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ABSTRACT

In this paper, we introduce a new family of 10-step linear multistep methods for the integration of orbital problems.
The new methods are constructed by adopting a new methodology which improves the phase-lag characteristics
by vanishing both the phase-lag function and its first derivatives at a specific frequency. The efficiency of the new
family of methods is proved via error analysis and numerical applications.
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1. INTRODUCTION

The numerical integration of systems of ordinary differential
equations with oscillatory solutions has been the subject of
research in the past decades. This type of ordinary differential
equation (ODE) is often met in real problems, such as the
N-body problem. For highly oscillatory problems, standard
nonspecialized methods can require a huge number of steps
to track the oscillations. One way to obtain a more efficient
integration process is to construct numerical methods with an
increased algebraic order, although the implementation of high
algebraic order meets several difficulties (Quinlan 1999).

On the other hand, there are some special techniques for
optimizing numerical methods. Trigonometrical fitting and
phase fitting are some of them, producing methods with variable
coefficients, which depend on v = ωh, where ω is the dominant
frequency of the problem and h is the step length of integration.
More precisely, the coefficients of a general linear method are
found from the requirement that it integrates exactly powers up
to degree p + 1. For problems with oscillatory solutions, more
efficient methods are obtained when they are exact for every
linear combination of functions from the reference set

{1, x, . . . , xK, e±μx, . . . , xP e±μx}. (1)

This technique is known as exponential (or trigonometric if
μ = iω) fitting and has a long history (Gautschi 1961; Lyche
1972). The set (1) is characterized by two integer parameters,
K and P. The set in which there is no classical component
is identified by K = −1, while the set in which there is no
exponential fitting component (the classical case) is identified
by P = −1. Parameter P will be called the level of tuning.
An important property of exponential-fitted algorithms is that
they tend to the classical ones when the involved frequencies
tend to zero, a fact which allows us to say that exponential
fitting represents a natural extension of the classical polynomial
fitting. The examination of the convergence of exponentially
fitted multistep methods is included in Lyche’s theory (Lyche
1972). There is a large number of significant methods presented
with high practical importance that have been presented in
the bibliography (see, for example, Simos 2000, 2005, 2007;
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Chawla & Rao 1986; Raptis & Allison 1978; Anastassi & Simos
2004, 2005a, 2005b, 2007; Lambert & Watson 1976; Cash &
Mazzia 2006; Iavernaro et al. 2006; Mazzia et al. 2006; Berghe
& Daele 2006; Psihoyios 2006). The general theory is presented
in detail in Ixaru & Berghe (2004).

Considering the accuracy of a method when solving oscilla-
tory problems, it is more appropriate to work with the phase lag,
rather than the principal local truncation error (PLTE). We men-
tion the pioneering paper of Brusa & Nigro (1980), in which the
phase-lag property was introduced. This is actually another type
of a truncation error, i.e., the angle between the analytical solu-
tion and the numerical solution. However, exponential fitting is
accurate only when a good estimate of the dominant frequency
of the solution is known in advance. This means that in prac-
tice, if a small change in the dominant frequency is introduced,
the efficiency of the method can be dramatically altered. It is
well known that for equations similar to the harmonic oscillator,
the most efficient exponential-fitted methods are those with the
highest tuning level.

In this paper, we present a new family of methods based on the
10-step linear multistep method of Quinlan & Tremaine (1990).
The new methods are constructed by vanishing the phase-lag
function and its first derivatives at a predefined frequency.
Error analysis and numerical experiments show that the new
methods exhibit improved characteristics concerning the long-
term behavior of the solution in the five-outer problem. The
paper is organized as follows. In Section 2, the general theory
of the new methodology is presented. In Section 3, the new
methods are described in detail. In Section 5, the stability
properties of the new methods are investigated. Section 5
presents the results from the numerical experiments and finally,
conclusions are drawn in Section 6.

2. PHASE-LAG ANALYSIS OF SYMMETRIC MULTISTEP
METHODS

Consider the differential equations

d2y(t)

dt2
= f (t, y), y(t0) = y0, y ′(t0) = y ′

0 (2)

and the linear multistep methods

J∑
j=0

ajyn+j = h2
J∑

j=0

bjfn+j , (3)
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where yn+j = y(t0 + (n + j )h), fn+j = f (t0 + (n + j )h, y(t0 +
(n + j )h)), and h is the step size of the method. We associate the
following functional to method (3):

L(h, a, b, y(t)) =
J∑

j=0

ajy(t +j ·h)−h2
J∑

j=0

bjy
′′(t +j ·h), (4)

where a and b are the vectors of coefficients aj and bj,
respectively, and y(t) is an arbitrary function. The algebraic
order of the method (3) is p, if

L(h, a, b, y(t)) = Cp+2h
p+2y(p+2)(t) + O(hp+3). (5)

The coefficients Cq are given as

C0 =
J∑

j=0

aj

C1 =
J∑

j=0

j · aj (6)

Cq = 1

q!

J∑
j=0

jq · aj − 1

(q − 2)!

J∑
j=0

jq−2bj .

The PLTE is the leading term of Equation (5):

PLTE = Cp+2h
p+2y(p+2)(t). (7)

The following assumptions will be considered in the rest of the
paper:

1. aJ = 1 since we can always divide the coefficients of
Equation (3) with aJ .

2. |a0| + |b0| �= 0 since otherwise we can assume that
J = J − 1.

3.
∑J

j=0 |bj | �= 0 since otherwise the solution of Equation (3)
would be independent of Equation (2).

4. The method (3) is at least of order one.
5. The method (3) is zero stable, which means that the roots

of the polynomial

p(z) =
J∑

j=0

aj z
j (8)

all lie in the unit disk, and those that lie on the unit circle
have multiplicity one.

6. The method (3) is symmetric, which means that

aj = aJ−j , bj = bJ−j , j = 0(1)J. (9)

It is easily proved then that both the order of the method and
the step number J are even numbers (Lambert & Watson
1976).

Consider now the test problem

y ′′(t) = −ω2y(t) (10)

where ω is a constant. The numerical solution of Equation (10)
by applying method (3) is described by the difference equation

J/2∑
j=1

Aj (s2)(yn+j + yn−j ) + A0(s2)yn = 0 (11)

with
Aj (s2) = a J

2 −j + s2 · b J
2 −j (12)

and s = ωh. The characteristic equation is then given as

J/2∑
j=1

Aj (s2)(zj + z−j ) + A0(s2) = 0 (13)

and the interval of periodicity (0, s2
0 ) is then defined such that

for s ∈ (0, s0) the roots of Equation (13) are of the form

z1 = eiλ(s), z2 = e−iλ(s), |zj | � 1, 3 � j � J (14)

where λ(s) is a real function of s. The phase lag (PL) of method
(3) is then defined as

PL = s − λ(s) (15)

and is of order q if

PL = c · sq+2 + O(sq+4). (16)

In general, the coefficients of method (3) depend on some
parameter v, thus the coefficients Aj are functions of both s2

and v. The following theorem has been proved by Simos &
Williams (1999): for the symmetric method (10). The phase lag
is given by

PL(s, v) = 2
∑J/2

j=1 Aj (s2, v) · cos(j · s) + A0(s2, v)

2
∑J/2

j=1 j 2Aj (s2, v)
. (17)

We are now in position to describe the new methodology.
In order to efficiently integrate oscillatory problems, a good
technique is to calculate the coefficients of the numerical method
by forcing the phase lag to be zero at a specific frequency. But,
since the appropriate frequency is problem dependent and in
general is not always known, we may assume that we have
an error in the frequency estimation. It would be of great
importance to force the phase lag to be less sensitive to this
error. Thus, beyond the vanishing of the phase lag, we also
force its first derivatives to be zero.

3. CONSTRUCTION OF THE NEW METHODS

3.1. Base Method

The family of new methods is based on the 10-step linear
multistep method of Quinlan & Tremaine (1990) which is of the
form (3) with coefficients

a0 = 1, a1 = −1, a2 = 1, a3 = −1,
a4 = 1, a5 = −2,

b0 = 0, b1 = 399187
241920 , b2 = − 17327

8640 , b3 = 597859
60480 ,

b4 = − 704183
60480 , b5 = 465133

24192 .

(18)
The principal term of the local truncation error (PLTE) of the
method is given as

PLTE = 52559

912384
y(12)h12. (19)

3.2. Method PF-D0: Phase Fitted

The first method of the family (PF-D0) is constructed by
forcing the phase-lag function to be zero at frequency V =
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ω × h. Coefficients a are left the same, while coefficients b
become

b0 = 0, b1 = 1

8064

b0
1,num

D0
, b2 = 1

4032

b0
2,num

D0
,

b3 = 1

2016

b0
3,num

D0
, b4 = 1

4032

b0
4,num

D0
, b5 = 1

4032

b0
5,num

D0
,

where

D0 = v2((c)4+6 (c)2+1−4 c−4 (c)3), c = cos (v), s = sin (v),

and
b0

1,num= − 16128 c3 + 45139 c3v2 + 6048 c2 − 73215 c2v2 +
3024 c + 47553 cv2 − 11917 v2 + 16128 c5 − 8064 c4 − 1008,

b0
2,num = −32256 c4 + 45139 c4v2 − 64512 c3 + 24192 c2 −

22026 c2v2 + 9656 cv2 + 12096 c − 2529 v2 − 4032 + 64512 c5,
b0

3,num = 56448 c4 −73215 c4v2 + 112896 c3 −23113 c3v2 −
42336 c2 + 73215 c2v2 − 40011 cv2 −21168 c +10204 v2 +
7056 − 112896 c5,

b0
4,num = −225792 c4 + 325629 c4v2 − 451584 c3 −

38624 c3v2 − 96246 c2v2 + 169344 c2 + 28968 cv2 + 84672 c +
451584 c5 − 8047 v2 − 28224,

b0
5,num = −388196 c4v2 + 282240 c4 + 564480 c3 −

27081 c3v2 + 233349 c2v2 − 211680 c2 − 111571 cv2 −
105840 c + 28899 v2 − 564480 c5 + 35280.

Since for small values of v, the above formulas are subject
to heavy cancellations, we give the Taylor expansions of b
coefficients:

b1 = 399187

241920
− 52559

912384
v2 +

100673687

29059430400
v4

− 1084493

27897053184
v6 +

96453547

213412456857600
v8,

b2 = − 17327

8640
+

52559

114048
v2 − 100673687

3632428800
v4

+
1084493

3487131648
v6 − 96453547

26676557107200
v8 + · · · ,

b3 = 597859

60480
− 367913

228096
v2 +

100673687

1037836800
v4

− 1084493

996323328
v6 +

96453547

7621873459200
v8 − · · · ,

b4 = − 704183

60480
+

367913

114048
v2 − 100673687

518918400
v4

+
1084493

498161664
v6 − 96453547

3810936729600
v8 + · · · ,

b5 = 465133

24192
− 1839565

456192
v2 +

100673687

415134720
v4

− 5422465

1992646656
v6 +

96453547

3048749383680
v8 − · · · ,

The PLTE of the method is given as

PLTE =
(

52559

912384
w2y(10) +

52559

912384
y(12)

)
h12. (20)

3.3. Method PF-D1: Phase Fitted + First Derivative of Phase
Lag is Zero

The second method of the family (PF-D1) is constructed by
forcing the phase-lag function and its first derivative to be zero
at frequency V = ω × h. The coefficients a are left the same,

while coefficients b become

b0 = 0, b1 = 1

192

b1
1,num

D1
, b2 = 1

48

b1
2,num

D1
,

b3 = 1

48

b1
3,num

D1
, b4 = 1

48

b1
4,num

D1
, b5 = 1

96

b1
5,num

D1
,

where

D1 = v3((c)5 − 3 (c)4 + 2 (c)3 + 2 (c)2 − 3 c + w),

c = cos (v), s = sin (v),

and
b1

1,num = −48 s − 768 c3s + 144 cs + 768 sc5 − 384 c4s +
288 c2s + 432 cv − 941 cv3 + 281 v3 + 1344 c5v + 1344 c4v −
1776 c3v − 768 c6v − 576 c2v + 259 c2v3 + 1481 c3v3,

b1
2,num = 72 s − 384 sc6 − 960 sc5 + 960 c4s + 1008 c3s −

504 c2s − 192 cs − 1305 c3v3 + 732 c2v + 427 c2v3 + 225 cv3 −
612 cv−12 v−26 v3+192 c7v+576 c6v−2304 c5v−1296 c4v −
1481 v3c4 + 2724 c3v,

b1
3,num = −192 s+2304 sc6+1920 sc5−3840 c4s−2208 c3s +

1584 c2s+432 cs−7464 c3v+3387 c3v3−1512 c2v−895 c2v3−
1088 cv3 + 1512 cv + 72 v − 1152 c7v + 384 c6v + 7104 c5v +
1481 v3c5 + 4443 v3c4 + 1056 (c)4v + 232 v3,

b1
4,num = −192 s+2304 sc6+1920 sc5−3840 c4s−2208 c3s +

1584 c2s+432 cs−7464 c3v+3387 c3v3−1512 c2v−895 c2v3−
1088 cv3 + 1512 cv + 72 v − 1152 c7v + 384 c6v + 7104 c5v +
1481 v3c5 + 4443 v3c4 + 1056 (c)4v + 232 v3,

b1
5,num = −720 s + 15360 sc6 + 3840 sc5 − 21120 c4s −

5760 c3s + 7200 c2s + 1200 cs − 29040 c3v + 10059 c3v3 −
3360 c2v−4231 c2v3 +5040 cv−3411 cv3 +480 v−7680 c7v +
11520 c6v + 31680 c5v + 12252 v3c5 − 8640 c4v + 22484 v3c4 +
647 v3.

Since for small values of v, the above formulas are subject
to heavy cancellations, we give the Taylor expansions of the
coefficients b:

b1 = 399187

241920
− 52559

456192
v2 +

975124291

174356582400
v4

− 2896813

49816166400
v6 +

1818828019

1067062284288000
v8,

b2 = − 17327

8640
+

52559

57024
v2 − 4461254807

43589145600
v4

+
2517959

340540200
v6 − 98779707713

266765571072000
v8 + · · · ,

b3 = 597859

60480
− 367913

114048
v2 +

3127415341

6227020800
v4

− 3766196569

87178291200
v6 +

44891085091

20520428544000
v8 − · · · ,

b4 = − 704183

60480
+

367913

57024
v2 − 7330976207

6227020800
v4

+
584032469

5448643200
v6 − 1452594367391

266765571072000
v8,

b5 = 465133

24192
− 1839565

228096
v2 +

3844845691

2490808320
v4

− 4974280813

34871316480
v6 +

773868209533

106706228428800
v8.

The PLTE of the method is given as

PLTE=
(

52559

456192
w2y(10) +

52559

912384
w4y(8) +

52559

912384
y(12)

)
h12.

(21)



No. 1, 2009 MULTISTEP METHODS WITH IMPROVED PHASE-LAG CHARACTERISTICS 89

3.4. Method PF-D2: Phase Fitted + First, Second Derivatives
of Phase Lag are Zero

The third method of the family (PF-D2) is constructed by
forcing the phase-lag function and its first and second derivatives
to be zero at the frequency V = ω × h. The coefficients a are
left the same, while for the coefficients b we have

b0 = 0, b1 = 1

32

b2
1,num

D′
2

, b2 = 1

16

b2
2,num

D2
,

b3 = 1

8

b2
3,num

D′
2

, b4 = 1

16

b2
4,num

D2
, b5 = 1

16

b2
5,num

D′
2

,

where

D2 = v4((c)5 − 3 (c)4 + 2 (c)3 + 2 (c)2 − 3 c + 1),
D′

2 = v4(s)4((c)2 − 2 c + 1), c = cos (v), s = sin (v),

and
b2

1,num = −48 s − 768 c3s + 144 cs + 768 sc5 − 384 c4s +
288 c2s + 432 cv − 941 cv3 + 281 v3 + 1344 c5v + 1344 c4v −
1776 c3v − 768 c6v − 576 c2v + 259 c2v3 + 1481 c3v3,

b2
2,num = −24–800 vc3s − 512 svc6 + 1088 vc4s − 25 v4 +

628 c3v2 − 644 c2v2 + 216 vcs + 24 vs + 168 c2 − 528 vc2s −
640 c5v2 + 68 v2 + 768 c5 + 192 c6 − 180 cv2 + 385 c2v4 + 72 c −
456 c3 − 336 c4 + 512 svc5 + 435 c3v4 + 768 c4v2 − 384 c7 +
192 v2c7 − 192 v2c6 − 75 cv4,

b2
3,num = 24 + 1612 vc3s + 736 svc7 − 960 svc6 + 676 vc4s +

55 v4 + 548 c3v2 + 804 c2v2 − 240 vcs − 32 vs + 192 sc8v −
1050 c4v4 + 672 c8 − 300 c2 + 136 vc2s − 1028 c5v2 − 60 v2 +
132 c5 − 1560 c6 − 435 v4c5 + 96 cv2 − 256 c8v2 − 265 c2v4 −
24 c + 84 c3 + 1164 c4 − 2120 svc5 − 865 c3v4 − 1264 c4v2 −
64 c9v2 − 384 c7 + 192 c9 + 448 v2c7 + 776 v2c6 + 40 cv4,

b2
4,num = −72–3904 vc3s−1536 svc7+256 svc6+512 vc4s −

75 v4 − 244 c3v2 − 1980 c2v2 + 648 vcs + 104 vs + 1740 c4v4 −
1536 c8+792 c2−944 vc2s+832 c5v2+156 v2+960 c5+3648 c6 +
580 v4c5 − 396 cv2 + 512 c8v2 + 855 c2v4 + 120 c − 696 c3 −
2832 c4+4864 svc5+2165 c3v4+3168 c4v2−384 c7−192 v2c7−
1856 v2c6 − 225 cv4,

b2
5,num = 84+5416 vc3s +640 svc7 −6720 svc6 +4080 vc4s +

165 v4 +2540 c3v2 +2764 c2v2−900 vcs−120 vs+2304 sc8v −
4720 c4v4+1920 c8−1020 c2+420 vc2s−920 v4c6−4528 c5v2−
172 v2 + 2736 c5 − 4800 c6 − 3380 v4c5 + 260 cv2 − 825 c2v4 −
60 c − 180 c3 + 3816 c4 − 5120 svc5 − 3115 c3v4 − 2912 c4v2 −
768 c9v2 − 4800 c7 + 2304 c9 + 2496 v2c7 + 320 v2c6 + 195 cv4.

Since for small values of v, the above formulas are subject
to heavy cancellations, we give the Taylor expansions of the
coefficients b:

b1 = 399187

241920
− 52559

304128
v2 +

371082169

58118860800
v4

− 83360891

523069747200
v6 − 1467578899

355687428096000
v8,

b2 = − 17327

8640
+

52559

38016
v2 − 3253170563

14529715200
v4

+
5070942803

261534873600
v6 − 86978398867

88921857024000
v8,

b3 = 597859

60480
− 367913

76032
v2 +

2523373219

2075673600
v4

− 22329042629

130767436800
v6 +

1453392734357

88921857024000
v8,

b4 = − 704183

60480
+

367913

38016
v2 − 6122891963

2075673600
v4

+
133660742933

261534873600
v6 − 5024895032029

88921857024000
v8,

b5 = 465133

24192
− 1839565

152064
v2 +

3240803569

830269440
v4

− 37612768013

52306974720
v6 +

2927078073011

35568742809600
v8.

The PLTE of the method is given as

PLTE =
(

52559

912384
w6y(6) +

52559

304128
w2y(10) +

52559

912384
y(12)

+
52559

304128
w4y(8)

)
h12. (22)

3.5. Method PF-D3: Phase Fitted + First, Second, and Third
Derivatives of Phase Lag are Zero

The fourth method of the family (PF-D3) is constructed by
forcing the phase-lag function and its first, second, and third
derivatives to be zero at the frequency V = ω × h. The
coefficients a are left the same, while for the coefficients b
we have

b0 = 0, b1 = 1

48

b3
1,num

D3
, b2 = 1

12

b3
2,num

D3
,

b3 = 1

12

b3
3,num

D3
, b4 = 1

12

b3
4,num

D3
, b5 = 1

24

b3
5,num

D3
,

where

D3 = v5(c7 − c6 − 3 c5 + 3 c4 + 3 c3 − 3 c2 − c + 1),
c = cos (v), s = sin (v),

and
b3

1,num = −2096 v2c5s+1508 v2c4s+1648 v2c3s−964 v2sc2+
36 v − 366 v2cs + 135 v5c − 48 v3 − 384 c8v3 − 336 c4s −
656 v2c6s − 336 cv3 + 1440 c5v − 738 c2v − 384 sc7 + 168 c2s +
234 cv + 528 c2v3 − 1098 c3v − 2448 c6v + 768 sc5 + 192 sc6 −
456 c3s + 1008 c3v3 + 72 cs + 864 vc8 + 2286 c4v + 45 v5c3 −
24 s + 1200 c6v3 − 1008 c5v3 + 45 v5 +135 v5c2 − 576 c7v −
1296 c4v3 + 832 sv2c7 + 94 v2s + 336 c7v3,

b3
2,num = y −692 v2c5s−2407 v2c4s+235 v2c3s+776 v2sc2

−27 v+123 v2cs −90 v5c +48 v3−96 c8v3 +852 c4s+2560 v2c6s
+144 cv3−3690 c5v +90 c2v−96 sc7 −192 c2s−144 cv −48 c2v3

+1458 c3v−738 c6v +120 sc5−1248 sc6 −24 c3s−912 sv2c8

−720 c3v3+360 vc8 +315 c4v+576 sc8 −270 v5c3−1152 c9v
+12 s +240 c6v3+1296 c5v3 −270 v5c2−90 c4v5 +3528 c7v
−144 c4v3 +352 sv2c7+288 c9v3 −35 v2s−1008 c7v3,

b3
3,num = 3664 v2c5s+3218 v2c4s−812 v2c3s−1498 v2sc2

+54 v−258 v2cs +135 v5c−84 v3 +1344 c8v3−1200 c4s −2420
v2c6s+1344 sv2c9 −300 cv3+4842 c5v −180 c2v+2496 sc7

−384 c10v3+312 c2s +324 cv+60 c2v3 −2502 c3v+6498 c6v
−1608 sc5+270 c5v5 +1488 sc6+264 c3s +624 sv2c8+1092 c3v3

−6336 vc8−2052 c4v −576 sc8+855 v5c3 +864 c9v −24 s
−1644 c6v3 −1476 c5v3+45 v5 +405 v5c2−1152 sc9 +810 c4v5

−3528 c7v +708 c4v3−3920 sv2c7 −192 c9v3+2016 vc10 +58 v2s
+876 c7v3,

b3
4,num = −5752 v2c5s−3789 v2c4s+1333 v2c3s+2196 v2sc2

−81 v+417 v2cs −270 v5c+108 v3 −2016 c8v3+1404 c4s +1036
v2c6s−2048 sv2c9 +468 cv3−5310 c5v +234 c2v−4224 sc7
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+576 c10v3−432 c2s −504 cv−36 c2v3 +3582 c3v−10818 c6v
+2760 sc5−1080 c5v5 −816 sc6−456 c3s +1360 sv2c8−1500 c3v3

−1152 c11v+10224 vc8 +3609 c4v−960 sc8 −1170 v5c3+2592 c9v
+36 s +768 sc10+2484 c6v3 +1500 c5v3+192 c11v3 −810 v5c2

−704 sv2c10 +1920 sc9−1350 c4v5 +792 c7v−1116 c4v3 +6032
sv2c7−360 v5c6 −480 c9v3−3168 vc10 −81 v2s−180 c7v3,

b3
5,num = 13216 v2c5s+10404 v2c4s−4672 v2c3s−4932 v2

sc2 +180 v−762 v2cs +405 v5c−240 v3 +3456 c8v3−3888 c4s
−4048 v2c6s+2816 sv2c9 −912 cv3+15192 c5v +162 c2v+7680
sc7 −768 c10v3+1080 c2s +1062 cv−432 c2v3 −9054 c3v
+22680 c6v −5856 sc5+2160 c5v5 +2112 sc6+1320 c3s −4288
sv2c8+3504 c3v3 +4608 c11v−72 cs −17856 vc8 −9774 c4v
+3840 sc8 +3375 v5c3−9216 c9v −72 s −3072 sc10−5520 c6v3

−4272 c5v3+135 v5 −768 c11v3+1485 v5c2 +2816 sv2c10−3072
breaksc9 +3600 c4v5−2592 c7v +3504 c4v3−10688 sv2c7

+360 v5c7+1080 v5c6 +1536 c9v3+4608 vc10 +138 v2s+912 c7v3.

Since for small values of v, the above formulas are subject
to heavy cancellations, we give the Taylor expansions of the
coefficients b:

b1 = 399187

241920
− 52559

228096
v2 +

11315653

1937295360
v4

− 5807033

13076743680
v6 − 614853845

17072996548608
v8,

b2 = − 17327

8640
+

52559

28512
v2 − 5758537

14676480
v4

+
225159101

6538371840
v6 − 8200289261

4268249137152
v8,

b3 = 597859

60480
− 367913

57024
v2 +

154801723

69189120
v4

− 2799488011

6538371840
v6 +

1063054198007

21341245685760
v8,

b4 = − 704183

60480
+

367913

28512
v2 − 381346481

69189120
v4

+
9217976399

6538371840
v6 − 5100295346143

21341245685760
v8,

b5 = 465133

24192
− 1839565

114048
v2 +

67543471

9225216
v4

− 241481599

118879488
v6 +

16316044646989

42682491371520
v8.

The PLTE of the method is given as

PLTE =
(

52559

228096
w2y(10) +

52559

912384
w8y(4) +

52559

152064
w4y(8)

+
52559

228096
w6y(6) +

52559

912384
y(12)

)
h12.

3.6. Method PF-D4: Phase Fitted + First, Second, Third, and
Fourth Derivatives of Phase Lag are Zero

The fifth method of the family (PF-D4) is constructed by
forcing the phase-lag function and its first, second, third, and
fourth derivatives to be zero at the frequency V = ω × h. The
coefficients a are left the same, while for the coefficients b we
have

b0 = 0, b1 = 1

96

b4
1,num

D4
, b2 = 1

12

b4
2,num

D4
,

b3 = 1

24

b4
3,num

D4
, b4 = 1

12

b4
4,num

D4
, b5 = 1

48

b4
5,num

D4
,

where

D4 = v6(c + 1)(s)5, c = cos (v), s = sin(v),

and
b4

1,num = 3069 sc2v2 −6408 sc4v2 −4218 sc3v2 −864 scv4 +
1728 sc3v4 +2016 sc4v4 −864 sc5v4 +1380 scv2 −1152 sc2v4 +
2568 sc5v2 + 3408 sc6v2 − 960 sc6v4 − 144 v + 1440 c4s +
1029 cv3 + 60 s + 372 v3 + 4836 c4v3 − 5952 c5v + 1728 c2v −
540 c2s −648 cv −3234 c2v3 + 3912 c3v + 1728 c6v −480 sc5 +
2688 c7v−2064 c6v3 +600 c3s−204 sv2 −4786 c3v3 +96 sv4 −
120 cs − 3312 c4v + 6176 c5v3 − 960 sc6 − 2464 c7v3,

b4
2,num = −1047 sc2v2 + 3552 sc4v2 −2295 sc3v2 + 48 scv4 +

384 sc3v4 − 912 sc4v4 − 912 sc5v4 + 78 scv2 + 384 sc2v4 +
5184 sc5v2 − 2208 sc6v2 − 2832 sv2c7 + 480 sc6v4 + 12 v −
600 c4s − 131 cv3 − 35 v3 + 2929 c4v3 + 3096 c5v + 528 c2v +
120 c2s +120 cv−433 c2v3 −1584 c3v +5472 c6v−1440 sc5 −
1632 c7v − 4128 c6v3 + 540 c3s − 27 sv2 + 2181 c3v3 + 48 sv4 −
60 cs−3516 c4v−3480 c5v3 +480 sc6 +1520 c7v3 +1712 c8v3−
2496 c8v + 960 sc7 + 480 sc7v4,

b4
3,num = 2997 sc2v2 + 3906 sc4v2 + 498 sc3v2 − 936 scv4 −

48 sc3v4 + 24 sc4v4 + 2904 sc5v4 + 1632 scv2 − 1008 sc2v4 −
15396 sc5v2 − 21792 sc6v2 − 7488 c9v3 + 11376 sv2c7 +
2880 sc6v4 − 144 v − 1800 c4s + 1101 cv3 + 60 s + 300 v3 −
4740 c4v3+12768 c5v+1152 c2v−180 c2s−792 cv−2910 c2v3+
1464 c3v − 15552 c6v + 3120 sc5 − 27264 c7v + 13632 c6v3 −
120 c3s − 168 sv2 − 3244 c3v3 + 24 sv4 − 120 cs + 5328 c4v −
5980 c5v3 + 7680 sc6 + 15296 c7v3 − 6912 c8v3 + 9216 c8v −
2880 sc7+14112 sc8v2+13824 c9v−1920 sc7v4−1920 sc8v4−
5760 sc8,

b4
4,num = −3321 sc2v2 +8268 sc4v2−6861 sc3v2 +108 scv4 +

1224 sc3v4 −1812 sc4v4 −1812 sc5v4 +162 scv2 +1224 sc2v4 +
10188 sc5v2 +3552 sc6v2 +960 sc9v4 +3648 c9v3 +5328 sv2c7−
7872 sv2c9 − 480 sc6v4 + 36 v − 1320 c4s − 297 cv3 − 81 v3 +
7815 c4v3 +4104 c5v+1728 c2v+360 c2s+360 cv−1287 c2v3−
4464 c3v + 5520 c6v − 2160 sc5 + 5760 c7v − 5828 c6v3 +
1380 c3s − 81 sv2 + 6315 c3v3 + 108 sv4 − 180 cs − 9396 c4v −
5244 c5v3 − 960 sc6 − 3792 c7v3 + 3840 sc9 + 3904 c10v3 −
4208 c8v3 + 10560 c8v − 2880 sc7 − 6528 sc8v2 − 5760 c9v −
480 sc7v4 + 960 sc8v4 + 1920 sc8 − 8448 c10v,

b4
5,num = 9207 sc2v2+21552 sc4v2+6498 sc3v2−2784 scv4−

2112 sc3v4−1824 sc4v4+11040 sc5v4+5148 scv2−3072 sc2v4−
60312 sc5v2 − 81288 sc6v2 − 1536 sc9v4 − 14592 c9v3 +
27888 sv2c7 + 11328 sv2c9 + 10944 sc6v4 − 432 v − 8160 c4s +
3183 cv3 +180 s +828 v3 −23348 c4v3 +55680 c5v+2880 c2v−
180 c2s − 2520 cv − 8598 c2v3 + 1560 c3v − 54720 c6v +
12000 sc5 − 93120 c7v + 47712 c6v3 − 1080 c3s − 468 sv2 −
7742 c3v3 + 96 sv4 − 360 cs + 24240 c4v − 29032 c5v3 +
27360 sc6 +53008 c7v3 −3840 sc9 −6016 c10v3 −13728 c8v3 +
17280 c8v−6720 sc7 + 32832 sc8v2 + 23040 c9v−6400 c11v3 +
13440 sc10v2 − 4608 sc7v4 − 4608 sc8v4 − 11520 sc8 −
7680 sc10 + 10752 c10v − 1536 sc10v4 + 15360 c11v.

Since for small values of v, the above formulas are subject
to heavy cancellations, we give the Taylor expansions of the
coefficients b:

b1 = 399187

241920
− 262795

912384
v2 +

17265277

4358914560
v4

− 38566679

38041436160
v6 − 52935007231

426824913715200
v8,

b2 = − 17327

8640
+

262795

114048
v2 − 2649128441

4358914560
v4
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Figure 1. Stability regions (shaded areas) for the six methods.

+
2650726483

52306974720
v6 − 374485131133

106706228428800
v8,

b3 = 597859

60480
− 1839565

228096
v2 +

1110676079

311351040
v4

− 6919361527

8047226880
v6 +

1637603830619

15243746918400
v8,

b4 = − 704183

60480
+

1839565

114048
v2 − 5518849841

622702080
v4

+
14263211663

4755179520
v6 − 73005517242211

106706228428800
v8,

b5 = 465133

24192
− 9197825

456192
v2 +

734695627

62270208
v4

− 183227481067

41845579776
v6 +

9908801489731

8536498274304
v8,

The PLTE of the method is given as

PLTE =
(

52559

912384
w10y(2) +

262795

456192
w6y(6)

+
262795

912384
w8y(4) +

262795

456192
w4y(8)

+
52559

912384
y(12) +

262795

912384
w2y(10)

)
h12.

4. STABILITY ANALYSIS

The stability of the new methods is studied by considering
the test equation

d2y(t)

dt2
= −σ 2y(t) (23)

and the linear multistep method (3) for the numerical solution.
In the above equation, σ �= ω (ω is the frequency at which the
phase-lag function and its derivatives vanish). Setting s = σh
and v = ωh, we get for the characteristic equation of the applied
method

J/2∑
j=1

Aj (s2, v)(zj + z−j ) + A0(s2, v) = 0, (24)

where
Aj (s2, v) = a J

2 −j (v) + s2 · b J
2 −j (v). (25)

The motivation of the above analysis is straightforward: al-
though the coefficients of method (3) are designed in a way that
the phase lag and its first derivatives vanish in the frequency
ω, the frequency ω itself is unknown and only an estimation
can be made. Thus, if the correct frequency of the problem is
σ we have to check if the method is stable, that is if the roots
of the characteristic equation lie on the unit disk. For this rea-
son, we draw at the v–s plane the areas in which the method is
stable. Figure 1 shows the stability region for the six methods
(the classical one, the phase fitted one, and those with first, sec-
ond, third, and fourth phase-lag derivative elimination). Note
here that the s-axis corresponds to the real frequency, while the
v-axis corresponds to the estimated frequency used to construct
the parameters of the method.

5. NUMERICAL RESULTS

Numerical experiments have been carried out for two orbital
problems. Since the classical method is well studied, we only
present the new methods in comparison to the classical one.
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5.1. The 2-Body Problem

In this problem, we test the motion of two bodies in a reference
system that is fixed in one of them. Moreover, the motion is
planar, thus, we only have to calculate the x and y coordinates
of the second body. The differential equations are

ẍ = − x

(x2 + y2)3
,

ÿ = − y

(x2 + y2)3
,

and the initial conditions are

x(0) = 1 − ε, ẋ(0) = 0,

y(0) = 0, ẏ(0) =
√

1 + ε

1 − ε
,

where ε is the eccentricity. The theoretical solution is given
below:

x(t) = cos(u) − ε,

y(t) = √
1 − ε2 sin(t),

(26)

where u can be found by solving the equation u−ε sin(u)−t = 0.
We used an estimation for the frequency ω = 1.
Figures 5–8 present the accuracy of the methods expressed

by − log10(ERR) versus the log10 (total steps) for eccentricities
ε = 0.001, 0.1, 0.5, and 0.9, respectively. ERR is the maximum
absolute error of the position coordinates x and y over the inte-
gration interval, that is we compare the approximate solutions
x and y to the theoretical solution of x and y at each point of
integration and take the maximum of the absolute differences.

5.2. The Five-Outer Planet System

The next problem concerns the motion of the five outer plan-
ets relative to the Sun. The problem falls in the category of the
N-Body problem which is the problem that regards the move-
ment of N bodies under Newton’s law of gravity. It is expressed
by a system of vector differential equations

ÿi = G

N∑
j=1,j �=i

mj (yj − yi)

|yj − yi|3 , (27)

where G is the gravitational constant, mj is the mass of body j,
and yi is the vector of the position of body i. It is easy to see
that each vector differential Equation of (29) can be analyzed
into three simplified differential equations, that express the three
directions x, y, z.

The above system of ODEs cannot be solved analytically.
Instead we produce a highly accurate numerical solution by
using a 10-stage implicit Runge–Kutta method of Gauss with
20th algebraic order, that is also symplectic and A-stable. The
method can be easily reproduced using simplifying assumptions
for the order conditions (see Butcher 2003). The reference
solution is obtained by using the previous method to integrate
the N-body problem for a specific time-span and for different
step-lengths.

In Hairer et al. (2002), the data for the five-outer planet
problem are given (these data are summarized in Table 1).
Masses are relative to the Sun, so that the Sun has mass
1. In the computations, the Sun with the four inner planets
are considered one body, so the mass is larger than one.
Distances are in astronomical units, time is in Earth days, and

Figure 2. Five-outer planet problem for 106 days.

Figure 3. Five-outer planet problem for 107 days.

Table 1
Initial Data for the Five-Outer Planet Problem

Planet Mass Initial Position Initial Velocity

Sun 1.00000597682 0 0
0 0
0 0

Jupiter 0.000954786104043 −3.5023653 0.00565429
−3.8169847 −0.00412490
−1.5507963 −0.00190589

Saturn 0.000285583733151 9.0755314 0.00168318
−3.0458353 0.00483525
−1.6483708 0.00192462

Uranus 0.0000437273164546 8.3101420 0.00354178
−16.2901086 0.00137102
−7.2521278 0.00055029

Neptune 0.0000517759138449 11.4707666 0.00288930
−25.7294829 0.00114527
−10.8169456 0.00039677

Pluto 1/(1.3 × 108) −15.5387357 0.00276725
−25.2225594 −0.00170702
−3.1902382 −0.00136504

the gravitational constant is G = 2.95912208286 × 10−4. The
system of Equations (27) has been solved for 106 and 107 days,
and for these time-spans, the previously mentioned method
of Gauss produces a 10.5 and an 8.6 decimal digits accurate
solution, respectively. Figures 2 and 3 present the accuracy of
the methods expressed by − log10(ERR) versus the log10 (total
steps). ERR is the error at the end point of integration, that is
we compare the three position coordinates of all six bodies to
the corresponding ones of the reference solution and we take
the maximum of the absolute differences.
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Figure 4. Two-body problem for eccentricity ε = 0.1 and 10,000 periods.

As for the frequency, we use the constant value
0.00145044732989. This is the frequency in radians of the
fastest (in terms of angular speed) body, which is Jupiter. Dur-
ing the time span of 107 days (27,378 years), Jupiter rotates
approximately 2308 times, while Pluto rotates approximately
110 times.

5.3. Results

In Figure 1, we see the stability regions (v–s plane), shown as
the shadowed areas, for the classical Quinlan–Tremaine method,
the PF-D0, PF-D1, PF-D2, PF-D3, and PF-D4 methods (from
left to right and from top to bottom). We can confirm the increase
of the stability interval (v = s diagonal) as the level of tuning
increases, that is when more derivatives of the phase lag are
nullified.

In Figure 2, we see the accuracy of the methods expressed by
− log10 (error at the end point which is after 106 days) versus
the log10 (total steps) for the five-outer planet system (see the
previous subsection for explanation on the error computation).
We can clearly observe the higher efficiency of the methods
with high level of tuning over the methods with lower level.
The new method with the phase lag and its four derivatives
nullified has at least one digit higher accuracy than the classical
Quinlan–Tremaine method. It is also correct to say that the new
method needs a step-length approximately 20% smaller than
that of the classical one, in order to produce a solution of the
same accuracy. In this problem, as well as in all problems, we
present the methods as soon as they converge (as we move to the
right on the function evaluations axis, where h is decreasing). In
this problem they all start at approximately h < 80. When the
methods converge, they present high accuracy, due to their high
algebraic order and the ability to behave well over a relative
long integration.

In Figure 3, which presents a longer integration of the five-
outer planet problem (Jupiter rotates 2308 times), we notice
again the higher efficiency of the new methods in relation to the
classical one. The nonlinearity, as we move to the right on the
efficiency graphs, is observed because the accuracy approaches
the accuracy of the reference solution (8.6 decimal points),
thus the round-off error becomes important as compared to the
truncation error of the methods.

In Figure 4, we perform a long time integration of the two-
body problem for eccentricity ε = 0.1. The time span is
[0, 63000], which corresponds to more than 10,000 periods.
We can see a small but steady (along the function evaluations
axis) difference in favor of the higher level of tuning methods.
Every higher level of tuning method performs better than any

Figure 5. Two-body problem for eccentricity ε = 0.001 and 100 periods.

Figure 6. Two-body problem for eccentricity ε = 0.1 and 100 periods.

Figure 7. Two-body problem for eccentricity ε = 0.5 and 100 periods.

other method with lower level of tuning. All optimized methods
are better than the classical Quinlan–Tremaine method and the
new method with phase lag and four derivatives nullified has up
to one digit higher accuracy than the classical one. We have also
measured the energy loss during this integration. Since no extra
energy-conservation property has been added to the classical
methods, all six methods for all step-lengths tested had almost
the same energy error: approximately 0.0079 (2.1000 digits of
accuracy).

In Figures 5–8, we see the accuracy of the methods expressed
by − log10 (maximum error over the integration interval) versus
the log10 (total steps) in the two-body problem for eccentric-
ities ε = 0.001, 0.1, 0.5, and 0.9. All four diagrams present
the methods with the least necessary function evaluations (that
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Figure 8. Two-body problem for eccentricity ε = 0.9 and 100 periods.

is with the highest step-length), which means that they did not
converge with higher step-length (more left on the horizontal
axis). The “starting” accuracy depends on the method’s proper-
ties (algebraic order and phase-lag error), the step-length used,
and the length of the interval of integration. We can see that
the methods perform a lot better on low values of eccentricity,
while they perform almost similarly to the classical Quinlan–
Tremaine method for higher eccentricities. This is explained
by the fact that we added a better “phase-lag error behavior,”
which helps a lot in orbital problems with low eccentricities and
all oscillatory nonstiff problems, but little or less in other types
of problems. We have also run the problem for ε = 0.2, 0.3,
etc., and the results showed that no significant improvement is
observed above ε = 0.2. In any case, the optimized methods
performed better than the classical Quinlan–Tremaine method.

We note here that the function evaluations needed for the
integration of each method are proportional to the CPU time
needed, since the methods need the same function evaluations
per step (one) and the overhead time of computing the variable
coefficients is minimal, since we use a constant frequency.

6. CONCLUSIONS

We have presented a new family of 10-step symmetric
multistep numerical methods with improved characteristics
concerning orbital problems. The methods were constructed
by adopting a new methodology which, apart from the phase

fitting at a predefined frequency, eliminates the first derivatives
of the phase-lag function at the same frequency. The result is that
the phase-lag function becomes less sensitive on the frequency
near the predefined one. This behavior compensates the fact
that the exact frequency can only be estimated. Experimental
results demonstrate this behavior by showing that the accuracy
is increased as the number of derivatives that are eliminated is
increased.

More specifically, the new methods have been tested to a real
problem known as the five-outer planet problem and the test
problem of two bodies. They seem to always perform better than
the corresponding classical method of Quinlan–Tremaine, and
more better with low values of eccentricity. The new property
allows the methods to perform well during the integration of
many orbital problems and nonstiff oscillatory problems.

We thank the anonymous referee for his/her fruitful com-
ments and remarks that made this work more clear and useful.
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