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Abstract

A hybrid neural network for gas sensing application is presented, which is based on adaptive resonance theory. The network
may use as an input one or more gas sensors. The basic feature of the proposed topology is its ability to learn a new pattern or
form a new pattern category at any point of its operation. At the same time it retains knowledge of previously learned patterns
or pattern categories. This adaptation ability helps the network to solve many of the problems encountered with tin oxide gas
sensors, like instabilities and degradation. The functionality of the network is presented in the two cases of one and four input
providing gas sensors. The experimental results show that the effect of sensor degradation maybe compensated by the proposed
network topology. © 1997 Elsevier Science S.A. All rights reserved.
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1. Introduction

Human sense of smell is a valuable tool in many
areas of industry, such as perfumery, food and drinks
production, clinical diagnosis and environmental mon-
itoring. The human sense of smell however, is influ-
enced by many factors such as health and age. An
instrument that could perform odour discrimination
devoid these influences and it could find application
in many of the above areas. Such an instrument is an
artificial nose that generally comprises of one or more
gas sensors and an appropriate pattern recognition
system.

The pattern recognition is usually structured in
three distinct steps: feature extraction, classification
and identification. Feature extraction performs the im-
portant operation that is the transformation of the
sensor output to qualitative information. Since this
transformation is not a linear one on a sensor output,
suitable numerical tricks must be engaged. Classifica-
tion is a procedure that clusters together the sensor

array data as processed by the feature extraction, in
order to obtain the classes. This procedure can be an
easy one when in the representation space, the sub-
spaces referred to the classes produced by the feature
extraction are connected. Then, Bayesian surfaces can
be used to separate the classes, but normally this is
not the situation in gas sensing applications. Finally,
identification is the procedure that assigns a sensor
array output to a class.

Neural networks have been applied to a wide vari-
ety of applications and they have been considered as
the most promising tools for pattern recognition in
gas sensing applications. The acute problem, however,
of the metal oxide gas sensors degradation in particu-
lar has not been tackled so far to the best of our
knowledge. Our experience [1–3] with thick and thin
film tin and indium oxide gas sensors shows that for
applications requiring relatively long term stability
and functional reliability as to the selectivity of the
sensor, a complex electronic system is necessary for
the degradation compensation. In this work, a hybrid
neural network is presented, which offers powerful
solutions for the compensation of the gas sensor
degradation, and subsequently for the excellent im-
provement of its reliability as shown in the following.
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Fig. 1. Network architecture.

2. The proposed topology

2.1. Network architecture

The architecture of the network that has been exper-
imentally studied, is shown in Fig. 1. The network is
composed of blocks connected sequentially. Also there
is a feedback loop between TEST block and Winner
Takes All block. The first block of the network per-
forms feature extraction of the input array. Usually in
this block input data normalisation is performed. The
next block is a Long Term Memory where the system
knowledge is stored. The output of the feature extrac-
tion block is transformed through the Long Term
Memory to produce a pattern, which corresponds to
the activation level of each one of the already ones. The
Winner Takes All block that follows, performs classifi-
cation. In this block the procedure ‘Winner Takes All’
[4] is applied at the output of the Long Term Memory.
Thus, from the patterns stored in Long Term Memory,
only the one with the higher activation level is settled as
active. Also this block may disable some patterns de-
pending on the signal coming from the TEST block, as
it will be explained later. The output of the Winner
Takes All block, which is also the output of the system,
is normalised at the Short Term Memory. We notice
that the existence of the Short Term Memory block is
optional. The next block is a Long Term Memory
again. At the TEST block that follows, the active
pattern is compared with the input pattern. If the two
patterns resemble each other, then the active pattern is
accepted and the procedure is terminated. If not, the
pattern is disabled and a new test is performed again
until a pattern is accepted.

The basic characteristics of the proposed topology
are:

During operation, compensation of sensor degrada-
tion is obtained and thus the system lifetime is in-
creased.
New patterns can be learned without the need of
supervisor [5].
The existence of normalisation block increases the
signal to noise ratio.
In the feature extraction block at the input of the
network, experience can be used in order to promote
the network functionality [6].

2.2. Topological description of the blocks

Fig. 2 shows in detail the architecture of the network.
At the feature extraction block, normalisation of the
input array is performed. So, if (Eq. (1)):

a= [a1,a2,…,an ] (1)

is the input vector, then the normalised vector b will be
(Eq. (2)):

b= (1/s)�a where s=%ai
2 (2)

The Long Term Memory block includes a two dimen-
sional array M. In every line of the array an input
pattern can be stored. Thus, the transformation of the
vector b through the Long Term Memory, which is
obtained by the multiplication c=M*b, can be consid-
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Fig. 2. Functional diagram of the network.

ered as the evaluation of the inner products of vector b
with the lines of the array M. The higher value of the
calculated vector c corresponds to the stored pattern
that is more close to the input.

At Winner Takes All block the following procedure
is performed (Eq. (3)):

if ck=maxi=1,2,…n{ci} then di=0

i=1,2,…,k−1,k+1,…n and dk=1 (3)

At TEST block the distance between the vectors e and
b is calculated. If the distance is smaller than a prede-
termined level, then the output of the block becomes
positive.

2.3. Learning procedure

There are two ways that the network may learn to
recognise the input patterns [7]. The first one is in the
case when the input pattern is similar to an already one.
Subsequently, the learned pattern is slightly modified to
the direction of the current input pattern. Therefore,
changes in the sensor behaviour with a relatively high
time constant do not affect the resolution of the system.
The second kind of learning is when a pattern is
monitored for the first time. Then the network adjusts
the weights in the two Long Term Memory blocks and
the input pattern is learned immediately.

2.4. The rejection threshold

As it was mentioned before, in order to accept a
pattern, the network compares it with an already
learned one. The TEST block calculates the distance
between the two patterns and if it is greater than a level
the pattern is rejected and a new one is selected, until
either all the patterns have been rejected or a pattern is
found which matches the input. This level, which is
called rejection threshold, can give the network an
additional flexibility. If for example, ten patterns have
to be learned and classified in four classes, different
values of the rejection threshold are examined until the
optimum level is found. If the examined value of the
rejection threshold is too small, the network will
overflow, that is it will classify the patterns in more
than four classes. If it is too large, patterns that belong
to different classes will be classified in the same class.

3. Experimental results

The sensors used were tin oxide film deposited with a
planar magnetron sputtering system [8]. Tin oxide is a
wide band gap (3.6 eV) n-type semiconductor, whose
conductivity is due to oxygen vacancies [9]. The con-
ductance of SnOx films may be altered by changing the
oxygen to tin ratio, i.e. film stoichiometry. In this way
the presence of oxidising gases decreases film conduc-
tance, whereas the presence of small amounts of reduc-
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ing gases increases it [10]. The range of applications of
this type of gas sensors is limited by the poor selectivity
they have (i.e. comparable response to the presence of
different reducing gases) [11]. Efforts to enhance the
selectivity of these sensors have been focused on the
addition catalysis, promoters and filters on the SnOx
film [12]. As the principles of catalysis are not yet well
understood, the problem has not been solved, although
some progress has been made.

The pattern recognition system under investigation
was designed in order to distinguish among three gases:
zero grade air, carbon monoxide 100 ppm, and ethanol
30 ppm. The effectiveness of the system has been tested
for two different groups of measurements.

In the first group only one tin oxide gas sensor was
used. In that case, for each one of the aforementioned
gases, the corresponding pattern was created by the
following procedure: the temperature of the sensor was
linearly decreased from 400 to 280°C. During this
temperature change, which required 45 min, a samples
of the sensor resistance was taken every time the tem-
perature was reduced by 4°C. In this way, a vector of
30 values was created. The graphical representations of
the input patterns that correspond to the three afore-
mentioned gases, for three successive measurements, are
shown in Fig. 3.

It is worth noting that although the response of the
sensor to a specific gas is changing by degradation, the
proposed system continue to recognise the gases. This is
due to the network adaptive character.

In the second group of measurements, four tin oxide
gas sensors were used with initial mean correlation
close to 0.2. The mean correlation has been calculated
by taking the mean value of the correlation factors of
every pair of the sensors. The temperature of the sen-
sors was maintained at 350°C. A pattern for each one
of the above gases was created by measuring the resis-

Fig. 4. The effect of the rejection threshold to the resolution of the
network.

tance of the sensors and forming with the measurement
values a four value array. Fig. 4 presents the number of
patterns learned by the network as a function of the
rejection threshold. Since the input patterns have to be
classified in three classes, the value 0.2 for the rejection
threshold gives the correct number of patterns. For
values of the rejection threshold below 0.15 the network
overflowed. Fig. 5 shows the functionality of an adap-
tive neural network in comparison to a three layer
feedforward neural network. The performance of these
two different networks and the mean correlation of the
sensors is shown as a function of sensor degradation.
The performance is measured with a value from zero to
one, showing the probability of successful answer of the
corresponding network. It is worth noting that the
degradation of the sensor array is assigned by calculat-
ing the mean change of the sensor resistance in zero

Fig. 5. The effect of sensor degradation to the performance of an
ART network and a Back Propagation one, is compared to the mean
correlation of the sensors in the sensor array.

Fig. 3. Experimental results showing the normalised resistance of the
sensor as a function of temperature.
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Fig. 6. The effect of sensor degradation to the network weights
compared to the mean correlation of sensors in the sensor array.

between an input pattern and an already stored pattern
is greater or equal to the rejection threshold then a little
learning takes place, which refines the values of the
connection weights, without the creation of new cate-
gories. If the degree of match is less than the rejection
threshold, the comparison procedure is repeated for all
the already stored patterns that may potentially re-
spond to the input pattern. If all the patterns fail, then
a new category is created which corresponds to the
input pattern.

(3). The number of categories that are created by the
network depends on the value of the rejection
threshold. For a gas sensing application the number of
the categories has to be equal to the number of gasses
under investigation, so that every gas corresponds to
one category. We have been experimented with tin
oxide sensors that have been constructed in our labora-
tory. For these sensors the appropriate value of the
rejection threshold was found in the interval between
2.7 and 3.3. Therefore the value of 3 was imposed as
the rejection threshold of the system.

(4). The use of another sensor (of the same type as
these we have been experimented with) necessitates only
to reset the network so that all the data in the Long
Term Memories is being erased. After that, the system
is ready to work immediately.

(5). Before using other type of tin oxide gas sensors,
the value of the rejection threshold has to be reallo-
cated. This means that a number of experiments must
be performed, in order to find the value of the rejection
threshold that allows the system to create the appropri-
ate number of classes.
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