
Approximate Information Filtering
in Peer-to-Peer Networks

Christian Zimmer1, Christos Tryfonopoulos1, Klaus Berberich1,
Manolis Koubarakis2, and Gerhard Weikum1

1 Max-Planck-Institute for Informatics, Saarbrcken, Germany
2 National and Kapodistrian University of Athens, Greece

{czimmer,trifon,kberberi,weikum}@mpi-inf.mpg.de,
koubarak@di.uoa.gr

Abstract. Most approaches to information filtering taken so far have the under-
lying hypothesis of potentially delivering notifications from every information
producer to subscribers. This exact publish/subscribe model creates an efficiency
and scalability bottleneck, and might not even be desirable in certain applica-
tions. The work presented here puts forward MAPS, a novel approach to support
approximate information filtering in a peer-to-peer environment. In MAPS a user
subscribes to and monitors only carefully selected data sources, and receives no-
tifications about interesting events from these sources only. This way scalability
is enhanced by trading recall for lower message traffic. We define the protocols
of a peer-to-peer architecture especially designed for approximate information
filtering, and introduce new node selection strategies based on time series anal-
ysis techniques to improve data source selection. Our experimental evaluation
shows that MAPS is scalable; it achieves high recall by monitoring only few data
sources.1

1 Introduction

Much information of interest to humans is available today on the Web, making it
extremely difficult to stay informed without sifting through enormous amounts of
information. In such a dynamic setting, information filtering (IF), also referred to as
publish/subscribe, continuous querying, or information push, is equally important to
one-time querying, since users are able to subscribe to information sources and be noti-
fied when documents of interest are published. This need for content-based push tech-
nologies is also stressed by the deployment of new tools such as Google Alert or the
QSR system [1]. In an IF scenario, a user posts a subscription (or continuous query) to
the system to receive notifications whenever certain events of interest take place (e.g.,
when a paper on distributed systems becomes available).

In this paper we put forward MAPS (Minerva Approximate Publish/Subscribe), a
novel architecture to support content-based approximate information filtering in peer-
to-peer (P2P) environments. While most information filtering approaches taken so far
have the underlying hypothesis of potentially delivering notifications from every infor-
mation producer, MAPS relaxes this assumption by monitoring only selected sources

1 This work has been partly supported by the EU project AEOLUS and EVERGROW.

J. Bailey et al. (Eds.): WISE 2008, LNCS 5175, pp. 6–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximate Information Filtering in Peer-to-Peer Networks 7

that are likely to publish documents relevant to the user’s interests in the future. In
MAPS, a user subscribes with a continuous query and monitors only the most inter-
esting sources in the network. Only published documents from these sources are for-
warded to him. The system is responsible for managing the user query, discovering
new potential sources and moving queries to better or more promising sources. Since
in an IF scenario the data is originally highly distributed residing on millions of sites
(e.g., with people contributing to blogs), a P2P approach seems an ideal candidate for
such a setting. However, exact pub/sub functionality has proven expensive for such
distributed environments [2,3,4]. MAPS offers a natural solution to this problem, by
avoiding document granularity dissemination as it is the main scalability bottleneck of
other approaches.

As possible application scenarios for MAPS consider the case of news filtering (but
with the emphasis on information quality rather than timeliness of delivery) or blog
filtering where users subscribe to new posts. Not only do these settings pose scalabil-
ity challenges, but they would also incur an information avalanche and thus cognitive
overload to the subscribed users, if the users were alerted for each and every new docu-
ment published at any source whenever this matched a submitted continuous query. Our
approximate IF approach ranks sources, and delivers matches only from the best ones,
by utilizing novel publisher selection strategies. Despite that the presented approach
focuses on a P2P setting based on Distributed Hash Tables (DHT) [21,19], notice that
our architecture can also be realized in other settings, like a single server monitoring
a number of distributed sources, or a farm of servers in a data center providing an
alerting service. In the light of the above, the contributions presented in this paper are
threefold:

– We define a network-agnostic P2P architecture and its related protocols for support-
ing approximate IF functionality in a P2P environment. To the best of our knowl-
edge this is the first approach that looks into the problem of approximate IF in such
a setting.

– We show that traditional resource selection strategies are not sufficient in this set-
ting, and devise a novel method to predict publishing behavior based on time series
analysis of IR metrics. This technique allows us to improve recall, while monitoring
only a small number of publishers.

– We present an extensive experimental study of our prediction mechanism in terms
of recall, and evaluate our protocols in terms of message load in the network.

In previous work, we have compared exact and approximate information filtering in
[5], applied approximate IR and IF to the digital library domain [6], and investigated
different time series analysis methods [7]. The current paper extends the core ideas
behind approximate IF by elaborating on the protocols, discussing in detail our pre-
diction mechanisms, and presenting an extensive experimental evaluation of our
approach.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
Section 3 presents the MAPS architecture and discusses the related protocols, while Sec-
tion 4 introduces our node selection method. Experimental results are presented in Sec-
tion 5, and Section 6 concludes this paper.

8 C. Zimmer et al.

2 Related Work

Database research on continuous queries has its origins in [8] and systems like OpenCQ
[9] and NiagaraCQ [10]. These papers offered centralized solutions to the problem
of continuous query processing. More recently, continuous queries have been stud-
ied in depth in the context of monitoring and stream processing with various cen-
tralized [11,12] and distributed proposals [13,14,15]. The efforts to improve network
efficiency and reduce delivery delays in content-based pub/sub systems lead to ap-
proaches like HYPER [16], where a hybrid architecture that exploits properties of
subject-based pub/sub approaches is presented. Hermes [17] was one of the first pro-
posals to use a Distributed Hash Table (DHT) for building a topic-based pub/sub sys-
tem, while PeerCQ [13] utilized a DHT to build a content-based system for processing
continuous queries. Finally, Meghdoot [18] utilized the CAN DHT [19] to support an
attribute-value data model and offered new ideas for the processing of subscriptions
with range predicates and load balancing.

Recently, several systems that employed an IR-based query language to support in-
formation filtering on top of structured overlay networks have been deployed. DHTrie
[3] extended the Chord protocol [21] to achieve exact information filtering functionality
and applied document-granularity dissemination to achieve the recall of a centralized
system. In the same spirit, LibraRing [20] presented a framework to provide informa-
tion retrieval and filtering services in two-tier digital library environments. Similarly,
pFilter [2] used a hierarchical extension of the CAN DHT [19] to store user queries
and relied on multi-cast trees to notify subscribers. In [4], the authors show how to
implement a DHT-agnostic solution to support prefix and suffix operations over string
attributes in a pub/sub environment.

Query placement, as implemented in exact information filtering approaches such as
[2,3], is deterministic, and depends upon the terms contained in the query and the hash
function provided by the DHT. These query placement protocols lead to filtering ef-
fectiveness of a centralized system. Compared to a centralized approach, [2,3] exhibit
scalability, fault-tolerance, and load balancing at the expense of high message traffic at
publication time. In MAPS, only the most promising nodes store a user query and are
thus monitored. Publications are only matched against its local query database, since,
for scalability reasons, no publication forwarding is used. Thus, in the case of approx-
imate filtering, the recall achieved is lower than that of exact filtering, but document-
granularity dissemination to the network is avoided.

3 The MAPS Protocols

3.1 The Directory Protocol

MAPS utilizes a conceptually global, but physically distributed directory, which can be
layered on top of a Chord-style DHT [21], and manages aggregated information about
each node’s local knowledge in compact form, similarly to [22]. The DHT partitions the
term space, such that every node is responsible for the statistics of a randomized subset
of terms within the directory. To keep IR statistics up-to-date, each node distributes per-
term summaries of its local index along with contact information to the directory. For

Approximate Information Filtering in Peer-to-Peer Networks 9

efficiency reasons, these messages can be piggy-backed to DHT maintenance messages
with applying batching strategies.

To facilitate message sending, we will use the function send(msg, I) to send mes-
sage msg to the node responsible for identifier I . This is similar to the Chord function
lookup(I) [21], and costs O(log n) overlay hops for a network of n nodes. In MAPS,
every publisher node uses POST messages to distribute per-term statistics.

Let us now examine how a publisher node P updates the global directory when
T = {t1, t2, . . . , tk} denotes the set of all terms contained in document publications
of P occurring after the last update. For each term ti ∈ T , P computes the maximum
frequency of occurrence of term ti within the documents contained in P ’s collection
(tfmax

ti
), the number of documents in the document collection of P that ti is contained

in (dfti), and the size of the document collection cs. Having collected the statistics for
term ti, P creates message POST(id(P), ip(P), tfmax

ti
, dfti , cs, ti), where id(P) is the

identifier of node P and ip(P) is the IP address of P . P then uses function send()
to forward the message to the node D responsible for identifier H(ti) (i.e., the node
responsible for maintaining statistics for term ti by using the Chord hash function H
mapping terms to identifiers). Once a node D receives a POST message, it stores the
statistics for P in its local post database to keep them available on request for any
node. Finally, notice that our architecture allows the usage of any type of P2P network
(structured or unstructured), given that the necessary information (i.e., the per-node IR
statistics) is made available through appropriate protocols.

3.2 The Subscription Protocol

The subscription protocol is responsible for selecting the publishers that will index a
query. The node selection procedure utilizes the directory to discover and retrieve node
statistics that will guide query indexing. Then, a ranking of the potential sources is
performed and the query is sent to the top-k ranked publishers. The publishers storing
the query are the only ones that will be monitored for new publications.

Let us assume that a subscriber node S wants to subscribe with a multi-term query q
of the form t1t2 . . . tk with k distinct terms. To do so, S needs to determine which nodes
in the network are promising candidates to satisfy the continuous query with appropriate
documents published in the future. This source ranking can be decided once appropriate
statistics about data sources are collected from the directory, and a ranking of these
sources is calculated based on the node selection strategy described in Section 4.

To collect statistics about the data sources, S needs to contact all directory nodes
responsible for the query terms. Thus, for each query term ti, S computes H(ti),
which is the identifier of the node responsible for storing statistics about other nodes
that publish documents containing the term ti. Subsequently, S creates message COL-
LECTSTATS(id(S), ip(S), ti), and uses the function send() to forward the message
in O(log n) hops to the node responsible for identifier H(ti). Notice that the message
contains ip(S), so its recipient can directly contact S.

When a node D receives a COLLECTSTATS message asking for the statistics of term
ti, it searches its local post store to retrieve the node list Li of all posts of the term.
Subsequently, a message RETSTATS(Li, ti) is created by D and sent to S using its IP
found in the COLLECTSTATS message. This collection of statistics is shown in step 1

10 C. Zimmer et al.

subscription
step

S

P3P2

P1

D1

D2

S : subscriber node

Pi : publisher node

Di : directory node

1

1

2

2 2

message sent
node-to-node

message sent
using DHT

publication & notification
step

S

P3P2

P1

S : subscriber node

Pi : publisher node

3

3

message sent
node-to-node

message sent
using DHT

P4

Fig. 1. Illustration of the MAPS protocols

of Figure 1, where S contacts directory nodes D1 and D2. Once S has collected all
the node lists Li for the terms contained in q, it utilizes an appropriate scoring function
score(N, q) to compute a node score with respect to q, for each one of the nodes N
contained in Li. Based on the score calculated for each node, a ranking of nodes is
determined and the highest ranked nodes are candidates for storing q.

Once the nodes that will store q have been determined, S constructs message IN-
DEXQ(id(S), ip(S), q) and uses the IP addresses associated with the node to forward
the message to the nodes that will store q. When a publisher P receives a message IN-
DEXQ containing q, it stores q using a local query indexing mechanism such as [23,24].
This procedure is shown in step 2 of Figure 1, where S contacts publishers P1, P2
and P3.

Nodes publishing documents relevant to q, but not indexing q, will not produce any
notification, simply because they are not aware of q. Since only selected nodes are mon-
itored for publications, the node ranking function becomes a critical component, which
will determine the final recall achieved. This scoring function can be based on standard
resource selection approaches from the IR literature (e.g. CORI [25]). However, as we
show in Section 4.2, these approaches alone are not sufficient in an IF setting, since
they where designed for retrieval scenarios, in contrast to the IF scenario considered
here, and are aimed at identifying specialized authorities. Filtering and node selection
are dynamic processes, therefore periodic query repositioning, based on user-set prefer-
ences, is necessary to adapt to changes in publisher’s behavior. To reposition an already
indexed query q, a subscriber re-executes the subscription protocol.

3.3 Publication and Notification Protocol

When a document d is published by P , it is matched against P ’s local query database
to determine which subscribers should be notified. Then, for each subscriber S, P con-
structs a notification message NOTIFY(id(P), ip(P), d) and sends it to S using the IP
address associated with the stored query (shown in step 3 of Figure 1). Notice that
nodes publishing documents relevant to a query q, but not storing it, will produce no
notification (e.g., node P4 in Figure 1).

Approximate Information Filtering in Peer-to-Peer Networks 11

4 Node Selection Strategy

To select which publishers should be monitored, the subscription protocol of Section 3.2
uses a scoring function to rank nodes. In our approach the subscriber computes a node
score based on a combination of resource selection and node behavior prediction for-
mulas as shown below:

score(P, q) = α · sel(P, q) + (1 − α) · pred(P, q) (1)

In Equation 1, q is a query, P is a publisher node, and sel(P, q) and pred(P, q) are
scoring functions based on resource selection and prediction methods respectively that
assign a score to a node P with respect to a query q. Here, score(P, q) is the scoring
function that decides the final score. The tunable parameter α affects the balance be-
tween authorities (high sel(P, q) scores) and nodes with potential to publish matching
documents in the future (high pred(P, q) scores). Based on these scores, a ranking of
nodes is determined and q is forwarded to the highest ranked nodes. Notice that our
node selection strategy is general and can also be used in centralized settings, where
a server (instead of the distributed directory of Section 3.1) maintains the necessary
statistics, and mediates the interaction between publishers and subscribers.

To show why an approach that relies only on resource selection is not sufficient,
and give the intuition behind node behavior prediction, consider the following example.
Assume a node P1 that has specialized and become an authority in sports, but pub-
lishes no relevant documents any more. Another node P2 is not specialized in sports,
but is currently crawling a sports portal. Imagine a user who wants to stay informed
about the upcoming 2008 Olympic Games, and subscribes with the continuous query
2008 Olympic Games. If the ranking function solely relied on resource selection, node
P1 would always be chosen to index the user’s query, which would be wrong given
that node P1 no longer publishes sports-related documents. On the other hand, to be
assigned a high score by the ranking function, node P2 would have to specialize in
sports – a long procedure that is inapplicable in a IF setting which is by definition dy-
namic. The fact that resource selection alone is not sufficient is even more evident in the
case of news items. News items have a short shelf-life, making them the worst candi-
date for slow-paced resource selection algorithms. The above example shows the need
to make slow-paced selection algorithms more sensitive to the publication dynamics in
the network. We employ node behavior prediction to cope with these dynamics. The
main contribution of our work with respect to predicting node behavior, is to view the
IR statistics as time series and use statistical analysis tools to model node behavior.
Time series analysis accounts for the fact that the observations have some sort of inter-
nal structure (e.g., trend, seasonality etc.), and uses this fact to analyze older values and
predict future ones.

4.1 Time Series Analysis

To predict node behavior, we consider time series of IR statistics, thus making a rich
repository of techniques from time series analysis [26] applicable. These techniques

12 C. Zimmer et al.

predict future time series values based on past observations and differ in (i) their as-
sumptions about the internal structure (e.g., whether trends and seasonality can be ob-
served) and (ii) their flexibility to put emphasis on more recent observations. Since
the considered IR statistics exhibit trends, for instance, when nodes successively crawl
sites that belong to different topics, or, gradually change their thematic focus, the em-
ployed time series prediction technique must be able to deal with trends. Further, in
our scenario we would like to put emphasis on a node’s recent behavior and thus assign
higher weight to recent observations when making predictions about its future behavior.
We choose double exponential smoothing (DES) as a prediction technique, since it can
both deal with trends and put emphasis on more recent observations. Its explanation
is included in detail in [7] in combination with optimized method to apply DES in the
MAPS setting.

For completeness we mention that there is also triple exponential smoothing that, in
addition, handles seasonality in the observed data. For an application with many long-
lasting queries, one could use triple-exponential smoothing, so that seasonality is taken
into account.

4.2 Node Behavior Prediction

The function pred(P, q) returns a score for a node P that represents the likelihood of
publishing documents relevant to query q in the future. Using the DES technique, two
values are predicted. First, for all terms t in query q, we predict the value for dfP,t (de-
noted as d̂fP,t), and use the difference (denoted as δ(d̂fP,t)) between the predicted and
the last value obtained from the directory to calculate the score for P (function δ sig-
nifies difference). Value δ(d̂fP,t) reflects the number of relevant documents that P will
publish in the next time-unit. Second, we predict δ(ĉs) as the difference in the collection
size of node P reflecting the node’s overall expected future publishing activity. We thus
model two aspects of the node’s behavior: (i) its potential to publish relevant documents
in the future, and (ii) its overall expected future publishing activity. The time series of
IR statistics that are needed as an input to our prediction mechanism are obtained using
the distributed directory. The predicted behavior for node P is quantified as follows:

pred(P, q) =
∑

t∈q

log
(
δ(d̂fP,t) + log (δ(ĉsP) + 1) + 1

)
(2)

In the above Equation 2, the publishing of relevant documents is more accented than
the dampened publishing rate. If a node publishes no documents at all, or, to be exact,
δ(ĉs) and δ(d̂f) are 0, then the pred(P, q) value is also 0. The addition of 1 in the log
formulas yields positive predictions and avoids log 0.

4.3 Resource Selection

The function sel(P, q) returns a score for a node P and a query q, and is calculated using
standard resource selection algorithms from the IR literature (see [27] for an overview),
such as tf-idf based methods, CORI [25], or language models. Using sel(P, q), we
identify authorities specialized in a topic, which, as argued above, is not sufficient for

Approximate Information Filtering in Peer-to-Peer Networks 13

our IF setting. In our implementation we use an CORI-like approach well-known from
P2P information retrieval [22].

5 Experimental Evaluation

5.1 Experimental Setup

To conduct each experiment described in the next sections the following steps are exe-
cuted. Initially the network is set up and the underlying DHT is created. Subsequently,
subscribers utilize the protocol described in Section 3.2 to subscribe to selected publish-
ers. We will say that a publisher node is monitored with query q by a subscriber when
it stores q in its local query database. Once queries are stored, the documents are pub-
lished to the network and at certain intervals (called rounds) queries are repositioned.
A repositioning round occurs every 30 document publications on average per peer. At
the end of each round, message costs and recall for this round are calculated, and sub-
scribers rank publishers using Equation 1 to reposition their queries accordingly. We
consider the following system parameters:

– ρ: The percentage of top-ranked publishers. In experiments, ρ is the same for all
subscribers and different system properties for a value of ρ up to 25% are investi-
gated. It is clear that when ρ = 100% (i.e., all publishers are monitored) then recall
is 1, and our approach degenerates to exact filtering.

– α: To control the influence of resource selection vs. node behavior prediction in
our experiments, we vary the value of α in the node selection formula. A value of
α close to 0 emphasizes node behavior prediction, while values close to 1 stress
resource selection.

To investigate the effectiveness and efficiency of our approach, we model node pub-
lishing behavior through different publishing scenarios described in Section 5.3. Re-
trieval effectiveness of our approach is utilized by recall, while efficiency is measured
using a benefit/cost ratio metric. Both are defined as follows:

– Recall: We measure recall by computing the ratio of the total number of notifica-
tions received by subscribers to the total number of published documents matching
subscriptions. In experiments we consider the average recall computed over all
rounds (i.e., for the complete experiment).

– Benefit/Cost Ratio: To evaluate the efficiency of our approach, we measure the
total number of subscription and notification messages to calculate the benefit/cost
ratio as the number of notifications per message sent. Notice that in our approach no
publication messages are needed, since publications trigger only local node com-
putations and are not disseminated as in exact matching approaches.

As explained in Section 3, the number of subscription messages depends on the
number of query terms and monitored publishers. In addition, the subscription costs
are proportional to the number of query repositionings, since for each repositioning the
subscription protocol is re-executed. Finally, for each publication matching an indexed

14 C. Zimmer et al.

query, a notification message is created and sent to the subscriber. In the experiments
of Sections 5.3 and 5.4, the message cost needed to maintain the distributed directory
information is not taken into account since our main goal is to focus on the filtering pro-
tocol costs. Typically, directory messages are included in DHT maintenance messages,
thus they can be considered as part of the underlying routing infrastructure.

5.2 Experimental Data

The data collection contains over 2 million documents from a focused Web crawl
categorized in one of ten categories: Music, Finance, Arts, Sports, Natural Science,
Health, Movies, Travel, Politics, and Nature. The overall number of corpus documents
is 2, 052, 712. The smallest category consists of 67, 374 documents, the largest cate-
gory of 325, 377 documents. The number of distinct terms after stemming amounts to
593, 876.

In all experiments, the network consists of 1, 000 nodes containing 300 documents
each in their initial local collection. Each peer hosts 15% random documents, 10%
not categorized documents, and 75% documents from a single category, resulting in
100 nodes specializing in each category. Using the document collection, we construct
30 continuous queries containing two, three or four query terms. Each of the query
terms selected is a strong representative of a document category (i.e., a frequent term
in documents of one category and infrequent in documents of the other categories).
Example queries are music instrument, museum modern art, or space model research
study.

5.3 Different Publishing Scenarios

To measure MAPS’s efficiency in terms of recall and message cost under various set-
tings, we consider four scenarios representing different publishing behaviors. The over-
all number of published documents is constant in all scenarios (300K documents) there-
fore the maximum number of notifications concerning the 30 active queries is also con-
stant (146, 319 notifications), allowing us to compare across different scenarios. The
following figures show experimental results with average recall and benefit/cost ratio
for different publishing scenarios and different α and ρ values. A baseline approach
(called rand) that implements a random node selection method is included for compar-
ison purposes.

Consistent Publishing. The first publishing scenario targets the performance of our
approach when nodes’ interests remain unchanged over time. Figure 2 shows that the
average recall and the benefit/cost ratio do not depend on the ranking method used, and
our approach presents the same performance for all values of α. This can be explained
as follows. Publishers that are consistently publishing documents from one category
have built up an expertise in this category and node selection techniques are able to
detect this and monitor the authorities for each topic. Similarly, publication prediction
observes this trend for consistent behavior and chooses to monitor the most specialized
nodes. Compared to the baseline approach of random selection, our approach achieves
up to 7 times a higher average recall (for ρ = 10%). Finally, the best value for the
benefit/cost ratio is when ρ = 10%.

Approximate Information Filtering in Peer-to-Peer Networks 15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

av
er

ag
e

re
ca

ll

ρ

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

be
ne

fit
 /

co
st

 r
at

io

ρ

α=0.00
α=0.25
α=0.50
α=0.75
α=1.00

rand

Fig. 2. Average recall and benefit/cost ratio for Consist scenario

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

av
er

ag
e

re
ca

ll

ρ

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

be
ne

fit
 /

co
st

 r
at

io

ρ

α=0.00
α=0.25
α=0.50
α=0.75
α=1.00

rand

Fig. 3. Average recall and benefit/cost ratio for CatChg scenario

Category Change. Since users may publish documents from different topics, we use
this scenario to simulate the changes in a publisher’s content. In the CatChg scenario, a
node initially publishes documents from one category, and switches to a different cat-
egory at some point in time. Figures 3 illustrates the performance of our approach in
this scenario for different values for α and ρ. The most important observation from this
figure is the performance of the prediction method in comparison to resource selection.
In some cases (e.g., when ρ = 10%) not only publication prediction achieves more that
6 times better average recall than resource selection, but also resource selection is only
marginally better than rand (e.g., when monitoring 15% of publishers). In general, both
average recall and benefit cost/ratio improve as α reaches 0 and prediction is stressed.
This abrupt changes in the publishers’ content cannot be captured by the resource selec-
tion method, which favors topic authorities. On the other hand, publication prediction
detects the publishers’ topic change from changes in the IR statistics and adapts the
scoring function to monitor nodes publishing documents relevant to subscribed queries.

Publishing Breaks. The Break scenario models the behavior of nodes as they log in and
out of the network. We assume that some publisher is active and publishes documents
for some rounds, and then logs out of the network, publishing no documents any more.
This procedure is continued in intervals, modeling, e.g., a user using the publication
service at home, and switching it off every day in the office. Our ranking mechanism

16 C. Zimmer et al.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

av
er

ag
e

re
ca

ll

ρ

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

be
ne

fit
 /

co
st

 r
at

io

ρ

α=0.00
α=0.25
α=0.50
α=0.75
α=1.00

rand

Fig. 4. Average recall and benefit/cost ratio for Break scenario

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

av
er

ag
e

re
ca

ll

ρ

α=0.00
α=0.25

α=0.50
α=0.75

α=1.00
rand

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

be
ne

fit
 /

co
st

 r
at

io

ρ

α=0.00
α=0.25
α=0.50
α=0.75
α=1.00

rand

Fig. 5. Average recall and benefit/cost ratio for TmpChg scenario

should adapt to these inactivity periods, and distinguish between nodes not publishing
documents any more and nodes making temporary pauses.

Figure 4 demonstrates that both average recall and benefit/cost ratio improve when
resource selection is emphasized (i.e., when α is close to 1), since pauses in the publish-
ing mislead the prediction formula to foresee that, in the future, no relevant publications
will occur. For this reason, nodes with inactivity periods are ranked lower resulting in
miss of relevant documents. On the other hand, resource selection accommodates less
dynamics, so temporary breaks remain undetected and the topic authorities continue
to be monitored since the ranking procedure is not affected. Consequently, selecting a
ranking method that favors prediction leads to poor recall and low benefit/cost ratio,
that are comparable to those of rand.

Temporary Changes. The last scenario we investigated (TmpChg), targets temporary
changes in a node’s published content. This scenario models users utilizing the service
e.g., for both their work and hobbies, or users that temporarily change their publishing
topic due to an unexpected or highly interesting event (earthquake, world cup finals,
etc.). Here, a publisher makes available documents about one topic for a number of
rounds, and then temporarily publishes documents about a different topic. In the next
rounds, the publisher reverts between publishing documents out of these categories, to
stress the behavior of nodes being interested in a topic but occasionally publish docu-
ments covering other topics.

Approximate Information Filtering in Peer-to-Peer Networks 17

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

av
er

ag
e

re
ca

ll

ρ

Consist
CatChg

Break
TmpChg

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.00 0.25 0.50 0.75 1.00

av
er

ag
e

re
ca

ll

α

Consist
CatChg

Break
TmpChg

Fig. 6. Average recall across scenarios for α = 0.5 and ρ = 10%

In this scenario, MAPS presents the highest average recall values when equally uti-
lizing resource selection and prediction methods (α = 0.5), as suggested by Figure 5.
This happens because TmpChg can be considered as a scenario lying between an abrupt
category change (CatChg) and publishing documents about a specific topic with small
breaks (Break). Thus, the combination of publication prediction and resource selec-
tion used by subscribers, aids in identifying these publication patterns in publisher’s
behaviors and thus selecting the nodes publishing more relevant documents. Finally,
an interesting observation emerging from this figure is that almost all combinations of
ranking methods perform similarly both in terms of average recall and benefit/cost ra-
tio. This is due to the effectiveness of the ranking methods, that cause the dampening of
the subscription messages by the high number of notification messages created. Com-
pared to our baseline random node selection, all methods show an increase of as much
as 600% for average recall and 200% for benefit/cost ratio.

5.4 Comparison across Scenarios

In this section, we change our experimental viewpoint, select some baseline values for
α and ρ, and compare the average recall and the benefit/cost across scenarios.

Average Recall Analysis. Figure 6 illustrates the average recall values achieved for
the various publishing scenarios. When α = 0.5 and ρ value increases up to 25% of
monitored publishers (leftmost figure), we see that Consist achieves the highest average
recall, since, as explained in Section 5.3, it is not affected by the choice of α. The rest
of the scenarios achieve lower average recall with the TmpChg scenario being the most
promising. For the rest of the scenarios the choice of α = 0.5 is a compromise that
leads to a satisfactory average recall level. When ρ is set to 10% and the emphasis of
the ranking method moves from publication prediction (α = 0) to resource selection
(α = 1), average recall remains relatively unaffected for Consist publication scenarios
(second figure). In contrast, CatChg and Break are influenced by the ranking method,
and demonstrate a significant change in their behavior and average recall achieved.
The TmpChg scenario reaches the highest average recall levels when both publication
prediction and resource selection are equally weighted with α = 0.5.

18 C. Zimmer et al.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25

be
ne

fit
 /

co
st

 r
at

io

ρ

Consist
CatChg

Break
TmpChg

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.00 0.25 0.50 0.75 1.00

be
ne

fit
 /

co
st

 r
at

io

α

Consist
CatChg

Break
TmpChg

Fig. 7. Benefit / cost ratio across scenarios for α = 0.5 and ρ = 10%

Message Costs Analysis. The benefit/cost ratio for the different publishing scenarios
is shown in Figure 7. Here, the value of ρ increases to demonstrate the benefit/cost
ratio for a constant α = 0.5 (third figure) and the dependency of the benefit/cost ratio
parameter on the ranking method is illustrated as a function of α for a constant ρ of
10% (rightmost figure).

The most important observation is that independently of the ranking method used,
in all scenarios, the highest value for the benefit/cost ratio is achieved when monitoring
10% of the publisher nodes. At this value, our approach needs around 1.2 messages
per notification generated (since the number of notifications/message is around 0.8 as
shown in the graphs). Obviously, the best possible benefit/cost ratio is 1, since at least
one message (the notification message) is needed at publication time to inform a sub-
scriber about a matching document. This means that we generate an average of 0.2 extra
subscription messages per notification sent.

We observe that in the Consist scenario, a change in the ranking method has no effect
on the value of the benefit/cost ratio. Nevertheless, the Break and CatChg scenarios
perform differently such that the benefit/cost ratio increases for the case of resource
selection and publication prediction respectively. The TmpChg scenario differs from all
other scenarios because, for the same reason as in Section 5.4, the highest benefit/cost
ratio is achieved when combining both resource selection as node prediction scores.

6 Conclusions

We have presented the MAPS system architecture, discussed the associated protocols,
and introduced a novel node selection technique based on time series analysis to support
approximate IF in a P2P setting. Our experimental evaluation showed the efficiency and
effectiveness of our approach in many diverse scenarios.

References

1. Yang, B., Jeh, G.: Retroactive Answering of Search Queries. In: WWW (2006)
2. Tang, C., Xu, Z.: pFilter: Global Information Filtering and Dissemination Using Structured

Overlay Networks. In: FTDCS (2003)

Approximate Information Filtering in Peer-to-Peer Networks 19

3. Tryfonopoulos, C., Idreos, S., Koubarakis, M.: Publish/Subscribe Functionality in IR Envi-
ronments using Structured Overlay Networks. In: SIGIR (2005)

4. Aekaterinidis, I., Triantafillou, P.: PastryStrings: A Comprehensive Content-Based Pub-
lish/Subscribe DHT Network. In: ICDCS (2006)

5. Tryfonopoulos, C., Zimmer, C., Weikum, G., Koubarakis, M.: Architectural Alternatives for
Information Filtering in Structured Overlays. Internet Computing (2007)

6. Zimmer, C., Tryfonopoulos, C., Weikum, G.: MinervaDL: An Architecture for Information
Retrieval and Filtering in Distributed Digital Libraries. In: Kovács, L., Fuhr, N., Meghini, C.
(eds.) ECDL 2007. LNCS, vol. 4675, pp. 148–160. Springer, Heidelberg (2007)

7. Zimmer, C., Tryfonopoulos, C., Berberich, K., Weikum, G., Koubarakis, M.: Node Behavior
Prediction for LargeScale Approximate Information Filtering. In: LSDS-IR (2007)

8. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous Queries over Append-Only
Databases. In: SIGMOD (1992)

9. Liu, L., Pu, C., Tang, W.: Continual Queries for Internet Scale Event-Driven Information
Delivery. In: TKDE 2000 (2000)

10. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query System
for Internet Databases. In: SIGMOD (2000)

11. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive Continuous
Queries over Streams. In: SIGMOD 2002 (2002)

12. Chandrasekaran, S., Franklin, M.J.: PSoup: A System for Streaming Queries over Streaming
Data. VLDB Journal (2003)

13. Gedik, B., Liu, L.: PeerCQ: A Decentralized and Self-Configuring Peer-to-Peer Information
Monitoring System. In: ICDCS (2003)

14. Ahmad, Y., Çetintemel, U.: Networked Query Processing for Distributed Stream-Based Ap-
plications. In: VLDB (2004)

15. Jain, A., Hellerstein, J.M., Ratnasamy, S., Wetherall, D.: A Wakeup Call for Internet Moni-
toring Systems: The Case for Distributed Triggers. HotNets (2004)

16. Zhang, R., Hu, Y.C.: HYPER: A Hybrid Approach to Efficient Content-Based Pub-
lish/Subscribe. In: ICDCS (2005)

17. Pietzuch, P.R., Bacon, J.: Hermes: A Distributed Event-Based Middleware Architecture. In:
DEBS (2002)

18. Gupta, A., Sahin, O.D., Agrawal, D., Abbadi, A.E.: Meghdoot: Content-Based Publish/
Subscribe over P2P Networks. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231,
pp. 254–273. Springer, Heidelberg (2004)

19. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A Scalable Content-
Addressable Network. In: SIGCOMM (2001)

20. Tryfonopoulos, C., Idreos, S., Koubarakis, M.: LibraRing: An Architecture for Distributed
Digital Libraries Based on DHTs. In: Rauber, A., Christodoulakis, S., Tjoa, A.M. (eds.)
ECDL 2005. LNCS, vol. 3652, pp. 25–36. Springer, Heidelberg (2005)

21. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In: SIGCOMM (2001)

22. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: Improving Collection
Selection with Overlap Awareness in P2P Search Engines. In: SIGIR (2005)

23. Tryfonopoulos, C., Koubarakis, M., Drougas, Y.: Filtering Algorithms for Information Re-
trieval Models with Named Attributes and Proximity Operators. In: SIGIR (2004)

24. Yan, T.W., Garcia-Molina, H.: The SIFT Information Dissemination System. In: TODS
(1999)

25. Callan, J.: Distributed Information Retrieval. Kluwer Academic Publishers, Dordrecht (2000)
26. Chatfield, C.: The Analysis of Time Series - An Introduction. CRC Press, Boca Raton (2004)
27. Nottelmann, H., Fuhr, N.: Evaluating Different Methods of Estimating Retrieval Quality for

Resource Selection. In: SIGIR (2003)

	Approximate Information Filtering in Peer-to-Peer Networks
	Introduction
	Related Work
	The MAPS Protocols
	The Directory Protocol
	The Subscription Protocol
	Publication and Notification Protocol

	Node Selection Strategy
	Time Series Analysis
	Node Behavior Prediction
	Resource Selection

	Experimental Evaluation
	Experimental Setup
	Experimental Data
	Different Publishing Scenarios
	Comparison across Scenarios

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

