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Abstract. We investigate in detail the mechanisms under which degree correlations evolve
in complex networks. We consider the case where a vertex is entering the network at each
time, carrying a predefined number of edges. We prove in this work, that the same elementary
interactions which is responsible for emerging of scaling in complex networks, can give several
patterns of degree corellations. As a test case, the effect of preferential attachement rule in
degree correlations is studied in detail.

1. Introduction
During the past years there has been a vast progress in the field of complex networks [1],
[2]. Various networks in nature, science and technology display, so called, complex phenomena.
Networks such as the Internet, at the autonomous level or even the World Wide Web, the protein
correlations network or social networks such as the friendship network or the sexual network [3],
[4].

Strikingly, many of these networks have complex topological properties and dynamical
features that cannot be accounted for by classical graph modelling [5]. For example, small-
world properties [6] and scale-free (SF) degree distributions [7] (where the degree of a node is
defined as the number of other nodes to which it is attached) seem to influence significantly the
topology of real world networks. These global properties show a large connectivity and a short
average distance between nodes, which have considerable impact on the behaviour of physical
processes taking place on the network.

Interactions in networks may be described in terms of graphs, consisting of vertices and
edges, where they represent the connections in the graph (their interactions). This approach
was initiated by Erds and Rnyi (ER) [5]. In the ER model, the number of vertices is fixed, while
edges connecting one vertex to another occur randomly with certain probability. However, the
ER model is too random to describe real complex systems. Earlier studies concentrated on simple
random networks, and it was recently discovered that many complex networks are hierarchically
organised. Recently, Watts and Strogatz (WS) [6] introduced a small-world network, where a
fraction of edges on a regular lattice is rewired with probability pWS to other vertices. More
recently, Barabsi and Albert (BA) [7], [9], [10] and [11], introduced a new approach of an evolving
network where the number of vertices N increases linearly with time (rather than fixed), and
a newly introduced vertex connects to the preexisting network with m edges, following the so-
called preferential attachment (PA) rule. The PA rule means that the probability for the new
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vertex to connect to an already existing vertex is proportional to the degree k of the selected
vertex. Then the degree distribution PD(k) follows a power law PD(k) ∼ k−γ with γ = 3 for the
BA model, while for the ER and WS models, it follows a Poisson distribution. In SF networks,
one may wonder if the exponent γ is universal in analogy with the theory of critical phenomena.
However, the exponent γ turns out to be sensitive to the detail of network structure. Thus, a
universal quantity for SF networks is yet to be found.

In this work, we derive a master equation for the degree correlation of an evolving network.
The derivation is presented in section 2, while in section 3, simulating results are produced in
the case of preferentail attachement rule. Finally, in section 4, conclusions are drawn and open
questions for future work are posed.

2. Evolution of Correlations
Suppose that pk is the degree distribution of our network, i.e., the fraction of vertices in the
network with degree k, or equivalently the probability that a vertex chosen uniformly at random
from the network will have degree k. The vertex at the end of a randomly chosen edge in the
network will have degree distributed in proportion to kpk , the extra factor of k arising because
k counts the available edges of a node with degree k [14], [15] and [16]. In the absence of
correlations, the probability that a randomly selected edge has endpoints with degrees (k, k′) is
proportional to k · pk · k′ · pk′ . On the other hand, degree correlations dictate that there is a
conditional degree distribution P (k′|k) which is the probability that a vertex with degree k is
connected with a vertex with degree k′.

Assume that initially there are m0 vertices with no edges in the network. At each time
t > m0, a node is entering the network and makes m connections with other vertices already
in the network (suppose that m ≤ m0). We define as the k-island the set of vertices that have
degree k and let Etk,k′ be the number of edges connecting the k and k′ islands (that is the number

of edges that their endpoints have degrees (k, k′)) . Let N t
k be the number of vertices in the

k-island at time t, P t(k′|k) the conditional degree distribution at time t, < k >t the mean degree
at time t, N t the number of nodes in the network at time t (which is equal to t), P t(k) the
degree distribution at time t, P (k, k′) the joint degree distribution at time t which is given by

P t(k, k′) =
Etk,k′

< k >t N t
(1)

and qtk the probability that a vertex with degree k gains an edge at time t. Since at each time
m-edges are created

∞∑
k=1

qtkNk = m (2)

The number of edges connecting the k and k′ islands at time t+ 1 is given:

Et+1
k,k′ = Etk,k′ +qtk−1N

t
k−1P

t(k′|k − 1)(k − 1)

+qtk′−1N
t
k′−1P

t(k|k′ − 1)(k′ − 1)
−qtkN t

kP
t(k′|k)k

−qtk′N t
k′P

t(k|k′)k′
+qtk′−1N

t
k′−1δk,m

+qtk−1N
t
k−1δk′,m

(3)

where δ is the Kronecker symbol. The first term in equation 3 says that a new vertex connects
to another vertex with degree k− 1 with probability qtk−1N

t
k−1 since we have N t

k−1 vertices with
degree k − 1. This vertex has P t(k′|k − 1)(k − 1) links with vertices with degree k. Since the
connected vertex with degree k− 1 has now degree k, those links must be counted now to Et+1

k,k′
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. The second term in equation 3 has the same meaning (interchange k and k′). The third term
says that a new vertex connects to another vertex with degree k with probability qtkN

t
k. This

vertex has P t(k′|k)k links with vertices with degree k′. Since the connected vertex with degree
k will have now degree k+ 1, these links are not counted now to Etk,k′ . The fourth term has the
same meaning. Finally, the fifth and sixth term counts the new edges that connect the m-island
with the other islands (note here that the new vertex enters the m-island). It can be easily
verified that ∑

k,k′>0

Et+1
k,k′ =

∑
k,k′>0

Etk,k′ + 2m (4)

as expected. For the initial condition at time t = m0 we have:

Nm0
k = m0δk,0, Pm0(k) = δk,0, and Pm0(k, k′) = 0 (5)

Equation 3 along with the initial conditions 5 can produce Ek,k′ at any time given qtk. Since

P (k, k′) =
Ek,k′

< k > N
(6)

and
kP (k)P (k′|k) =< k > P (k, k′) (7)

we can divide 3 with < k >t+1 N t+1 =< k >t+1 (t+ 1. The result, after some rearrangements,
reads :

t

(
< k >t+1

< k >t
P t+1(k, k′)− P t(k, k′)

)
+
< k >t+1

< k >t
P t+1(k, k′) +

(
Qt(k) +Qt(k′)

)
P t(k, k′) =

Qt(k − 1)P t(k − 1, k′) +Qt(k′ − 1)P t(k, k′ − 1) +

Qt(k − 1)
P t(k − 1)

< k >t
δk′,m +Qt(k′ − 1)

P t(k′ − 1)

< k >t
δk,m (8)

where Qt(k) = tqtk.
Taking now the limiting case where t → ∞, we have < k >t+1=< k >t and P t+1(k, k′) =

P t(k, k′) thus

P (k, k′) =
Q(k − 1)P (k − 1, k′) +Q(k′ − 1)P (k, k′ − 1)

1 +Q(k) +Q(k′)
+

Q(k − 1)P (k − 1)δk′,m +Q(k′ − 1)P (k′ − 1)δk,m
2m(1 +Q(k) +Q(k′)

(9)

where Q(k)
t→∞
= Qt(k). Since

P (k) =
< k >

k

∑
k′>0

P (k, k′) (10)

and summing equation 9 for k′ > 0 we have

P (k) =
Q(k − 1)P (k − 1)

1 +Q(k)
, k > m (11)

and

P (m) =
1

1 +Q(m)
(12)
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Equation 11 can be rewritten as

P (v) +Q(v)P (v) = Q(v − 1)P (v − 1) (13)

Summing for v = m+ 1 until k we have

F (k)− 1 +Q(k)P (k) = 0 (14)

where F (k) is the cumulative degree distribution and we have used equation 12. In the case of
scale free networks, for large k we must have

F (k) = 1− Ck1−γ (15)

where after substitution in 14 and taking into account that P (k) = F ′(k) we have

Q(k)
k>>1

=
k

γ − 1
(16)

3. Simulation Results
As an example, we examine the evolution of correlations in the well studied Barabasi-Albert
network [7], In this network, the probability of a vertex with degree k to gain an edge at time t
is given:

qtk = m
k∑Nt

j=1 kj
(17)

where the sum in the denominator is running on all network vertices and thus

qtk = m
k

2mt
(18)

since the sum of all degrees is twice the number of edges and N t = t. For Q(k) we have

Q(k) =
k

2
(19)

and thus the produced network is scale free with exponent equal to 3. Equation 8 now becomes

t
(
P t+1(k, k′)− P t(k, k′)

)
+ P t+1(k, k′) +

k + k′

2
P t(k, k′) =

k − 1

2
P t(k − 1, k′) +

k′ − 1

2
)P t(k, k′ − 1) +

k − 1

2

P t(k − 1)

m
δk′,m +

k′ − 1

2

P t(k′ − 1)

m
δk,m (20)

with initial conditions

Pm0(k, k′) = 0

Pm0(k) = δk,0

Figure 1 shows the calculated joint degree distribution for t = 102, 103, 104 and ∞. The
disassortative neture of the Barabasi-Albert network is obvious for large times, while this is
not the case when the network is small enough. This happens because initially, the edges
are quite uniformly distributed among the vertices, but as the time increases, some vertices
collect the majority of new edges (emergence of scaling). These veritces, have small probability
that they are connected due to the sparse nature of the network. On the other hand, as time
increases, since neighbors of vertices with high degree have small degree, it is expected that the
clustering coefficient will decrease with increasing node degree. This is shown in figure 2 where
the clustering coefficient is calculated for t = 102, 103, 104 .
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Figure 1. Calculated joint degree distribution for t = 102, 103, 104 and ∞ for an evolving
network following the preferential attachement rule.

Figure 2. Calculated distribution of clustering coefficient for t = 102, 103, 104 for an evolving
network following the preferential attachement rule.
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4. Conclusions
It has been shown in this work, that the same elementary processes that are responsible for
the scale free structure of real world complex networks, can produce different patterns of degree
correlations. This result comes from the construction of a master equation for the evolution of
degree correlations in an evolving network in which the only parameter is the probability that
a vertex with a predefined degree gains an edge in a specific time (Qt(k)). The master equation
was tested in the Barabasi-Albert network where the well studied behaviour of these networks
was reproduced. The master equation for the evolution of correlations can be used to model
various kikds of networks by simply changing the probability Qt(k).
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