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Abstract

The unfolding of a gamma ray spectrum experience many difficulties due to
noise in the recorded data, that is based mainly on the change of photon
energy due to scattering mechanisms (either in the detector or the medium),
the accumulation of recorded counts in a fixed energy interval (the channel
width of the detector) and finally the statistical fluctuation inside the detec-
tor. In order to deal with these problems, a new method is developed which
interpolates the ideal spectrum with the use of special designed derivative
kernels. Preliminary simulation results are presented and show that this
approach is very effective even in spectra with low statistics.
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1. Introduction

Response function calculation of Nal based scintillators has many appli-
cations like process control tasks in manufacturing industry, in oil detection,
in safety and alarm systems, in Prompt Gamma Neutron Activation Analy-
sis (PGNAA) and others (see for example @],E], B] and references there in).
In general, Monte Carlo techniques are used to calculate the interactions of
source photons with the detector (M], ﬂﬂ], ﬂa]) and thus the response function.
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Also both analytical ([7], [8]) and statistical (|9] techniques have been used
too.

On the other hand, during the detection of gamma rays, several problems
are encountered, ie. the efficiency vs. resolution of semiconductor or scin-
tillation detectors used, the geometry, which causes in turn uncertainties in
the solid-angle determination, etc. Also the form of the spectrum becomes
more complex due to the following properties: (i) the scintillation detectors
have a lower energy resolution compared to Ge detectors, (ii) the environ-
ment and/or shielding play an important role because of the scattering of
high energy x-rays into the detector, (iii) the first and second escape peaks
become important at high energies and (iv) a significant tail develops to-
wards the low-energy continuum due to Compton scattering and escape of
bremsstrahlung from the detector. These effects reduce the detection effi-
ciency in the full-energy peak, and have also other serious consequences. If
the spectrum is complex, with a continuous ~-yield (e.g. due to statistical
~-rays following the decay of highly excited nuclei), the large superimposing
continuous tails of the high-energy v-rays may hamper an accurate evaluation
of the continuous 7-yield.

To improve these drawbacks several attempts have been made in the past.
In the experiments a combination of different detectors (Ge and BaF, anti-
Compton shields, etc.) has been used. However, these techniques either
reduce the overall efficiency by rejecting a large part of the detected events
(anti-Compton), or hamper a precise determination of the overall efficiency
(addition of coincident signals from different types of detectors). In the data
analysis the generally used forward method fits the measured spectrum using
appropriate physical models (input information): a master-spectrum is gen-
erated using e.g. statistical model calculations (some model parameters are
to be adjusted later), which is then folded with the detector response function
and the resulting spectrum is compared with observation. Finally, the model
parameters are adjusted, until an acceptable agreement is found. Problems
arise here from peaks in the experimental spectrum due to contaminants in
the target creating discrete lines, which cannot be simulated easily. The
remaining problem is the choice of the physical model and the appropriate
model parameters. If several physical processes compete, the generation of
the master spectrum can often be ambiguous [10]. On the other hand, even if
the model spectrum is accurate, the accuracy of the unfolding process is re-
duced due to two main reasons: (i) the noise in the measuring spectrum and
(ii) the fact that the measuring spectrum represents the total counts recorder

2



in a finite energy interval, which is the channel width of the detector.

The purpose of this work is to present a new method which can improve
the unfolding procedure of a given measured spectrum. The method interpo-
lates the ideal spectrum with the use of special designed derivative kernels.
Preliminary simulation results are presented which show that this approach
is very effective even in spectra with low statistics.

2. Derivative kernels in unfolding procedure

Consider the case where a radioactive source emits photons in a uniform
medium and at a given point a photon detector has been placed. Photons,
after their emission and before they reach the detector, interact with the
atoms of the uniform medium and can change their energy due to Compton
scattering or pair production, or disappear due to the photoelectric effect.
The effect of the interaction of photons with the medium can be formulated
as follows. Let S(E) be the source spectrum and M (E) the measured one.
In vacuum,

M(E) = /0 T REV)-S(V) - dv (1)

where R(E,V) is equal to the number of photons that will be recorded at
energy E when one photon is emitted with energy V. The function R(E, V)
is known as the transfer function of the detector. In the uniform medium, this
relation is more complicated. If a photon with initial energy U is emitted,
then there is a probability P(V,U) that the photon will reach the detector
surface with a final energy V. Thus, the measured spectrum now will be
given by:

M(E) = /0 TRV ( /0 TPy - S(U) -dU) LV (@)

Changing the order of integration, the function
R(E,V) = / R(E,U)-P(U,V)-dU (3)
0

can be regarded now as the modified transfer function of the detector, for
operation inside the uniform medium [11]. The measured spectrum can now
be expressed as:

~

M(E) = /OOO R(E,V)-S(V)-dV (4)



But instead of the function M(E) the detector integrates this function in
small energy intervals, called channels. Thus, the detector output M (FE) is
given:

B E+e
M(E) = MV)-adv (5)
E
where € is the channel width. Consider now the function
E+E'
m(E, E') = / M(V)-dv (6)
E

Since M(E) is equal to m(FE,¢), the 2-dimensional function m(E, E') is
known on the grid (n; - €,ns - €), ny,ny = 0(1)N. Our purpose now is to
find optimal derivative kernels in order to calculate derivatives of the func-
tion m(E, E'). Then, we can calculate M (E):

om(E, E')
OF

An important property of m(E, E’) which allows for the application of equa-
tion (7)) is that:

= M(E) (7)

limp

m(E,—E') = —m(E — E', E') (8)

Figure [l shows the measured spectrum from a Nal detector in an underwater
experiment, described in [12]. Both M (E) and the calculated from equation
(@ M(E) are shown in Figure 2l

The unfolding of the gamma ray spectrum M (E) can now be easily ob-
tained in the case where radioactive sources emit photons in discrete energies
and the counting rate is low enough to avoid additive effects in the detector.
In this case and based on the linearity of the folding mechanism, we assume
that

S(E) = a,0(E - E,) (9)

and we want to calculate both a,, and E,. Then, it is easily found that
k
M(E) = a,R(E,E,) (10)
n=1

Finally, consider a continuous function g : R? — R and its discrete version

e}

gs = Z g(z, y)d(l’ - an) ' 5(y - n2T) (11)

ni,me=—00



where 0 is the Dirac delta function. The knowledge of the discrete version g;
can lead to the reconstruction of the continuous function g with the aid of a
kernel K such that

g@y) = > ga(n,ne)K(x—mT,y —nyT) (12)

ni,me=—00

The ideal interpolation where g = g is achieved if K(x,y) = sr(z) - sr(y),
where

sin(wx/T)
it Skt s 1
() = 220 (13)
and T is the Nyquist rate. For practical reason, we assume that
K (z,y) = do() - do(y) (14)
and o)
n o(x
=d, 1
) — (1) (15)

Then, the expression for the derivative with respect to x of the reconstructed
function g becomes:

o0

DAgY(w,y) = Y gs(m,na)di(x —mT)do(y — naT) (16)

ni,no=—00

In order to construct an efficient kernel, it is not necessary that d; (z) = dj(z).
Although this seems controversial consider the following example: it is com-
mon to use a sampled Gaussian and its derivative. However, because the
Gaussian is not strictly bandlimited, sampling introduces artifacts, thus de-
stroying the derivative relationship between the resulting kernels. So, instead
we choose to simultaneously design a pair of discrete kernels that optimally
preserve the required derivative relationship. If

Do(w) =Y do(nT)e™™" | Di(w) = dy(nT)e ™" (17)

with w = 27 /T are the discrete Fourier transforms of dy, d;, we can demand
that
’iWDo(w) = Dl(w) (18)

in the case of one dimensional signals g. In the case of two dimensional
signals, we can demand for example that the pair of kernels preserve the
derivative relationship in all directions [13].
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3. Simulation results

In order to test the new method, a simulation experiment was performed.
A folded spectrum is produced using the transfer function for a Nal based
measuring system calculated in [14]. The spectrum is folded again using
the method presented in [15] in order to simulate an underwater measuring
system. Several simulated spectra were produced, with different number of
photo-peaks and different number of total recorded counts in order to account
for the spectrum statistics. Figure [3] shows the overall error in the unfolded
spectrum, using a Gaussian derivative kernel (o) and three derivative kernels
DK3 (O), DK4 (x) and DK5 (o) with 3,4 and 5 points respectively calculated
in [13]. Furthermore, in Figure @ the dependence of the error in the unfolded
spectrum on spectrum statistics is shown for the Gaussian (o) and DK5 (x)
derivative kernel. It is clear that the new method is very promising even in
cases with low statistics. A special experimental setup is under construction
to test the new method in real spectrums. Moreover, new derivative kernels
are designed in order to optimize their behavior.

4. Conclusions

Preliminary results on interpolation of a measured spectrum with deriva-
tive kernels, show that the unfolding procedure becomes more accurate even
in cases of low statistics. The use of derivative kernels facilitate the numer-
ical differentiation which is of high importance in both peak detection and
spectrum unfolding.
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Figure 2: Measured (o) and calculated spectrum (solid line) obtained from [12].
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Figure 3: Unfolding of simulated spectra generated with the method in [14]. DKS3 uses the
3-point kernel couple, DK/ the 4-point one and DKJ5 the 5-point kernel. The Gaussian
curve is produced using a sampled Gaussian and its derivative. Gaussian derivative kernel
(o), DK3 (O), DK4 (x) and DK5 ().
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Figure 4: Dependence of unfolding accuracy on spectrum statistics for the Gaussian (o)
and DK5 (+) case. The horizontal axis represents the total number of counts recorded.
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