i ≤ n
contained in q and a random word w j from text value si or word pattern wpi
(depending on what kind of atomic formula of query q attribute Ai appears in).
Then S forms the concatenation Aiw j of strings Ai and w j and computes H(Aiw j)
to obtain a super-peer identifier. Finally, S creates FWDCQUERY(id(S), id(q),q)
message and forwards it to super-peer with identifier H(Aiw j) using the routing
infrastructure of the DHT.



When a super-peer receives a FWDCQUERY message containing q, it inserts
q in its local data structures using the insertion algorithm of BestFitTrie described
briefly in Section 4 and also in [13, 7].

3.3 Publishing a Resource
When client C wants to publish a resource, it constructs a publication p of the form
{(A1,s1),(A2,s2), . . . ,(An,sn)}, it contacts a super-peer S and sends S a PUBRE-
SOURCE(id(C), p) message. When S receives p, it computes a list of super-peer
identifiers that are provably a superset of the set of super-peer identifiers respon-
sible for queries that match p. This list is computed as follows. For every attribute
Ai, 1 ≤ i ≤ n in p, and every word w j in si, S computes H(Aiw j) to obtain a list
of super-peer identifiers that, according to the DHT mapping function, store con-
tinuous queries containing word w j in the respective text value si or word pattern
wpi of attribute Ai. S then sorts this list in ascending order starting from id(S)
to obtain list L and creates a FWDRESOURCE(id(S), id(p), p,L) message, where
id(p) is a unique metadata identifier assigned to p by S, and sends it to super-peer
with identifier equal to head(L). This forwarding is done as follows: message
FWDRESOURCE is sent to a super-peer S′, where id(S′) is the greatest identifier
contained in the finger table of S, for which id(S′)≤ head(L) holds.

Upon reception of a FWDRESOURCE message by a super-peer S, head(L) is
checked. If id(S) = head(L) then S removes head(L) from list L and makes a
copy of the message. The publication part of this message is then matched with
the super-peer’s local query database and subscribers are notified (the details of
this are presented in Section 3.4). Finally, S forwards the message to super peer
with identifier head(L). If id(S) is not in L, then it just forwards the message as
described in the previous paragraph.

3.4 Notifying Interested Subscribers
Let us now examine how notifications about published resources are sent to in-
terested subscribers. When a FWDRESOURCE message containing a publication
p of a resource arrives at a super-peer S, the continuous queries matching p are
found by utilising its local index structures and using the algorithm BestFitTrie
briefly described in Section 4 and also in [13, 7].

Once all the matching queries have been retrieved from the database, S creates
a notification message of the form CQNOTIFICATION(id(C), l(r),L,T ), where
l(r) is a link to the resource, L is a list of identifiers of the super-peers that are
intended recipients of the notification message, and T is a list containing the query
identifiers of the queries that matched p. List L is created as follows. S finds all
super-peers that have at least one client with a query q satisfied by p. Then it sorts
the list in ascending order starting from id(S) and removes duplicate entries. The
notification message is then forwarded according to the algorithm described in



Id Query Ai w wpi Identifying Subsets
0 Ai w databases {databases}
1 Ai w relational ≺[0,2] databases {databases, relational}
2 Ai w databases ∧ relational {databases, relational}
3 Bi w (software ≺[0,2] neural ≺[0,0] net-

works) ∧ (software ≺[0,3] relational ≺[0,0]

databases)

{databases, relational,
neural}, ...

4 Ai w optimal ∧ (artificial ≺[0,0] intelli-
gence) ∧ relational ∧ databases

{databases, relational,
artificial, intelligence,
optimal}, ...

5 Ai w artificial ∧ relational ∧ intelligence ∧
databases ∧ knowledge

{databases, relational,
artificial, intelligence,
knowledge }, ...

Table 1: Identifying subsets of words(wpi) with respect to S = {words(wpi), i =
0, . . . ,5}.

Section 3.3.
Upon arrival of a CQNOTIFICATION message at a super-peer S, head(L) is

checked to find out whether S is an intended recipient of the message. If it is not,
S just forwards the message to another super-peer using information from its fin-
ger table and the algorithm described in Section 3.3. If head(L) = id(S), then S
scans T to find the set U of query identifiers that belong to clients that have S as
their access point, by utilising a hash table that associates query identifiers with
client identifiers. For each distinct query identifier in set U , a MATCHINGRE-
SOURCE(id(S), id(q), l(r)) message is created and forwarded to the appropriate
client. Finally S removes head(L) from L and U from T , and forwards CQNOTI-
FICATION message according to the algorithm described in Section 3.3.

4 Local Algorithms and Data Structures
In this section we describe the indexing structures that are used locally by each
super-peer to store the continuous queries it is responsible for. These indexing
structures are utilised in the step of DHTrie described in Section 3.4 to find effi-
ciently which queries match a given publication.

4.1 The Algorithm BestFitTrie
To index queries BestFitTrie utilises an array, called the attribute directory (AD),
that stores pointers to word directories. AD has one element for each distinct at-
tribute in the query database. For a query of the form presented in Section 3.2, a
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Figure 1: Organisation of the atomic queries of Table 1

word directory WD(Ai), m+1≤ i≤ n is a hash table that provides fast access to
roots of tries in a forest that is used to organize sets of words – the set of words
in wpi for each atomic formula Ai w wpi in a query (denoted by words(wpi)).
The proximity formulas contained in each wpi are stored in an array called the
proximity array (PA). PA stores pointers to trie nodes (words) that are operands
in proximity formulas along with the respective proximity intervals for each for-
mula. There is also a hash table, called equality table (ET), that indexes all text
values s j, 1≤ j≤m that appear in atomic formulas of the form A j = s j. The main
idea behind BestFitTrie is to identify common parts between queries (through the
use of identifying subsets; an example is shown in Table 1) and to exploit these
commonalities to achieve faster filtering. BestFitTrie is described in detail in [13].

To evaluate the performance of BestFitTrie we have also implemented algo-
rithms BF, SWIN and PrefixTrie. BF (Brute Force) has no indexing strategy and
scans the query database sequentially to determine matching queries. SWIN (Sin-
gle Word INdex) utilises a two-level index for accessing queries in an efficient
way. A query of the form presented at Section 3.2, is indexed by SWIN under all
its attributes A1, . . . ,An and also under m text values s1, . . . ,sm and n−m words
selected randomly from wpm +1, . . . ,wpn. More specifically SWIN utilises an ET
to index equalities and an AD pointing to several WDs to index the atomic con-
tainment queries. Atomic queries within a WD slot are stored in a list. PrefixTrie
is an extension of the algorithm Tree of [14] appropriately modified to cope with
attributes and proximity information. Tree was originally proposed for storing
conjunctions of keywords in secondary storage in the context of the SDI system
SIFT. Following Tree, PrefixTrie uses sequences of words sorted in lexicographic
order for capturing the words appearing in the word patterns of atomic formu-
las (instead of sets used by BestFitTrie). A trie is then used to store sequences



compactly by exploiting common prefixes [14].
Algorithm BestFitTrie constitutes an improvement over PrefixTrie. Because

PrefixTrie examines only the prefixes of sequences of words in lexicographic or-
der to identify common parts, it misses many opportunities for clustering (see
Figure 1(b) where the trie constructed by PrefixTrie for the example queries of
Table 1 is shown). BestFitTrie keeps the main idea behind PrefixTrie but (i) han-
dles the words contained in a query as a set rather than as a sorted sequence and
(ii) searches exhaustively the forest of tries to discover the best place to introduce
a new set of words. This allows BestFitTrie to achieve better clustering as shown
in Figure 1, where we can see that it needs only one trie to store the set of words
for the formulas of Table 1, whereas PrefixTrie introduces redundant nodes that
are the result of using a lexicographic order to identify common parts. This node
redundancy can be the cause of deceleration of the filtering process as we will
show in the next section. To improve beyond BestFitTrie it would be interesting
to consider re-organizing the word directory every time a new set of words ar-
rives, or periodically, but this might turn out to be prohibitively expensive. In this
work we have not explored this approach in any depth.

4.2 Experimental Evaluation
To evaluate the performance of our local indexing structures we used set of doc-
uments downloaded from ResearchIndex3 and originally compiled in [5]. The
documents are research papers in the area of Neural Networks and we will refer
to them as the NN corpus. Because no database of queries was available to us,
we developed a methodology for creating user queries using words and technical
terms (phrases) extracted automatically from the Research Index documents using
the C-value/NC-value approach of [5].

All the algorithms were implemented in C/C++, and the experiments were
run on a PC, with a Pentium III 1.7GHz processor, with 1GB RAM, running
Linux. The results of each experiment are averaged over 10 runs to eliminate any
fluctuations in the time measurements.

The first experiment that we conducted to evaluate BestFitTrie targeted the
performance under different sizes of the query database. In this experiment we
randomly selected one hundred documents from the NN corpus and used them
as incoming documents in query databases of different sizes. The size and the
matching percentage for each document used was different, but the average docu-
ment size was 6869 words, whereas on average 1% of the queries stored matched
the incoming documents.

As we can see in Figure 2, the time taken by each algorithm grows linearly
with the size of the query database. However SWIN, PrefixTrie and BestFitTrie
are less sensitive than Brute Force to changes in the query database size. The

3http://www.researchindex.com
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Figure 2: Effect of the query database size in filtering time

trie-based algorithms outperform SWIN mainly due to the clustering technique
that allows the exclusion of more non-matching atomic queries during filtering.
We can also observe that the better exploitation of the commonalities between
queries improves the performance of BestFitTrie over PrefixTrie, resulting in a
significant speedup in filtering time for large query databases (BestFitTrie is 20%
faster than PrefixTrie and 1000% faster than sequential scan for a database of 3
million queries). Additionally, Figure 3 contrasts the algorithms in terms of query
insertion time. In this figure we can see the average time in milliseconds needed
to insert a new query in a query database of different sizes. Notice that in the case
of 2.5 millions of queries BestFitTrie needs 5 milliseconds more to insert a query
into the database, to save about 45 milliseconds at filtering time.

Comparison of the algorithms in terms of throughput results in BestFitTrie
giving the best filtering performance managing to process a load of about 150KB
(about 9 ResearchIndex papers) per second for a query database of 3 million
queries.

In terms of space requirements BF needs about 15% less space than the trie-
based algorithms, due to the simple data structure that poses small space require-
ments. Additionally the rate of increase for the two trie-based algorithms is similar
to that of BF, requiring a fixed amount of extra space each time. From the experi-
ments above it is clear that BestFitTrie speeds up the filtering process with a small
extra storage cost, and proves faster than the rest of the algorithms, managing to
filter as much as 3 million queries in less the 200 milliseconds, which is about 10
times faster than the sequential scan method.

We have also evaluated the performance of the algorithms under two other
parameters: document size and percentage of queries matching a published docu-
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ment. Document size does not appear to significantly affect trie-based algorithms
mainly due to the data structures used for the representation of an incoming doc-
ument and the way the matching process is carried out. On the other hand the
percentage of the stored queries that match an incoming document seem to have
less effect on SWIN. In this experiment BestFitTrie seemed more sensitive than
PrefixTrie to the matching percentage, but still proved more efficient in terms of
filtering time and throughput.

Finally we have developed various heuristics for ordering words in the tries
maintained by PrefixTrie and BestFitTrie when word frequency information (or
word ranking) is available, as it is common in IR research [2]. Using the inverse
rank heuristic (irank) [14], we store the least frequent words of the queries near
the roots of the tries, while the frequent ones are pushed deeper in the tries, re-
sulting in many narrow tries. Thus more queries are put in subtrees of words
occurring less frequently, resulting in less lookups during filtering time. The al-
gorithms using the irank heuristic are PrefixTrie-irank and BestFitTrie-irank. The
faster algorithm is shown to be a variation of BestFitTrie, called LCWTrie (Least
Common Word), where BestFitTrie is limited to consider a single candidate trie
during query insertion: the one that has the least frequent word of the atomic query
as root. The details of the experiments briefly mentioned above are presented in
detail in [13].

5 Work in Progress
Performance evaluation in the distributed case. To evaluate the performance
and scalability of DHTrie we are currently implementing the algorithms of Sec-



tion 3. We plan to evaluate DHTrie by considering its behaviour (mainly expressed
in terms of message load between super-peers) under various parameters (query
and resource size, arrival rates of queries and resources, number of super-peers,
etc.). Furthermore we plan to extend the algorithm to take locality issues into
account by maintaining extra routing tables for the most frequently contacted
supers-peers (namely the super-peers responsible for the most frequent words
published).
Load balancing. A key problem that arises when trying to partition the query
space among the different super-peers in our overlay network is load balancing.
The idea here is to avoid having overloaded peers i.e., peers having to handle
a great number of posted queries (this is what [1] calls storage load balancing;
although the paper [1] is not in a pub/sub setting, the concept is the same).

In addition, we would like to have a way to deal with the load balancing prob-
lem posed to super-peers that are responsible for pairs (A,w), where word w ap-
pears frequently in text values involving A. We expect the frequency of occurrence
of words appearing in a query within an atomic formula with attribute A to follow
a non-uniform distribution (e.g., a skewed distribution like the Zipf distribution
[15]). We do not know of any study that has shown this by examining collections
of user queries; however, such an assumption seems intuitive especially in the
light of similar distributions of words in text collections [2]. As an example, in a
digital library application we would expect distinguished author names to appear
frequently in queries with the AUTHOR attribute, or popular topics to appear fre-
quently in queries with the TITLE attribute. Thus in our case, uniformity of data
items (i.e., queries) as traditionally assumed by DHTs is not applicable.

We are currently working on addressing the above load balancing problems by
utilizing ideas from the algorithm LCWTrie described in detail in [13, 7] where
queries are indexed under infrequent words; we also use a form of controlled
replication to deal with overloading due to notification processing. It would be
interesting to compare this approach to what is advocated in [1].
Word frequency computation in a distributed setting. Computing the frequency
of occurrence of words in a distributed setting is a crucial problem if one wants
to support vector space queries or to provide for load balancing among peers as
showed above. There are mainly two approaches to the word frequency compu-
tation in a distributed setting; (a) a global ranking scheme that assumes a central
authority that maintains the frequency information or a message-intensive update
mechanism that notifies every peer in the network about changes in frequency in-
formation or (b) a local ranking scheme that computes word frequencies of peer
pi based solely on frequencies of words in documents that are published at pi. It
is clear that the first approach affects the scalability and efficiency of the system
while the second approach can be misleading due to peer specialisation.

In related work we present a distributed word ranking algorithm that is a hy-
brid form of the two approaches described earlier. It provides an algorithm that
is based on local information, but also tries to combine this information with the



global “truth” through an updating and estimation mechanism.
Reducing network traffic. We can reduce network traffic by compressing publi-
cations. In the full version of the paper we describe a gap compression technique
that allows the matching of a compressed publication against a database of user
queries using algorithm BestFitTrie.
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