
Appl. Num. Anal. Comp. Math. 1, No. 2, 535 – 539 (2004) / DOI 10.1002/anac.200410016

A Local Supervised Learning Algorithm For Multi-Layer Percep-
trons

D.S. Vlachos∗

Hellenic Center for Marine Research, PO BOX 712, 19013, Anavyssos, Greece

Received 5 October 2004, revised 30 November 2004, accepted 2 December 2004
Published online 20 December 2004

The back propagation of error in multi-layer perceptrons when used for supervised training is a non-local
algorithm in space, that is it needs the knowledge of the network topology. On the other hand, learning rules
in biological systems with many hidden units, seem to be local in both space and time. In this work, a local
learning algorithm is proposed which makes no distinction between input, hidden and output layers. Simulation
results are presented and compared with other well known training algorithms.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

One of the major problems with feed-forward network learning remains the accuracy and speed of the learning
algorithms. Since the learning problem is a complex and highly nonlinear one [1],[2], iterative learning proce-
dures must be used to solve the optimization problem [3], [4]. A continuous desire to improve the behavior of the
learning algorithm has lead to many excellent optimization algorithms which are special tailored for feed-forward
network learning. On the other hand, although approximation capabilities of multi-layer perceptrons have been
established, the optimal network structure which reaches a predefined accuracy for the approximation, remains
still an open question. Moreover, certain characteristics of the network behavior (like stability, local minima,
learning speed etc) are very close related to network topology.

An interesting approach to overcome the aforementioned problems, is that of dynamic network topologies and
functional networks. Dynamic networks change the structure of the network in order to meet certain constrains
during the learning stage. The ill-conditioning of the network learning for example, can be handled by changing
the structure of the network [5]. Functional networks on the other hand, face the structure problem using build-
ing blocks and a modular architecture, splitting thus the complexity of the problem under consideration. Both
approaches require a learning algorithm which can be easily adapted to varying network topologies.

Various algorithms for supervised learning have been proposed, in which apart from the fact that they require a
set of teaching input-output pairs, there is a second reason that makes them biological inplausible: they depend on
global computations. This non-local in space character of the learning algorithm produces many difficulties as the
composition of the activation functions in multi-layer networks and the poor capability of modular construction
of different network topologies.

The difference between local and global computations in the context of neural networks has to do with both
space and time. Local in space is meant to say that changes of a unit’s weight vector should depend solely on
activation information from the unit itself and from connected units. The update complexity for a unit’s weight
vector at a given time should be only proportional to the dimensionality of the weight vector. Local in time is
meant to say that weight changes should take place continually, and that changes should depend only on informa-
tion about units and weights from a fixed recent time interval. The expression ’local in time’ corresponds to the
notion of ’on-line’ learning. As far as we can judge today, biological systems use completely local computations
to accomplish complex spatio-temporal credit assignments tasks.

In this work, a local in space supervised learning algorithm is proposed for use in multi-layer perceptrons. The
algorithm is based on back propagating not only the error but a desired pattern for the output of the previous layer
as well. In this way, the network can be sliced in autonomous layers each of which can be trained independently.

∗ Corresponding author: e-mail: dvlachos@ncmr.gr, Phone: +30 22910 76410, Fax: +30 22910 76323

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

536 Vlachos: LLA-MLP

2 The learning algorithm

Figure 1 shows the neuron model used. Each neuron is activated by a threshold functions, the input of which is
the weighted sum of all neuron’s inputs. The neuron topology that is considered here is a layered one, that is,
the neurons are organized in layers and the inputs of each neuron are the outputs of the neurons of the preceding
layer. The output of layer m is represented by the vector xm,m = 0(1)M , x0 is the input and xM the output of
the network. The weights of the network can be organized in two dimensional arrays wm,m = 1(1)M which
contains the weights connecting layer-(m − 1) with layer-(m). All neurons are considered to have the same
threshold function g, which is a smooth function of one variable. Under these assumptions, a recurrent relation
can be written:

xj
m = g(wj

m,i · xi
m−1) (1)

where m runs from 1 to M .

Fig. 1 Neuron model.

Supervised learning means that we have a set of couples (x0, x̂M) and and an algorithm to change the weights
of the network, such that at the end the network will produce output x̂M when it is feeded with input x0. When
the input of the network is x0 and the output is xM we can define the local error

ei
M = (xi

M − x̂i
M)2 (2)

and the global error

eM =
∑

i

ei (3)

An efficient way to obtain supervised learning of the network is to change the weights of the network in this
direction that reduces the global error. Thus, in order to change the weights of the layer-(m) we need the
information about the network topology from layer-(m) and above. This learning algorithm is local only for the
last (output) layer.

Consider now the following case: Suppose that the network is feeded with input x0 and produces the output
xM . The global error eM represents the distance between xM and the desired output x̂M . This error can be
reduced by two ways; by changing the weights of the output layer in a certain direction (a local procedure) and
by forcing the network to produce a different vector x̂M−1 which can be considered as the desired output of the
previous layer. The next step is now obvious. We can use in the same way the vector x̂M−1 to change the weights
of the layer-(M − 1) which is again a local procedure, and to produce the vector x̂M−2 which can be considered
as the desired output of the layer-(M − 2). In this way we can change all the weights of the network by a local
algorithm.

Let xm be the output of the layer-(m). We can define the desired output x̂m of the same layer as:

x̂i
m = xi

m + δi
x,m (4)

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Appl. Num. Anal. Comp. Math. 1, No. 2 (2004) / www.anacm.org 537

where δi
x,m is a small change in xi

m that would cause a decrease of the global error of the layer-(m + 1). For the
weights now of the same layer, we can change their values by an amount δi

w,m,j which will cause a decrease of
the global error of layer-(m). In order to determine these δ-values, we take the Taylor expansion of the global
error of layer-(m):

em(xi
m−1 + δi

x,m−1, w
k
m,l + δk

w,m,l) = em(xi
m−1, w

k
m,l) + W l

m,k · δk
w,m,l + Xm,i · δi

x,m−1 +

P ql
m,pk · δp

w,m,q · δk
w,m,l + Ql

m,ik · δk
w,m,l · δi

x,m−1 + Rm,ij · δi
x,m−1 · δj

x,m−1 + ... (5)

where

W l
m,k =

ϑem

ϑwk
m,l

(6)

Xm,i =
ϑem

ϑxi
m−1

(7)

P ql
m,pk =

1
2

ϑ2em

ϑwk
m,lϑwp

m,q
(8)

Ql
m,ik =

ϑ2em

ϑwk
m,lϑxi

m−1

(9)

Rm,ij =
1
2

ϑ2em

ϑxi
m−1ϑxj

m−1

(10)

Under these considerations, one can split the error of a certain layer in two sources: the error from previous layers
and the error from the current layer. Let us now take only the first terms of equation (5) (the linear case). Then,
by taking

δi
x,m−1 = −Xm,i

δk
w,m,l = −W l

m,k

the global error is decreased. By writing Gi
m = 2 · (xi

m − x̂i
m) · g′(xj

m−1 · wi
m,j) we have:

δi
x,m−1 =

∑

j

δi
x,m,j (11)

δk
w,m,l = −Gk

m · xl
m−1 (12)

where

δi
x,m,j = −Gi

m · wi
m,j (13)

An other approach is to split the error in two halves, one half coming from the previous layer and the other half
caused by the current layer (the 1/2 rule). Then, the desired output of the m-layer is:

x̂i
m = xi

m +
1
2
δi
x,m (14)

which can be used for the calculation of δk
w,m,l. The other half of the error, is used for the calculation of δi

m−1 of
the previous layer:

δi
x,m−1 =

1
2

∑

j

δi
x,m,j (15)

Other possible approaches can be used for the splitting of the error, which can take into account higher terms of
the error expansion given at equation (5). In all of them, the tuning of the weights in a certain layer does not
depend on the general network topology but only on the current layer.

The above equations lead us to the construction of a modified neuron model as it is shown in figure 2. In
this figure, the j-th neuron of layer-(m) is depicted. Both weights and desired layer outputs can be calculated
continuously, where the only inputs of the network are the input pattern x0 and the desired output x̂M , when the
network is in the training mode. When the network has been trained, the output of the network xM can be wired
to the desired output x̂M .

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

538 Vlachos: LLA-MLP

Fig. 2 Modified neuron model.

3 Simulation results

In order to test the efficiency of the new learning algorithm, we have performed two simulation test: the first
concerns the problem of finding the maximum number between three ones (all three numbers are between zero
and one) and the second is the calculation of the XOR of two binary inputs. Figure 3 shows the output error
function during the learning phase. Three networks have been tested: the first one contains only one hidden layer
with six nodes, and the back propagation learning algorithm is applied. The other two networks have two and
three hidden layers respectively, and the local learning algorithm is applied (the linear case). The interesting part
from this comparison is that, although the complexity of the network is increased by introducing more hidden
layers, the local learning algorithm seems to behave in a stable and efficient way. This result is very promising
for use of this algorithm in dynamic neural networks.

Fig. 3 Network error during learning phase for the calculation of the maximum between three numbers. G(3,6,1) is a network
with one hidden layer with 6 nodes which uses global computations (error back propagation) for the calculation of weights.
L(LC,3,4,2,1) is a network with 2 hidden layers which uses local computations (linear case) for the calculation of weights.
L(LC,3,2,3,,2,1) is similar to the previous but with 3 hidden layers.

The second test is performed again in three network topologies. The first one has one hidden layer with four
nodes and the back propagation learning algorithm is applied. The second and third networks are the same having
two hidden layers but in the first one the 1/2 rule is applied while in the second, the linear case is considered for
the calculation of the weights. Again the local learning algorithm behaves in an efficient way, even when the 1/2
rule is applied.

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Appl. Num. Anal. Comp. Math. 1, No. 2 (2004) / www.anacm.org 539

Fig. 4 Network error during learning phase for the calculation of the XOR between two binary inputs. G(2,4,1) is a network
with one hidden layer with 4 nodes which uses global computations (error back propagation) for the calculation of weights.
L(1/2,2,2,2,1) is a network with 2 hidden layers which uses local computations (the 1/2 rule) for the calculation of weights.
L(LC,2,2,2,1) is similar to the previous but the linear case is considered for the calculation of the weights.

4 Conclusions

By considering that the output error of a specific layer (the distance of the actual output from the desired one) is
a sum of the error of the output of the previous layer and the error introduced in the current layer, the weights of
the current layer are affected only by the part of error caused by the current layer. Each layer notifies its previous
layer about the reminding error, which will be used again for the tuning of the weights of the previous layer. The
local character of this learning algorithm assures that the update complexity for a unit’s weight vector at a given
time should be only proportional to the dimensionality of the weight vector.

References

[1] E. DL. Sontag and H.J. Sussmann, Complex Systems 3(1), 91–106 (1989).
[2] Bhaskar DasGupta, Hava T. Siegelmann and E.D. Sontag, IEEE Transactions on Neural Networks, 6(6), 1490–1504

(1995).
[3] R. Battiti, Neural Computation 4, 141–166 (1992).
[4] P. van der Smagt, Visual Robot Arm Guidance using Neural Networks, PhD thesis, Dept. of Computer Systems, Uni-

versity of Amsterdam, March 1995.
[5] P. van der Smagt and G. Hirzinger, in: Neural Networks: Tricks of the Trade, G. Orr and K.R. Muller (eds), Lecture

Notes in Computer Science 1524, Springer-Verlag, 193–206 (1998).

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

